Information in a Two-Stage Adaptive Optimal Design

Size: px
Start display at page:

Download "Information in a Two-Stage Adaptive Optimal Design"

Transcription

1 Information in a Two-Stage Adaptive Optimal Design Department of Statistics, University of Missouri Designed Experiments: Recent Advances in Methods and Applications DEMA 2011 Isaac Newton Institute for the Mathematical Sciences Stanford University, June 14-16, 2011

2 Motivating Question For adaptive designs, How does the selection of sequential treatments affect the properties of estimators? Even if the design is ancillary to the experiment, can it be ignored?

3 Heuristics Behind Adaptive Optimal Designs Optimal designs (e.g., designs that minimize the variance of best dose) are functions of the unknown parameters for nonlinear response functions. So they need to be estimated. If MLEs are consistent, in the limit MLEs of the optimal designs will be consistent. Hence estimating the optimal design with accruing data from sequential cohorts of subjects will provide increasing efficient designs, and a reasonable overall strategy for treatment allocation. This strategy has been proposed frequently in the optimal design literature starting with (before?) Box and Hunter (1963).

4 Outline: Information in a Two-stage model 1. One Parameter Regression Model with Exponential Mean Function 2. Basic Review for Independent Observations 3. A Two-Stage Design 4. Illustration with Exponential Mean Function 5. Conclusions

5 Notation treatments/stages x i, i = 1, 2; total sample size n = n i ; sample weights w i = n i /n; wi = 1 design {w i, x i }, n fixed; responses y i = (y i1,..., y ini ); expected response η i = η(x i, θ); mean response ȳ i = n 1 ni i j=i y ij

6 A Regression Model with Exponential Mean Function y = η(x, θ) + ɛ, ɛ N (0, 1) η(x, θ) = exp ( θx), θ (, ), 0 < x b < Observe responses y i = (y i1,..., y ini ) at x i. For two treatments, in canonical exponential family form: 2 2 L(θ, y 1, y 2 x 1, x 2 ) = f (θ, y i x i ) exp 1 n i (y ij η i ) 2 2 i=1 i=1 j=1 { 2 exp nw i (η i ȳ i 1 ) } 2 η2 i (x i, θ) i=1

7 A Regression Model The probabilities of estimates on the boundaries goes to zero as n, so I refer just to the interior for clarity of exposition.

8 Notation and Basic Elements: jth subject in ith stage single unit score function s ij = s ij (y ij x i, θ) = d dθ ln f (θ, y ij x i ) = (y ij η i ) dη i dθ = (y ij η i ) x i η i within-stage scores S i = n i j=1 s ij; total score S = 2 i=1 S i = 2 i=1 n i (ȳ i η i ) dη i dθ expected unit information [ µ i = µ(x i, θ) = Var yij x i [s ij ] = E yij x i d [ ( ) ] 2 E dηi yij x i dθ (yij η i ) d2 η i x dθ 2 i = dθ s ij ] x i = ( dηi dθ ) 2 = x 2 i η 2 i per unit expected information M(ξ, θ) = 1 n Var [S] = 2 i=1 w iµ i = 2 i=1 w ix 2 i η2 i.

9 MLE approximation 1. ln{l n } is twice differentiable in the neighborhood of the true parameter θ t, so a Taylor expansion of ln{l n } yields ln{l n } = ln{l n } θ=θt + (θ θ t ) (S θ=θt ) + 1 ( 2 (θ θ t) 2 ds dθ where θ (θ t, ˆθ n ). 2. Max θ {ln{l n }} occurs where S + (θ θ t ) d S dθ = Taking the derivative of ln{l n } and rearranging terms, for θ = ˆθ in the neighborhood of θ t, ) n (ˆθ n θ t ( 1 n ) d S 1 1 n S. dθ θ= θ ),

10 Asymptotic Normality of the MLE - Given x 1 and x 2 ( 1 S = 1 n1 w n n 1 j=1 s 1j n1 + n2 j=1 w s ) 2j 2 n2 ( 1 n N (0, w 1 µ 1 + w 2 µ 2 ). ) n1 d S j=1 d dθ = w s 1j 1 dθ By Slutsky s theorem, ( 1 d S n dθ + w 2 n 1 as w 1µ 1 + w 2 µ 2. n ) 1 1 n S n2 j=1 d dθ s 2j n 2 LLN ( D N 0, [w 1 µ 1 + w 2 µ 2 ] 1). n

11 Adaptively Selecting the Stage 2 Design Point Observe y 1 at fixed x 1. Then select the stage 2 design point as x 2 = arg max Var y2j x x 2 [s 2j ] θ=ˆθ1 ( { }) = arg max x 2 {ˆθ 1 } exp 2ˆθ 1 x = min x 1, b. The MLE from the stage 1 data is if 0 < ȳ 1 < 1; at bounds else ˆθ 1 = ln ȳ 1 /x 1,

12 The Adaptive Likelihood Assuming responses given the treatment are independent of the past, i.e., f (y 2 x 2, x 1, y 1, θ) = f (y 2 x 2, θ), the total likelihood after stage 2 is L(x 1, x 2, y 1, y 2, θ) = f (y 2 x 2, θ)f (x 2 x 1, y 1, θ)f (y 1 x 1, θ). So long as x 2 is a completely determined by x 1 and y 1, f (x 2 x 1, y 1, θ) is a delta function; the design is ancillary. Note density is no longer member of exponential family: L(x 1, x 2, y 1, y 2, θ) = f (y 2 x 2, θ)f (y 1 x 1, θ) ( exp {nw 1 η 1 ȳ 1 1 ) ( 2 η2 1 + nw 2 η 2 (ȳ 1, x 1 ) ȳ 2 1 )} 2 η2 2 (ȳ 1, x 1 ).

13 Adaptive Expected Information: Var [s ij ] = E [ 1 n i d dθ s ij ]. E yij x i [ 1 n i ] [ (dηi d dθ s ij = E yij x i dθ = x 2 i η 2 i = µ (x i, θ). ) 2 (y ij η i ) d 2 η i dθ 2 ( ) 2 { µ(x 2, θ) = x2 2 exp 2θx x1 2 = exp 2θ lnȳ 1 [ E 1 ] { d n i dθ s µ (x 1, θ) if i = 1 ij = Eȳ1 [µ (ȳ 1, θ)] if i = 2. ] x i ( x1 lnȳ 1 )}.

14 Second stage information NOTE: µ(x 2, θ) is random function of ȳ 1! µ(x 2, θ) will only converge to a constant only as ȳ 1 converges to a constant. Conditioning on x 2 is equivalent to conditioning of stage 1 responses!!!!

15 ) n (ˆθn θ t ( 1 n ) d S 1 n 1 dθ S f (S) = f (S ȳ 1 )f (ȳ 1 )dȳ 1. ( 1 S n ȳ1 = 1 n1 w n 1 j=1 s 1j n1 + w 2 n2 j=1 s 2j n2 ) ȳ 1 ( 1 n = 1 n1 j=1 s 1j w n 1 + N (0, w 2 µ 2 ) n1 ) n1 d S j=1 d dθ = w s 1j 1 dθ + w 2 n 1 as w 1µ 1 + w 2 µ 2 n n2 j=1 d dθ s 2j n 2

16 Illustration: θ = 1, x (.01, 100) x 1 = 0.5 optimal x 2 = arg max x Var y2j x 2 [s 2j ] = 1.0; θ=1 adaptive x 2 = arg max x Var y2j x 2 [s 2j ] θ=ˆθ1

17 Asymptotic Fisher for x =.5 and x = 1.0 alone; two-sample locally optimal and median two-stage plug-in estimates for n = 30, 100, 300 versus w 1 at x =.5.

18 Two-sample locally optimal Fisher and percentiles of two-stage plug in estimates for n = 1000 versus w 1 at x =.5.

19 Stage 2 2.5th, 50th and 97.5th Percentiles of µ 2 ; n 1 = n 2 =.5 (a) n i = 30 (b) n i = 100

20 Conclusions The locally optimal adaptive design is ancillary, but informative. The conditional incremental information after the first stage is a random variable depending on stage one observations. The conditional incremental information does not achieve the Cramer-Rao Bound MLEs from the locally optimal adaptive design do not have the hoped for optimality, and if the stage one design has a small sample size, their variance is random.

21 Thank you!

22 References Yao, P, Flournoy, N. (2010) Information in a Two-stage Adaptive Optimal Design for Normal Random Variables having a One Parameter Exponential Mean Function. MoDa Springer (eds. Giovagnoli, A., Atkinson, A.C., Torsney, B., May, C.).

23 Asymptotic Fisher 1 for x =.5 and x = 1.0 alone; two-sample locally optimal and two-stage n MSE(ˆθ), n = 1000 versus w 1 at x =.5.

24 Asymptotic Fisher 1 for x =.5 and x = 1.0 alone; two-sample locally optimal and two-stage n MSE(ˆθ), n = 30, 100, 1000 versus w 1 at x =.5.

25 Remarks The max x1 {µ 2 } = 0.135, which is the asymptotic Fisher s information. The 97.5th percentiles of µ 2 attain at all but the highest values of x 1 for n = 100 and 30. In contrast, the 97.5th percentile of d dθ s 2j is greater than except for values of x 1 somewhat less than one. Furthermore, d dθ s 2j is negative with high probability.

26 Remarks The median of µ 2, attains its maximum value when x 1 = 1 for n = 100 and 30. The median of µ 2 comes closer to at x 1 = 1 as the sample size increases. Indeed, the median of µ 2 is close to for a range of values of x 1 that includes x 1 = 1; this range is larger for for n = 100 than for n = 30. For n = 30, the 2.5th percentile of µ 2 is zero, except for a very small blip for x 1 just less than one; however, for n = 100, the 2.5th percentile of µ 2 is nearly quadratic for x 1 (0.2, 1.8) with its maximum approximately 50% of

Econometrics I, Estimation

Econometrics I, Estimation Econometrics I, Estimation Department of Economics Stanford University September, 2008 Part I Parameter, Estimator, Estimate A parametric is a feature of the population. An estimator is a function of the

More information

Graduate Econometrics I: Maximum Likelihood I

Graduate Econometrics I: Maximum Likelihood I Graduate Econometrics I: Maximum Likelihood I Yves Dominicy Université libre de Bruxelles Solvay Brussels School of Economics and Management ECARES Yves Dominicy Graduate Econometrics I: Maximum Likelihood

More information

DA Freedman Notes on the MLE Fall 2003

DA Freedman Notes on the MLE Fall 2003 DA Freedman Notes on the MLE Fall 2003 The object here is to provide a sketch of the theory of the MLE. Rigorous presentations can be found in the references cited below. Calculus. Let f be a smooth, scalar

More information

Estimation and Model Selection in Mixed Effects Models Part I. Adeline Samson 1

Estimation and Model Selection in Mixed Effects Models Part I. Adeline Samson 1 Estimation and Model Selection in Mixed Effects Models Part I Adeline Samson 1 1 University Paris Descartes Summer school 2009 - Lipari, Italy These slides are based on Marc Lavielle s slides Outline 1

More information

Linear Methods for Prediction

Linear Methods for Prediction Chapter 5 Linear Methods for Prediction 5.1 Introduction We now revisit the classification problem and focus on linear methods. Since our prediction Ĝ(x) will always take values in the discrete set G we

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Chapter 8 Maximum Likelihood Estimation 8. Consistency If X is a random variable (or vector) with density or mass function f θ (x) that depends on a parameter θ, then the function f θ (X) viewed as a function

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

1. Fisher Information

1. Fisher Information 1. Fisher Information Let f(x θ) be a density function with the property that log f(x θ) is differentiable in θ throughout the open p-dimensional parameter set Θ R p ; then the score statistic (or score

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Chapter 7 Maximum Likelihood Estimation 7. Consistency If X is a random variable (or vector) with density or mass function f θ (x) that depends on a parameter θ, then the function f θ (X) viewed as a function

More information

EM Algorithm II. September 11, 2018

EM Algorithm II. September 11, 2018 EM Algorithm II September 11, 2018 Review EM 1/27 (Y obs, Y mis ) f (y obs, y mis θ), we observe Y obs but not Y mis Complete-data log likelihood: l C (θ Y obs, Y mis ) = log { f (Y obs, Y mis θ) Observed-data

More information

Statistical Inference

Statistical Inference Statistical Inference Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA. Asymptotic Inference in Exponential Families Let X j be a sequence of independent,

More information

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X.

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X. Optimization Background: Problem: given a function f(x) defined on X, find x such that f(x ) f(x) for all x X. The value x is called a maximizer of f and is written argmax X f. In general, argmax X f may

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

Stat 710: Mathematical Statistics Lecture 12

Stat 710: Mathematical Statistics Lecture 12 Stat 710: Mathematical Statistics Lecture 12 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 12 Feb 18, 2009 1 / 11 Lecture 12:

More information

simple if it completely specifies the density of x

simple if it completely specifies the density of x 3. Hypothesis Testing Pure significance tests Data x = (x 1,..., x n ) from f(x, θ) Hypothesis H 0 : restricts f(x, θ) Are the data consistent with H 0? H 0 is called the null hypothesis simple if it completely

More information

i=1 h n (ˆθ n ) = 0. (2)

i=1 h n (ˆθ n ) = 0. (2) Stat 8112 Lecture Notes Unbiased Estimating Equations Charles J. Geyer April 29, 2012 1 Introduction In this handout we generalize the notion of maximum likelihood estimation to solution of unbiased estimating

More information

STA216: Generalized Linear Models. Lecture 1. Review and Introduction

STA216: Generalized Linear Models. Lecture 1. Review and Introduction STA216: Generalized Linear Models Lecture 1. Review and Introduction Let y 1,..., y n denote n independent observations on a response Treat y i as a realization of a random variable Y i In the general

More information

STA 260: Statistics and Probability II

STA 260: Statistics and Probability II Al Nosedal. University of Toronto. Winter 2017 1 Properties of Point Estimators and Methods of Estimation 2 3 If you can t explain it simply, you don t understand it well enough Albert Einstein. Definition

More information

On the efficiency of two-stage adaptive designs

On the efficiency of two-stage adaptive designs On the efficiency of two-stage adaptive designs Björn Bornkamp (Novartis Pharma AG) Based on: Dette, H., Bornkamp, B. and Bretz F. (2010): On the efficiency of adaptive designs www.statistik.tu-dortmund.de/sfb823-dp2010.html

More information

Linear Methods for Prediction

Linear Methods for Prediction This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Final Examination Statistics 200C. T. Ferguson June 11, 2009

Final Examination Statistics 200C. T. Ferguson June 11, 2009 Final Examination Statistics 00C T. Ferguson June, 009. (a) Define: X n converges in probability to X. (b) Define: X m converges in quadratic mean to X. (c) Show that if X n converges in quadratic mean

More information

Theory of Maximum Likelihood Estimation. Konstantin Kashin

Theory of Maximum Likelihood Estimation. Konstantin Kashin Gov 2001 Section 5: Theory of Maximum Likelihood Estimation Konstantin Kashin February 28, 2013 Outline Introduction Likelihood Examples of MLE Variance of MLE Asymptotic Properties What is Statistical

More information

Chapter 7. Hypothesis Testing

Chapter 7. Hypothesis Testing Chapter 7. Hypothesis Testing Joonpyo Kim June 24, 2017 Joonpyo Kim Ch7 June 24, 2017 1 / 63 Basic Concepts of Testing Suppose that our interest centers on a random variable X which has density function

More information

Inference in non-linear time series

Inference in non-linear time series Intro LS MLE Other Erik Lindström Centre for Mathematical Sciences Lund University LU/LTH & DTU Intro LS MLE Other General Properties Popular estimatiors Overview Introduction General Properties Estimators

More information

P n. This is called the law of large numbers but it comes in two forms: Strong and Weak.

P n. This is called the law of large numbers but it comes in two forms: Strong and Weak. Large Sample Theory Large Sample Theory is a name given to the search for approximations to the behaviour of statistical procedures which are derived by computing limits as the sample size, n, tends to

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

Generalized linear models

Generalized linear models Generalized linear models Søren Højsgaard Department of Mathematical Sciences Aalborg University, Denmark October 29, 202 Contents Densities for generalized linear models. Mean and variance...............................

More information

AGEC 661 Note Eleven Ximing Wu. Exponential regression model: m (x, θ) = exp (xθ) for y 0

AGEC 661 Note Eleven Ximing Wu. Exponential regression model: m (x, θ) = exp (xθ) for y 0 AGEC 661 ote Eleven Ximing Wu M-estimator So far we ve focused on linear models, where the estimators have a closed form solution. If the population model is nonlinear, the estimators often do not have

More information

Review and continuation from last week Properties of MLEs

Review and continuation from last week Properties of MLEs Review and continuation from last week Properties of MLEs As we have mentioned, MLEs have a nice intuitive property, and as we have seen, they have a certain equivariance property. We will see later that

More information

Problem Selected Scores

Problem Selected Scores Statistics Ph.D. Qualifying Exam: Part II November 20, 2010 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. Problem 1 2 3 4 5 6 7 8 9 10 11 12 Selected

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

Sampling distribution of GLM regression coefficients

Sampling distribution of GLM regression coefficients Sampling distribution of GLM regression coefficients Patrick Breheny February 5 Patrick Breheny BST 760: Advanced Regression 1/20 Introduction So far, we ve discussed the basic properties of the score,

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

Mathematical statistics

Mathematical statistics October 4 th, 2018 Lecture 12: Information Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter

More information

Generalized Linear Models I

Generalized Linear Models I Statistics 203: Introduction to Regression and Analysis of Variance Generalized Linear Models I Jonathan Taylor - p. 1/16 Today s class Poisson regression. Residuals for diagnostics. Exponential families.

More information

Lecture 17: Likelihood ratio and asymptotic tests

Lecture 17: Likelihood ratio and asymptotic tests Lecture 17: Likelihood ratio and asymptotic tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f

More information

Chapter 3. Point Estimation. 3.1 Introduction

Chapter 3. Point Estimation. 3.1 Introduction Chapter 3 Point Estimation Let (Ω, A, P θ ), P θ P = {P θ θ Θ}be probability space, X 1, X 2,..., X n : (Ω, A) (IR k, B k ) random variables (X, B X ) sample space γ : Θ IR k measurable function, i.e.

More information

Gov 2001: Section 4. February 20, Gov 2001: Section 4 February 20, / 39

Gov 2001: Section 4. February 20, Gov 2001: Section 4 February 20, / 39 Gov 2001: Section 4 February 20, 2013 Gov 2001: Section 4 February 20, 2013 1 / 39 Outline 1 The Likelihood Model with Covariates 2 Likelihood Ratio Test 3 The Central Limit Theorem and the MLE 4 What

More information

Ch. 5 Hypothesis Testing

Ch. 5 Hypothesis Testing Ch. 5 Hypothesis Testing The current framework of hypothesis testing is largely due to the work of Neyman and Pearson in the late 1920s, early 30s, complementing Fisher s work on estimation. As in estimation,

More information

Computational methods for mixed models

Computational methods for mixed models Computational methods for mixed models Douglas Bates Department of Statistics University of Wisconsin Madison March 27, 2018 Abstract The lme4 package provides R functions to fit and analyze several different

More information

δ -method and M-estimation

δ -method and M-estimation Econ 2110, fall 2016, Part IVb Asymptotic Theory: δ -method and M-estimation Maximilian Kasy Department of Economics, Harvard University 1 / 40 Example Suppose we estimate the average effect of class size

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown.

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown. Weighting We have seen that if E(Y) = Xβ and V (Y) = σ 2 G, where G is known, the model can be rewritten as a linear model. This is known as generalized least squares or, if G is diagonal, with trace(g)

More information

The loss function and estimating equations

The loss function and estimating equations Chapter 6 he loss function and estimating equations 6 Loss functions Up until now our main focus has been on parameter estimating via the maximum likelihood However, the negative maximum likelihood is

More information

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018 Mathematics Ph.D. Qualifying Examination Stat 52800 Probability, January 2018 NOTE: Answers all questions completely. Justify every step. Time allowed: 3 hours. 1. Let X 1,..., X n be a random sample from

More information

6.1 Variational representation of f-divergences

6.1 Variational representation of f-divergences ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 6: Variational representation, HCR and CR lower bounds Lecturer: Yihong Wu Scribe: Georgios Rovatsos, Feb 11, 2016

More information

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood Regression Estimation - Least Squares and Maximum Likelihood Dr. Frank Wood Least Squares Max(min)imization Function to minimize w.r.t. β 0, β 1 Q = n (Y i (β 0 + β 1 X i )) 2 i=1 Minimize this by maximizing

More information

Stat 5102 Lecture Slides Deck 3. Charles J. Geyer School of Statistics University of Minnesota

Stat 5102 Lecture Slides Deck 3. Charles J. Geyer School of Statistics University of Minnesota Stat 5102 Lecture Slides Deck 3 Charles J. Geyer School of Statistics University of Minnesota 1 Likelihood Inference We have learned one very general method of estimation: method of moments. the Now we

More information

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2014 Instructor: Victor Aguirregabiria

ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2014 Instructor: Victor Aguirregabiria ECONOMETRICS II (ECO 2401S) University of Toronto. Department of Economics. Winter 2014 Instructor: Victor guirregabiria SOLUTION TO FINL EXM Monday, pril 14, 2014. From 9:00am-12:00pm (3 hours) INSTRUCTIONS:

More information

Fractional Imputation in Survey Sampling: A Comparative Review

Fractional Imputation in Survey Sampling: A Comparative Review Fractional Imputation in Survey Sampling: A Comparative Review Shu Yang Jae-Kwang Kim Iowa State University Joint Statistical Meetings, August 2015 Outline Introduction Fractional imputation Features Numerical

More information

Chapter 4: Asymptotic Properties of the MLE (Part 2)

Chapter 4: Asymptotic Properties of the MLE (Part 2) Chapter 4: Asymptotic Properties of the MLE (Part 2) Daniel O. Scharfstein 09/24/13 1 / 1 Example Let {(R i, X i ) : i = 1,..., n} be an i.i.d. sample of n random vectors (R, X ). Here R is a response

More information

Linear model A linear model assumes Y X N(µ(X),σ 2 I), And IE(Y X) = µ(x) = X β, 2/52

Linear model A linear model assumes Y X N(µ(X),σ 2 I), And IE(Y X) = µ(x) = X β, 2/52 Statistics for Applications Chapter 10: Generalized Linear Models (GLMs) 1/52 Linear model A linear model assumes Y X N(µ(X),σ 2 I), And IE(Y X) = µ(x) = X β, 2/52 Components of a linear model The two

More information

5601 Notes: The Sandwich Estimator

5601 Notes: The Sandwich Estimator 560 Notes: The Sandwich Estimator Charles J. Geyer December 6, 2003 Contents Maximum Likelihood Estimation 2. Likelihood for One Observation................... 2.2 Likelihood for Many IID Observations...............

More information

Weighted Least Squares I

Weighted Least Squares I Weighted Least Squares I for i = 1, 2,..., n we have, see [1, Bradley], data: Y i x i i.n.i.d f(y i θ i ), where θ i = E(Y i x i ) co-variates: x i = (x i1, x i2,..., x ip ) T let X n p be the matrix of

More information

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

Mathematical statistics

Mathematical statistics October 18 th, 2018 Lecture 16: Midterm review Countdown to mid-term exam: 7 days Week 1 Chapter 1: Probability review Week 2 Week 4 Week 7 Chapter 6: Statistics Chapter 7: Point Estimation Chapter 8:

More information

BIOS 2083: Linear Models

BIOS 2083: Linear Models BIOS 2083: Linear Models Abdus S Wahed September 2, 2009 Chapter 0 2 Chapter 1 Introduction to linear models 1.1 Linear Models: Definition and Examples Example 1.1.1. Estimating the mean of a N(μ, σ 2

More information

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions.

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions. Large Sample Theory Study approximate behaviour of ˆθ by studying the function U. Notice U is sum of independent random variables. Theorem: If Y 1, Y 2,... are iid with mean µ then Yi n µ Called law of

More information

Max. Likelihood Estimation. Outline. Econometrics II. Ricardo Mora. Notes. Notes

Max. Likelihood Estimation. Outline. Econometrics II. Ricardo Mora. Notes. Notes Maximum Likelihood Estimation Econometrics II Department of Economics Universidad Carlos III de Madrid Máster Universitario en Desarrollo y Crecimiento Económico Outline 1 3 4 General Approaches to Parameter

More information

STAT 512 sp 2018 Summary Sheet

STAT 512 sp 2018 Summary Sheet STAT 5 sp 08 Summary Sheet Karl B. Gregory Spring 08. Transformations of a random variable Let X be a rv with support X and let g be a function mapping X to Y with inverse mapping g (A = {x X : g(x A}

More information

10-704: Information Processing and Learning Fall Lecture 24: Dec 7

10-704: Information Processing and Learning Fall Lecture 24: Dec 7 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 24: Dec 7 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

Lecture 28: Asymptotic confidence sets

Lecture 28: Asymptotic confidence sets Lecture 28: Asymptotic confidence sets 1 α asymptotic confidence sets Similar to testing hypotheses, in many situations it is difficult to find a confidence set with a given confidence coefficient or level

More information

Topic 12 Overview of Estimation

Topic 12 Overview of Estimation Topic 12 Overview of Estimation Classical Statistics 1 / 9 Outline Introduction Parameter Estimation Classical Statistics Densities and Likelihoods 2 / 9 Introduction In the simplest possible terms, the

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

Non-linear least squares

Non-linear least squares Non-linear least squares Concept of non-linear least squares We have extensively studied linear least squares or linear regression. We see that there is a unique regression line that can be determined

More information

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Put your solution to each problem on a separate sheet of paper. Problem 1. (5166) Assume that two random samples {x i } and {y i } are independently

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

ECE531 Lecture 10b: Maximum Likelihood Estimation

ECE531 Lecture 10b: Maximum Likelihood Estimation ECE531 Lecture 10b: Maximum Likelihood Estimation D. Richard Brown III Worcester Polytechnic Institute 05-Apr-2011 Worcester Polytechnic Institute D. Richard Brown III 05-Apr-2011 1 / 23 Introduction So

More information

Chapter 3 : Likelihood function and inference

Chapter 3 : Likelihood function and inference Chapter 3 : Likelihood function and inference 4 Likelihood function and inference The likelihood Information and curvature Sufficiency and ancilarity Maximum likelihood estimation Non-regular models EM

More information

Economics 583: Econometric Theory I A Primer on Asymptotics

Economics 583: Econometric Theory I A Primer on Asymptotics Economics 583: Econometric Theory I A Primer on Asymptotics Eric Zivot January 14, 2013 The two main concepts in asymptotic theory that we will use are Consistency Asymptotic Normality Intuition consistency:

More information

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction Estimation Tasks Short Course on Image Quality Matthew A. Kupinski Introduction Section 13.3 in B&M Keep in mind the similarities between estimation and classification Image-quality is a statistical concept

More information

1 One-way analysis of variance

1 One-way analysis of variance LIST OF FORMULAS (Version from 21. November 2014) STK2120 1 One-way analysis of variance Assume X ij = µ+α i +ɛ ij ; j = 1, 2,..., J i ; i = 1, 2,..., I ; where ɛ ij -s are independent and N(0, σ 2 ) distributed.

More information

(θ θ ), θ θ = 2 L(θ ) θ θ θ θ θ (θ )= H θθ (θ ) 1 d θ (θ )

(θ θ ), θ θ = 2 L(θ ) θ θ θ θ θ (θ )= H θθ (θ ) 1 d θ (θ ) Setting RHS to be zero, 0= (θ )+ 2 L(θ ) (θ θ ), θ θ = 2 L(θ ) 1 (θ )= H θθ (θ ) 1 d θ (θ ) O =0 θ 1 θ 3 θ 2 θ Figure 1: The Newton-Raphson Algorithm where H is the Hessian matrix, d θ is the derivative

More information

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:.

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:. MATHEMATICAL STATISTICS Homework assignment Instructions Please turn in the homework with this cover page. You do not need to edit the solutions. Just make sure the handwriting is legible. You may discuss

More information

STAT215: Solutions for Homework 2

STAT215: Solutions for Homework 2 STAT25: Solutions for Homework 2 Due: Wednesday, Feb 4. (0 pt) Suppose we take one observation, X, from the discrete distribution, x 2 0 2 Pr(X x θ) ( θ)/4 θ/2 /2 (3 θ)/2 θ/4, 0 θ Find an unbiased estimator

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

Statistics. Lecture 2 August 7, 2000 Frank Porter Caltech. The Fundamentals; Point Estimation. Maximum Likelihood, Least Squares and All That

Statistics. Lecture 2 August 7, 2000 Frank Porter Caltech. The Fundamentals; Point Estimation. Maximum Likelihood, Least Squares and All That Statistics Lecture 2 August 7, 2000 Frank Porter Caltech The plan for these lectures: The Fundamentals; Point Estimation Maximum Likelihood, Least Squares and All That What is a Confidence Interval? Interval

More information

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30 MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD Copyright c 2012 (Iowa State University) Statistics 511 1 / 30 INFORMATION CRITERIA Akaike s Information criterion is given by AIC = 2l(ˆθ) + 2k, where l(ˆθ)

More information

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your answer

More information

Generalized Linear Models. Kurt Hornik

Generalized Linear Models. Kurt Hornik Generalized Linear Models Kurt Hornik Motivation Assuming normality, the linear model y = Xβ + e has y = β + ε, ε N(0, σ 2 ) such that y N(μ, σ 2 ), E(y ) = μ = β. Various generalizations, including general

More information

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain 0.1. INTRODUCTION 1 0.1 Introduction R. A. Fisher, a pioneer in the development of mathematical statistics, introduced a measure of the amount of information contained in an observaton from f(x θ). Fisher

More information

STA 216: GENERALIZED LINEAR MODELS. Lecture 1. Review and Introduction. Much of statistics is based on the assumption that random

STA 216: GENERALIZED LINEAR MODELS. Lecture 1. Review and Introduction. Much of statistics is based on the assumption that random STA 216: GENERALIZED LINEAR MODELS Lecture 1. Review and Introduction Much of statistics is based on the assumption that random variables are continuous & normally distributed. Normal linear regression

More information

Cox regression: Estimation

Cox regression: Estimation Cox regression: Estimation Patrick Breheny October 27 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/19 Introduction The Cox Partial Likelihood In our last lecture, we introduced the Cox partial

More information

Chapter 1: A Brief Review of Maximum Likelihood, GMM, and Numerical Tools. Joan Llull. Microeconometrics IDEA PhD Program

Chapter 1: A Brief Review of Maximum Likelihood, GMM, and Numerical Tools. Joan Llull. Microeconometrics IDEA PhD Program Chapter 1: A Brief Review of Maximum Likelihood, GMM, and Numerical Tools Joan Llull Microeconometrics IDEA PhD Program Maximum Likelihood Chapter 1. A Brief Review of Maximum Likelihood, GMM, and Numerical

More information

ML Testing (Likelihood Ratio Testing) for non-gaussian models

ML Testing (Likelihood Ratio Testing) for non-gaussian models ML Testing (Likelihood Ratio Testing) for non-gaussian models Surya Tokdar ML test in a slightly different form Model X f (x θ), θ Θ. Hypothesist H 0 : θ Θ 0 Good set: B c (x) = {θ : l x (θ) max θ Θ l

More information

Maximum Likelihood Tests and Quasi-Maximum-Likelihood

Maximum Likelihood Tests and Quasi-Maximum-Likelihood Maximum Likelihood Tests and Quasi-Maximum-Likelihood Wendelin Schnedler Department of Economics University of Heidelberg 10. Dezember 2007 Wendelin Schnedler (AWI) Maximum Likelihood Tests and Quasi-Maximum-Likelihood10.

More information

Chapter 3: Maximum Likelihood Theory

Chapter 3: Maximum Likelihood Theory Chapter 3: Maximum Likelihood Theory Florian Pelgrin HEC September-December, 2010 Florian Pelgrin (HEC) Maximum Likelihood Theory September-December, 2010 1 / 40 1 Introduction Example 2 Maximum likelihood

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

COMPLETELY RANDOMIZED DESIGNS (CRD) For now, t unstructured treatments (e.g. no factorial structure)

COMPLETELY RANDOMIZED DESIGNS (CRD) For now, t unstructured treatments (e.g. no factorial structure) STAT 52 Completely Randomized Designs COMPLETELY RANDOMIZED DESIGNS (CRD) For now, t unstructured treatments (e.g. no factorial structure) Completely randomized means no restrictions on the randomization

More information

LECTURE 18: NONLINEAR MODELS

LECTURE 18: NONLINEAR MODELS LECTURE 18: NONLINEAR MODELS The basic point is that smooth nonlinear models look like linear models locally. Models linear in parameters are no problem even if they are nonlinear in variables. For example:

More information

Testing Restrictions and Comparing Models

Testing Restrictions and Comparing Models Econ. 513, Time Series Econometrics Fall 00 Chris Sims Testing Restrictions and Comparing Models 1. THE PROBLEM We consider here the problem of comparing two parametric models for the data X, defined by

More information

Economics 620, Lecture 18: Nonlinear Models

Economics 620, Lecture 18: Nonlinear Models Economics 620, Lecture 18: Nonlinear Models Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 18: Nonlinear Models 1 / 18 The basic point is that smooth nonlinear

More information

HT Introduction. P(X i = x i ) = e λ λ x i

HT Introduction. P(X i = x i ) = e λ λ x i MODS STATISTICS Introduction. HT 2012 Simon Myers, Department of Statistics (and The Wellcome Trust Centre for Human Genetics) myers@stats.ox.ac.uk We will be concerned with the mathematical framework

More information

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators Estimation theory Parametric estimation Properties of estimators Minimum variance estimator Cramer-Rao bound Maximum likelihood estimators Confidence intervals Bayesian estimation 1 Random Variables Let

More information

Theory of Statistics.

Theory of Statistics. Theory of Statistics. Homework V February 5, 00. MT 8.7.c When σ is known, ˆµ = X is an unbiased estimator for µ. If you can show that its variance attains the Cramer-Rao lower bound, then no other unbiased

More information

Statistical Estimation

Statistical Estimation Statistical Estimation Use data and a model. The plug-in estimators are based on the simple principle of applying the defining functional to the ECDF. Other methods of estimation: minimize residuals from

More information

One-step ahead adaptive D-optimal design on a finite design. space is asymptotically optimal

One-step ahead adaptive D-optimal design on a finite design. space is asymptotically optimal Author manuscript, published in "Metrika (2009) 20" DOI : 10.1007/s00184-008-0227-y One-step ahead adaptive D-optimal design on a finite design space is asymptotically optimal Luc Pronzato Laboratoire

More information