STA 216: GENERALIZED LINEAR MODELS. Lecture 1. Review and Introduction. Much of statistics is based on the assumption that random

Size: px
Start display at page:

Download "STA 216: GENERALIZED LINEAR MODELS. Lecture 1. Review and Introduction. Much of statistics is based on the assumption that random"

Transcription

1 STA 216: GENERALIZED LINEAR MODELS Lecture 1. Review and Introduction Much of statistics is based on the assumption that random variables are continuous & normally distributed. Normal linear regression models are widely used for relating predictors x i = (x i1,..., x ip ) for subject i to a response y i : (y i x i ) N(x iβ, σ 2 ), where β are regression coefficients, and σ 2 is the residual variance For example, we may be interested in investigating the genetic, demographic, and dietary factors (quantified in the x i vector) predictive of blood pressure (y i ). 1

2 In the above example, y 1,..., y n, were treated as independent normally distributed random variables with a linear regression for the mean. Multivariate normal linear models are also very useful: y i = (y i1,..., y iq ) N q (αx i, Σ), where α is a q p matrix of regression coefficients, & Σ is a q q covariance matrix In this course, we focus on generalizations of normal linear regression models to address a broad class of data structures - we start with the Generalized Linear Model 2

3 Some Motivating Examples Caesarian Birth Study (Fahrmeir and Tutz, 2001): Data on infection from births by Caesarian section. Caesarian planned Not planned Infection Infection I II N I II N Antibiotics Risk-factors No risk-factors No antibiotics Risk-factors No risk-factors

4 Response variable: Occurrence or non-occurrence of infection, with two types of infection (I, II) Covariates: 1. Caesarian planned (1=yes,0=no) 2. Were risk factors present (1=yes;0=no); 3. Were antibiotics given (1=yes;0=no) Scale of response: either binary (infection or not) or unordered categorical 4

5 Cellular Differentiation (Piegorsch, Weinberg & Margolin, 1988): Interest in the effect of two agents of immuno-activating ability that may introduce cell differentiation. Response variable: number of cells that exhibited markers after exposure was recorded. Scientific interest: Do the agents TNF (tumor necrosis factor) and IFN (interferon) simulate cell differentiation independently or is there a synergetic effect? 5

6 Cellular Differentiation Data Number of cells Dose of Dose of differentiating TNF (U/ml) IFN (U/ml) Scale of response variable: count 6

7 Job expectations for psychology students: Study on perspectives of students asked psychology students at the University of Regensburg if they expected to find adequate employment after getting their degree. Response variable: Ordered categorical 1-3 ranking: 1. Don t expect adequate employment 2. Not sure 3. Immediately after the degree Predictor: Age in years 7

8 Grouped Job Expectations Data Age in Response years

9 Generalized Linear Model: Motivation Clearly, normal linear regression models are not appropriate for these examples. We need a more general regression framework accounting for response data having a variety of measurement scales. Methods for model fitting & inferences in this framework. Ideally, some simplifications of linear regression would carry over. Generalizations to more complex settings (correlated data, censored observations, etc) will be necessary in many applications 9

10 Generalized Linear Models: The Basics In the general linear model, (y i x i ) N(x iβ, σ 2 ), with E(y i x i ) = x iβ V(y i x i ) = σ 2 Systematic component Random component The generalized linear model, generalizes both the random & systematic components The focus is on distributions in the exponential family, which includes many useful special cases (normal, Poisson, gamma, binomial, etc) 10

11 Likelihood Function: The Simple Exponential Family Observations y i are conditionally-independent given x i (i = 1,..., n) The conditional distribution of y i x i belongs to a simple exponential family Thus, the probability density function can be expressed as: f(y i ; θ i, φ) = exp { y i θ i b(θ i ) a(φ) + c(y i, φ) }. (1) Here, θ i, φ are parameters and a( ), b( ) and c( ) are known functions. The θ i and φ are location and scale parameters, respectively. 11

12 For example, for the Normal distribution, we have f(y i ; θ i, φ) = 1 2πσ exp{ (y i µ) 2 /2σ 2 } = exp[(y i µ µ 2 /2)/σ 2 {y 2 i /σ 2 + log(2πσ 2 )}/2] so that θ i = µ, φ = σ 2, a i (φ) = φ, b(θ i ) = θ 2 i /2 and c(y i, φ) = 1 2 {y2 i /σ 2 + log(2πσ 2 )}. Thus, in this case θ i is the mean and φ is the variance 12

13 Let l(θ i, φ; y i ) = logf(y i ; θ i, φ) denote the log-likelihood function We can derive the mean and variance for the general case using: E ( l ) ( 2 l ) ( l ) 2 = 0 and E + E = 0. θ i θi 2 θ i These relations are well known properties of the likelihood function obtained by differentiating w.r.t. θ i the identity f(yi ; θ i, φ)dy i 1, holding the dispersion parameter φ as fixed. The notation denotes that the processes of differentiation & averaging occur at the same value of θ i 13

14 Note that l(θ i ; y i ) = {y i θ i b(θ i )}/a(φ) + c(y i, φ) It follows that l θ i = {y i b (θ i )}/a(φ) and 2 l θ 2 i = b (θ i )/a(φ). Hence, from the previous equalities, we have 0 = E ( l ) = {E(yi ) b (θ i )}/a(φ), θ i which implies that E(y i ) = b (θ i ) 14

15 Similarly, we have 0 = E ( 2 l ) ( l ) 2 + E θi 2 θ i = b (θ i )/a(φ) + E[{y i b (θ i )} 2 /a(φ) 2 ] = b (θ i )a(φ) + E(y 2 i ) 2E(y i )b (θ i ) + b (θ i ) 2 = b (θ i )a(φ) + E(y 2 i ) E(y i ) 2 var(y i ) = b (θ i )a(φ) For most commonly used exponential family distributions, a(φ) = φ/w i, where φ is a dispersion parameter and w i is a weight (typically equal to one) Hence, the mean and variance will typically follow the form: µ i = b (θ i ) and σ 2 = b (θ i )φ. 15

16 Characteristics of common distributions in the exponential family Normal Poisson Binomial Gamma Notation N(µ i, σ 2 ) Pois(µ i ) Bin(n i, π i ) G(µ i, ν) Range of y i (, ) [0, ) [0, n i ] (0, ) Dispersion, φ σ 2 1 1/n i ν 1 Cumulant: b(θ i ) θ 2 i /2 exp(θ i ) log(1 + e θ i) log( θ i ) Mean function, µ(θ i ) θ i exp(θ i ) 1/(1 + e θ i) 1/θ i Canonical link: θ(µ i ) identify log logit reciprocal Variance function, V (µ i ) 1 µ µ(1 µ) µ 2 16

17 Systematic Component, Link Functions Instead of modeling the mean, µ i, as a linear function of predictors, x i, we introduce on one-to-one continuously differentiable transformation g( ) and focus on η i = g(µ i ), where g( ) will be called the link function and η i the linear predictor. We assume that the transformed mean follows a linear model, η i = x iβ. Since the link function is invertible and one-to-one, we have µ i = g 1 (η i ) = g 1 (x iβ). 17

18 Note that we are transforming the expected value, µ i, instead of the raw data, y i. For classical linear models, the mean is the linear predictor. In this case, the identity link is reasonable since both µ i and η i can take any value on the real line. This is not the case in general. 18

19 Link Functions for Poisson Data For example, if Y i Poi(µ i ) then µ i must be > 0. In this case, a linear model is not reasonable since for some values of x i µ i 0. By using the model, η i = log(µ i ) = x iβ, we are guaranteed to have µ i > 0 for all β R p and all values of x i. In general, a link function for count data should map the interval (0, ) R (i.e., from the + real numbers to the entire real line). The log link is a natural choice 19

20 Link Functions for Binomial Data For the binomial distribution, 0 < µ i < 1. Therefore, the link function should map from (0, 1) R Standard choices: 1. logit: η i = log{µ i /(1 µ i )}. 2. probit: η i = Φ 1 (µ i ), where Φ( ) is the N(0, 1) cdf. 3. complementary log-log: η i = log{ log(1 µ i )}. Each of these choices is important in applications & will be considered in detail later in the course 20

21 Canonical Links and Sufficient Statistics Each of the distributions we have considered has a special, canonical, link function for which there exists a sufficient statistic equal in dimension to β. Canonical links occur when θ i = η i, with θ i the canonical parameter As a homework exercise, please show for next class that the following distributions are in the exponential family and have the listed canonical links: Normal η i = µ i Poisson η i = logµ i binomial η i = log{µ i /(1 µ i )} gamma η i = µ 1 i For the canonical links, the sufficient statistic is X y, with components i x ij y i, for j = 1,..., p. 21

22 Although canonical links often nice properties, selection of the link function should be based on prior expectation and model fit Example: Logistic Regression Suppose y i Bin(1, p i ), for i = 1,..., n, are independent 0/1 indicator variables of an adverse response (e.g., preterm birth) and let x i denote a p 1 vector of predictors for individual i (e.g., dose of dde exposure, race, age, etc). The likelihood is as follows: f(y β) = n = n = exp [ n p y i i (1 p i ) 1 y i = n ( p i ) y i (1 p i ) 1 p i exp { y i log ( p ) ( i 1 )} log 1 p i 1 p i {y i θ i log(1 + e θ i )} ]. 22

23 Choosing the canonical link, θ i = log ( p i 1 p i the likelihood has the following form: ) = x i β, f(y β) = exp[ n {y i x iβ log(1 + e x iβ )}]. This is logistic regression, which is widely used in epidemiology and other applications for modeling of binary response data. In general, if f(y i ; θ i, φ) is in the exponential family and θ i = θ(η i ), η i = x iβ, then the model is called a generalized linear model (GLM) 23

24 Maximum Likelihood Estimation of GLMs Unlike for the general linear model, there is no closed form expression for the MLE of β in general for GLMs. However, all GLMs can be fit using the same algorithm, a form of iteratively re-weighted least squares: 1. Given an initial value for β, calculate the estimated linear predictor η i = x i β and use that to obtain the fitted values µ i = g 1 ( η i ). Calculate the adjusted dependent variable, z i = η i + (y i µ i ) ( dη ) i dµ, 0 i where the derivative is evaluated at µ i. 2. Calculate the iterative weights W 1 i = ( dη ) i dµ V 0 i. i where V i is the variance function evaluated at µ i. 3. Regress z i on x i with weight W i to give new estimates of β 24

25 Justification for the IWLS procedure Note that the log-likelihood can be expressed as l = n {y i θ i b(θ i )}/a(φ) + c(y i, φ). To maximize this log-likelihood we need l/ β j, l β j = n = n = n l i dθ i dµ i θ i dµ i dη i (y i µ i ) a(φ) (y i µ i ) W i a(φ) η i β j 1 V i dµ i dη i x ij, dη i dµ i x ij since µ i = b (θ i ) and b (θ i ) = V i implies dµ i /dθ i = V i. With constant dispersion (a(φ) = φ), the MLE equations for β j : n W i (y i µ i ) dη i dµ i x ij = 0. 25

26 Fisher s scoring method uses the gradient vector, l/ β = u, and minus the expected value of the Hessian matrix E ( 2 l ) = A. β r β s Given the current estimate b of β, choose the adjustment δb so Aδb = u. Excluding φ, the components of u are u r = n so we have A rs = E( u r / β s ) = E n [ (yi µ i ) β s W i (y i µ i ) dη i dµ i x ir, { dη } i dη i Wi x ir + Wi x ir (y i µ i ) ]. dµ i dµ i β s The expectation of the first term is 0 and the second term is n W i dη i dµ i x ir µ i β s = n W i dη i dµ i x ir dµ i dη i η i β s = n W i x ir x is. 26

27 The new estimate b = b + δb of β thus satisfies Ab = Ab + Aδb = Ab + u, where (Ab) r = s A rs b s = n W i x ir η i. Thus, the new estimate b satisfies (Ab ) r = n W i x ir {η i + (y i µ i )dη i /dµ i }. These equations have the form of linear weighted least squares equation with weight W i and dependent variable z i. 27

28 Next Class Topic: Frequentist inference for GLMs Have homework exercise completed and written up for next Tuesday Complete the following exercise: 1. Write down generalized linear models for the Caesarian data (grouping the two different infection types) and the cellular differentiation data. 2. Show the different components of the GLM, expressing the likelihood in exponential family form & using a canonical link function 3. Fit the GLM using maximum likelihood and report the parameter estimates. 28

STA216: Generalized Linear Models. Lecture 1. Review and Introduction

STA216: Generalized Linear Models. Lecture 1. Review and Introduction STA216: Generalized Linear Models Lecture 1. Review and Introduction Let y 1,..., y n denote n independent observations on a response Treat y i as a realization of a random variable Y i In the general

More information

Generalized Linear Models. Last time: Background & motivation for moving beyond linear

Generalized Linear Models. Last time: Background & motivation for moving beyond linear Generalized Linear Models Last time: Background & motivation for moving beyond linear regression - non-normal/non-linear cases, binary, categorical data Today s class: 1. Examples of count and ordered

More information

Linear model A linear model assumes Y X N(µ(X),σ 2 I), And IE(Y X) = µ(x) = X β, 2/52

Linear model A linear model assumes Y X N(µ(X),σ 2 I), And IE(Y X) = µ(x) = X β, 2/52 Statistics for Applications Chapter 10: Generalized Linear Models (GLMs) 1/52 Linear model A linear model assumes Y X N(µ(X),σ 2 I), And IE(Y X) = µ(x) = X β, 2/52 Components of a linear model The two

More information

ST3241 Categorical Data Analysis I Generalized Linear Models. Introduction and Some Examples

ST3241 Categorical Data Analysis I Generalized Linear Models. Introduction and Some Examples ST3241 Categorical Data Analysis I Generalized Linear Models Introduction and Some Examples 1 Introduction We have discussed methods for analyzing associations in two-way and three-way tables. Now we will

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Advanced Methods for Data Analysis (36-402/36-608 Spring 2014 1 Generalized linear models 1.1 Introduction: two regressions So far we ve seen two canonical settings for regression.

More information

Generalized Linear Models Introduction

Generalized Linear Models Introduction Generalized Linear Models Introduction Statistics 135 Autumn 2005 Copyright c 2005 by Mark E. Irwin Generalized Linear Models For many problems, standard linear regression approaches don t work. Sometimes,

More information

Generalized Linear Models. Kurt Hornik

Generalized Linear Models. Kurt Hornik Generalized Linear Models Kurt Hornik Motivation Assuming normality, the linear model y = Xβ + e has y = β + ε, ε N(0, σ 2 ) such that y N(μ, σ 2 ), E(y ) = μ = β. Various generalizations, including general

More information

SB1a Applied Statistics Lectures 9-10

SB1a Applied Statistics Lectures 9-10 SB1a Applied Statistics Lectures 9-10 Dr Geoff Nicholls Week 5 MT15 - Natural or canonical) exponential families - Generalised Linear Models for data - Fitting GLM s to data MLE s Iteratively Re-weighted

More information

Generalized Linear Models I

Generalized Linear Models I Statistics 203: Introduction to Regression and Analysis of Variance Generalized Linear Models I Jonathan Taylor - p. 1/16 Today s class Poisson regression. Residuals for diagnostics. Exponential families.

More information

Generalized Linear Models 1

Generalized Linear Models 1 Generalized Linear Models 1 STA 2101/442: Fall 2012 1 See last slide for copyright information. 1 / 24 Suggested Reading: Davison s Statistical models Exponential families of distributions Sec. 5.2 Chapter

More information

Lecture 4: Exponential family of distributions and generalized linear model (GLM) (Draft: version 0.9.2)

Lecture 4: Exponential family of distributions and generalized linear model (GLM) (Draft: version 0.9.2) Lectures on Machine Learning (Fall 2017) Hyeong In Choi Seoul National University Lecture 4: Exponential family of distributions and generalized linear model (GLM) (Draft: version 0.9.2) Topics to be covered:

More information

Linear Regression Models P8111

Linear Regression Models P8111 Linear Regression Models P8111 Lecture 25 Jeff Goldsmith April 26, 2016 1 of 37 Today s Lecture Logistic regression / GLMs Model framework Interpretation Estimation 2 of 37 Linear regression Course started

More information

Introduction to Generalized Linear Models

Introduction to Generalized Linear Models Introduction to Generalized Linear Models Edps/Psych/Soc 589 Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Fall 2018 Outline Introduction (motivation

More information

When is MLE appropriate

When is MLE appropriate When is MLE appropriate As a rule of thumb the following to assumptions need to be fulfilled to make MLE the appropriate method for estimation: The model is adequate. That is, we trust that one of the

More information

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Linear Methods for Prediction

Linear Methods for Prediction Chapter 5 Linear Methods for Prediction 5.1 Introduction We now revisit the classification problem and focus on linear methods. Since our prediction Ĝ(x) will always take values in the discrete set G we

More information

Weighted Least Squares I

Weighted Least Squares I Weighted Least Squares I for i = 1, 2,..., n we have, see [1, Bradley], data: Y i x i i.n.i.d f(y i θ i ), where θ i = E(Y i x i ) co-variates: x i = (x i1, x i2,..., x ip ) T let X n p be the matrix of

More information

Likelihoods for Generalized Linear Models

Likelihoods for Generalized Linear Models 1 Likelihoods for Generalized Linear Models 1.1 Some General Theory We assume that Y i has the p.d.f. that is a member of the exponential family. That is, f(y i ; θ i, φ) = exp{(y i θ i b(θ i ))/a i (φ)

More information

Machine Learning. Lecture 3: Logistic Regression. Feng Li.

Machine Learning. Lecture 3: Logistic Regression. Feng Li. Machine Learning Lecture 3: Logistic Regression Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2016 Logistic Regression Classification

More information

12 Modelling Binomial Response Data

12 Modelling Binomial Response Data c 2005, Anthony C. Brooms Statistical Modelling and Data Analysis 12 Modelling Binomial Response Data 12.1 Examples of Binary Response Data Binary response data arise when an observation on an individual

More information

Generalized linear models

Generalized linear models Generalized linear models Douglas Bates November 01, 2010 Contents 1 Definition 1 2 Links 2 3 Estimating parameters 5 4 Example 6 5 Model building 8 6 Conclusions 8 7 Summary 9 1 Generalized Linear Models

More information

LOGISTIC REGRESSION Joseph M. Hilbe

LOGISTIC REGRESSION Joseph M. Hilbe LOGISTIC REGRESSION Joseph M. Hilbe Arizona State University Logistic regression is the most common method used to model binary response data. When the response is binary, it typically takes the form of

More information

STAT5044: Regression and Anova

STAT5044: Regression and Anova STAT5044: Regression and Anova Inyoung Kim 1 / 18 Outline 1 Logistic regression for Binary data 2 Poisson regression for Count data 2 / 18 GLM Let Y denote a binary response variable. Each observation

More information

STA 216, GLM, Lecture 16. October 29, 2007

STA 216, GLM, Lecture 16. October 29, 2007 STA 216, GLM, Lecture 16 October 29, 2007 Efficient Posterior Computation in Factor Models Underlying Normal Models Generalized Latent Trait Models Formulation Genetic Epidemiology Illustration Structural

More information

Generalized Estimating Equations

Generalized Estimating Equations Outline Review of Generalized Linear Models (GLM) Generalized Linear Model Exponential Family Components of GLM MLE for GLM, Iterative Weighted Least Squares Measuring Goodness of Fit - Deviance and Pearson

More information

Generalized linear models

Generalized linear models Generalized linear models Søren Højsgaard Department of Mathematical Sciences Aalborg University, Denmark October 29, 202 Contents Densities for generalized linear models. Mean and variance...............................

More information

Linear Regression With Special Variables

Linear Regression With Special Variables Linear Regression With Special Variables Junhui Qian December 21, 2014 Outline Standardized Scores Quadratic Terms Interaction Terms Binary Explanatory Variables Binary Choice Models Standardized Scores:

More information

Lecture 13: More on Binary Data

Lecture 13: More on Binary Data Lecture 1: More on Binary Data Link functions for Binomial models Link η = g(π) π = g 1 (η) identity π η logarithmic log π e η logistic log ( π 1 π probit Φ 1 (π) Φ(η) log-log log( log π) exp( e η ) complementary

More information

Semiparametric Generalized Linear Models

Semiparametric Generalized Linear Models Semiparametric Generalized Linear Models North American Stata Users Group Meeting Chicago, Illinois Paul Rathouz Department of Health Studies University of Chicago prathouz@uchicago.edu Liping Gao MS Student

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models SCHOOL OF MATHEMATICS AND STATISTICS Linear and Generalised Linear Models Autumn Semester 2017 18 2 hours Attempt all the questions. The allocation of marks is shown in brackets. RESTRICTED OPEN BOOK EXAMINATION

More information

Stat 710: Mathematical Statistics Lecture 12

Stat 710: Mathematical Statistics Lecture 12 Stat 710: Mathematical Statistics Lecture 12 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 12 Feb 18, 2009 1 / 11 Lecture 12:

More information

1. Hypothesis testing through analysis of deviance. 3. Model & variable selection - stepwise aproaches

1. Hypothesis testing through analysis of deviance. 3. Model & variable selection - stepwise aproaches Sta 216, Lecture 4 Last Time: Logistic regression example, existence/uniqueness of MLEs Today s Class: 1. Hypothesis testing through analysis of deviance 2. Standard errors & confidence intervals 3. Model

More information

Linear Methods for Prediction

Linear Methods for Prediction This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION (SOLUTIONS) ST3241 Categorical Data Analysis. (Semester II: )

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION (SOLUTIONS) ST3241 Categorical Data Analysis. (Semester II: ) NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION (SOLUTIONS) Categorical Data Analysis (Semester II: 2010 2011) April/May, 2011 Time Allowed : 2 Hours Matriculation No: Seat No: Grade Table Question 1 2 3

More information

Applying Generalized Linear Models

Applying Generalized Linear Models Applying Generalized Linear Models James K. Lindsey Springer Preface Generalized linear models provide a unified approach to many of the most common statistical procedures used in applied statistics.

More information

Some explanations about the IWLS algorithm to fit generalized linear models

Some explanations about the IWLS algorithm to fit generalized linear models Some explanations about the IWLS algorithm to fit generalized linear models Christophe Dutang To cite this version: Christophe Dutang. Some explanations about the IWLS algorithm to fit generalized linear

More information

Generalized Linear Models and Extensions

Generalized Linear Models and Extensions Session 1 1 Generalized Linear Models and Extensions Clarice Garcia Borges Demétrio ESALQ/USP Piracicaba, SP, Brasil March 2013 email: Clarice.demetrio@usp.br Session 1 2 Course Outline Session 1 - Generalized

More information

9 Generalized Linear Models

9 Generalized Linear Models 9 Generalized Linear Models The Generalized Linear Model (GLM) is a model which has been built to include a wide range of different models you already know, e.g. ANOVA and multiple linear regression models

More information

Standard Errors & Confidence Intervals. N(0, I( β) 1 ), I( β) = [ 2 l(β, φ; y) β i β β= β j

Standard Errors & Confidence Intervals. N(0, I( β) 1 ), I( β) = [ 2 l(β, φ; y) β i β β= β j Standard Errors & Confidence Intervals β β asy N(0, I( β) 1 ), where I( β) = [ 2 l(β, φ; y) ] β i β β= β j We can obtain asymptotic 100(1 α)% confidence intervals for β j using: β j ± Z 1 α/2 se( β j )

More information

Lecture 01: Introduction

Lecture 01: Introduction Lecture 01: Introduction Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture 01: Introduction

More information

Generalized Linear Models for Non-Normal Data

Generalized Linear Models for Non-Normal Data Generalized Linear Models for Non-Normal Data Today s Class: 3 parts of a generalized model Models for binary outcomes Complications for generalized multivariate or multilevel models SPLH 861: Lecture

More information

Model Selection in GLMs. (should be able to implement frequentist GLM analyses!) Today: standard frequentist methods for model selection

Model Selection in GLMs. (should be able to implement frequentist GLM analyses!) Today: standard frequentist methods for model selection Model Selection in GLMs Last class: estimability/identifiability, analysis of deviance, standard errors & confidence intervals (should be able to implement frequentist GLM analyses!) Today: standard frequentist

More information

Generalized Linear Models (GLZ)

Generalized Linear Models (GLZ) Generalized Linear Models (GLZ) Generalized Linear Models (GLZ) are an extension of the linear modeling process that allows models to be fit to data that follow probability distributions other than the

More information

Generalized Linear Models for a Dependent Aggregate Claims Model

Generalized Linear Models for a Dependent Aggregate Claims Model Generalized Linear Models for a Dependent Aggregate Claims Model Juliana Schulz A Thesis for The Department of Mathematics and Statistics Presented in Partial Fulfillment of the Requirements for the Degree

More information

Generalized Linear Models. stat 557 Heike Hofmann

Generalized Linear Models. stat 557 Heike Hofmann Generalized Linear Models stat 557 Heike Hofmann Outline Intro to GLM Exponential Family Likelihood Equations GLM for Binomial Response Generalized Linear Models Three components: random, systematic, link

More information

Chapter 4: Generalized Linear Models-II

Chapter 4: Generalized Linear Models-II : Generalized Linear Models-II Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM [Acknowledgements to Tim Hanson and Haitao Chu] D. Bandyopadhyay

More information

Logistic regression. 11 Nov Logistic regression (EPFL) Applied Statistics 11 Nov / 20

Logistic regression. 11 Nov Logistic regression (EPFL) Applied Statistics 11 Nov / 20 Logistic regression 11 Nov 2010 Logistic regression (EPFL) Applied Statistics 11 Nov 2010 1 / 20 Modeling overview Want to capture important features of the relationship between a (set of) variable(s)

More information

11. Generalized Linear Models: An Introduction

11. Generalized Linear Models: An Introduction Sociology 740 John Fox Lecture Notes 11. Generalized Linear Models: An Introduction Copyright 2014 by John Fox Generalized Linear Models: An Introduction 1 1. Introduction I A synthesis due to Nelder and

More information

Generalized Linear Models

Generalized Linear Models York SPIDA John Fox Notes Generalized Linear Models Copyright 2010 by John Fox Generalized Linear Models 1 1. Topics I The structure of generalized linear models I Poisson and other generalized linear

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Statistics 203: Introduction to Regression and Analysis of Variance Course review

Statistics 203: Introduction to Regression and Analysis of Variance Course review Statistics 203: Introduction to Regression and Analysis of Variance Course review Jonathan Taylor - p. 1/?? Today Review / overview of what we learned. - p. 2/?? General themes in regression models Specifying

More information

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown.

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown. Weighting We have seen that if E(Y) = Xβ and V (Y) = σ 2 G, where G is known, the model can be rewritten as a linear model. This is known as generalized least squares or, if G is diagonal, with trace(g)

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00 Two Hours MATH38052 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER GENERALISED LINEAR MODELS 26 May 2016 14:00 16:00 Answer ALL TWO questions in Section

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Yan Lu Jan, 2018, week 3 1 / 67 Hypothesis tests Likelihood ratio tests Wald tests Score tests 2 / 67 Generalized Likelihood ratio tests Let Y = (Y 1,

More information

Lecture 16: Mixtures of Generalized Linear Models

Lecture 16: Mixtures of Generalized Linear Models Lecture 16: Mixtures of Generalized Linear Models October 26, 2006 Setting Outline Often, a single GLM may be insufficiently flexible to characterize the data Setting Often, a single GLM may be insufficiently

More information

Anders Skrondal. Norwegian Institute of Public Health London School of Hygiene and Tropical Medicine. Based on joint work with Sophia Rabe-Hesketh

Anders Skrondal. Norwegian Institute of Public Health London School of Hygiene and Tropical Medicine. Based on joint work with Sophia Rabe-Hesketh Constructing Latent Variable Models using Composite Links Anders Skrondal Norwegian Institute of Public Health London School of Hygiene and Tropical Medicine Based on joint work with Sophia Rabe-Hesketh

More information

where F ( ) is the gamma function, y > 0, µ > 0, σ 2 > 0. (a) show that Y has an exponential family distribution of the form

where F ( ) is the gamma function, y > 0, µ > 0, σ 2 > 0. (a) show that Y has an exponential family distribution of the form Stat 579: General Instruction of Homework: All solutions should be rigorously explained. For problems using SAS or R, please attach code as part of your homework Assignment 1: Due Jan 30 Tuesday in class

More information

,..., θ(2),..., θ(n)

,..., θ(2),..., θ(n) Likelihoods for Multivariate Binary Data Log-Linear Model We have 2 n 1 distinct probabilities, but we wish to consider formulations that allow more parsimonious descriptions as a function of covariates.

More information

Lecture 8. Poisson models for counts

Lecture 8. Poisson models for counts Lecture 8. Poisson models for counts Jesper Rydén Department of Mathematics, Uppsala University jesper.ryden@math.uu.se Statistical Risk Analysis Spring 2014 Absolute risks The failure intensity λ(t) describes

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Generalized Linear Models - part II Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs.

More information

Generalized Linear Models (1/29/13)

Generalized Linear Models (1/29/13) STA613/CBB540: Statistical methods in computational biology Generalized Linear Models (1/29/13) Lecturer: Barbara Engelhardt Scribe: Yangxiaolu Cao When processing discrete data, two commonly used probability

More information

Single-level Models for Binary Responses

Single-level Models for Binary Responses Single-level Models for Binary Responses Distribution of Binary Data y i response for individual i (i = 1,..., n), coded 0 or 1 Denote by r the number in the sample with y = 1 Mean and variance E(y) =

More information

Poisson regression 1/15

Poisson regression 1/15 Poisson regression 1/15 2/15 Counts data Examples of counts data: Number of hospitalizations over a period of time Number of passengers in a bus station Blood cells number in a blood sample Number of typos

More information

Generalized Linear Models: An Introduction

Generalized Linear Models: An Introduction Applied Statistics With R Generalized Linear Models: An Introduction John Fox WU Wien May/June 2006 2006 by John Fox Generalized Linear Models: An Introduction 1 A synthesis due to Nelder and Wedderburn,

More information

MIT Spring 2016

MIT Spring 2016 Generalized Linear Models MIT 18.655 Dr. Kempthorne Spring 2016 1 Outline Generalized Linear Models 1 Generalized Linear Models 2 Generalized Linear Model Data: (y i, x i ), i = 1,..., n where y i : response

More information

LISA Short Course Series Generalized Linear Models (GLMs) & Categorical Data Analysis (CDA) in R. Liang (Sally) Shan Nov. 4, 2014

LISA Short Course Series Generalized Linear Models (GLMs) & Categorical Data Analysis (CDA) in R. Liang (Sally) Shan Nov. 4, 2014 LISA Short Course Series Generalized Linear Models (GLMs) & Categorical Data Analysis (CDA) in R Liang (Sally) Shan Nov. 4, 2014 L Laboratory for Interdisciplinary Statistical Analysis LISA helps VT researchers

More information

Statistics of Contingency Tables - Extension to I x J. stat 557 Heike Hofmann

Statistics of Contingency Tables - Extension to I x J. stat 557 Heike Hofmann Statistics of Contingency Tables - Extension to I x J stat 557 Heike Hofmann Outline Testing Independence Local Odds Ratios Concordance & Discordance Intro to GLMs Simpson s paradox Simpson s paradox:

More information

MATH Generalized Linear Models

MATH Generalized Linear Models MATH 523 - Generalized Linear Models Pr. David A. Stephens Course notes by Léo Raymond-Belzile Leo.Raymond-Belzile@mail.mcgill.ca The current version is that of July 31, 2018 Winter 2013, McGill University

More information

Generalized Linear Models and Exponential Families

Generalized Linear Models and Exponential Families Generalized Linear Models and Exponential Families David M. Blei COS424 Princeton University April 12, 2012 Generalized Linear Models x n y n β Linear regression and logistic regression are both linear

More information

Chapter 4: Generalized Linear Models-I

Chapter 4: Generalized Linear Models-I : Generalized Linear Models-I Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM [Acknowledgements to Tim Hanson and Haitao Chu] D. Bandyopadhyay

More information

Generalized linear mixed models for dependent compound risk models

Generalized linear mixed models for dependent compound risk models Generalized linear mixed models for dependent compound risk models Emiliano A. Valdez joint work with H. Jeong, J. Ahn and S. Park University of Connecticut ASTIN/AFIR Colloquium 2017 Panama City, Panama

More information

Lecture 16 Solving GLMs via IRWLS

Lecture 16 Solving GLMs via IRWLS Lecture 16 Solving GLMs via IRWLS 09 November 2015 Taylor B. Arnold Yale Statistics STAT 312/612 Notes problem set 5 posted; due next class problem set 6, November 18th Goals for today fixed PCA example

More information

Federated analyses. technical, statistical and human challenges

Federated analyses. technical, statistical and human challenges Federated analyses technical, statistical and human challenges Bénédicte Delcoigne, Statistician, PhD Department of Medicine (Solna), Unit of Clinical Epidemiology, Karolinska Institutet What is it? When

More information

Logistic Regression. Seungjin Choi

Logistic Regression. Seungjin Choi Logistic Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Generalized logit models for nominal multinomial responses. Local odds ratios

Generalized logit models for nominal multinomial responses. Local odds ratios Generalized logit models for nominal multinomial responses Categorical Data Analysis, Summer 2015 1/17 Local odds ratios Y 1 2 3 4 1 π 11 π 12 π 13 π 14 π 1+ X 2 π 21 π 22 π 23 π 24 π 2+ 3 π 31 π 32 π

More information

Sections 4.1, 4.2, 4.3

Sections 4.1, 4.2, 4.3 Sections 4.1, 4.2, 4.3 Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1/ 32 Chapter 4: Introduction to Generalized Linear Models Generalized linear

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Generalized linear mixed models (GLMMs) for dependent compound risk models

Generalized linear mixed models (GLMMs) for dependent compound risk models Generalized linear mixed models (GLMMs) for dependent compound risk models Emiliano A. Valdez, PhD, FSA joint work with H. Jeong, J. Ahn and S. Park University of Connecticut Seminar Talk at Yonsei University

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Linear Mixed Models for Longitudinal Data Yan Lu April, 2018, week 15 1 / 38 Data structure t1 t2 tn i 1st subject y 11 y 12 y 1n1 Experimental 2nd subject

More information

Multinomial Regression Models

Multinomial Regression Models Multinomial Regression Models Objectives: Multinomial distribution and likelihood Ordinal data: Cumulative link models (POM). Ordinal data: Continuation models (CRM). 84 Heagerty, Bio/Stat 571 Models for

More information

Review: what is a linear model. Y = β 0 + β 1 X 1 + β 2 X 2 + A model of the following form:

Review: what is a linear model. Y = β 0 + β 1 X 1 + β 2 X 2 + A model of the following form: Outline for today What is a generalized linear model Linear predictors and link functions Example: fit a constant (the proportion) Analysis of deviance table Example: fit dose-response data using logistic

More information

Lecture 4: Types of errors. Bayesian regression models. Logistic regression

Lecture 4: Types of errors. Bayesian regression models. Logistic regression Lecture 4: Types of errors. Bayesian regression models. Logistic regression A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting more generally COMP-652 and ECSE-68, Lecture

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Marlene Müller Fraunhofer Institute for Industrial Mathematics (ITWM) P.O. Box 3049, D 67663 Kaiserslautern (Germany) marlene.mueller@gmx.de January 6, 2004 1 Introduction Generalized

More information

Part 8: GLMs and Hierarchical LMs and GLMs

Part 8: GLMs and Hierarchical LMs and GLMs Part 8: GLMs and Hierarchical LMs and GLMs 1 Example: Song sparrow reproductive success Arcese et al., (1992) provide data on a sample from a population of 52 female song sparrows studied over the course

More information

Computational methods for mixed models

Computational methods for mixed models Computational methods for mixed models Douglas Bates Department of Statistics University of Wisconsin Madison March 27, 2018 Abstract The lme4 package provides R functions to fit and analyze several different

More information

Chapter 5: Generalized Linear Models

Chapter 5: Generalized Linear Models w w w. I C A 0 1 4. o r g Chapter 5: Generalized Linear Models b Curtis Gar Dean, FCAS, MAAA, CFA Ball State Universit: Center for Actuarial Science and Risk Management M Interest in Predictive Modeling

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Jonathan Marchini Department of Statistics University of Oxford MT 2013 Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 27 Course arrangements Lectures M.2

More information

Bayesian Multivariate Logistic Regression

Bayesian Multivariate Logistic Regression Bayesian Multivariate Logistic Regression Sean M. O Brien and David B. Dunson Biostatistics Branch National Institute of Environmental Health Sciences Research Triangle Park, NC 1 Goals Brief review of

More information

7/28/15. Review Homework. Overview. Lecture 6: Logistic Regression Analysis

7/28/15. Review Homework. Overview. Lecture 6: Logistic Regression Analysis Lecture 6: Logistic Regression Analysis Christopher S. Hollenbeak, PhD Jane R. Schubart, PhD The Outcomes Research Toolbox Review Homework 2 Overview Logistic regression model conceptually Logistic regression

More information

Dimensionality Reduction with Generalized Linear Models

Dimensionality Reduction with Generalized Linear Models Dimensionality Reduction with Generalized Linear Models Mo Chen 1 Wei Li 1 Wei Zhang 2 Xiaogang Wang 1 1 Department of Electronic Engineering 2 Department of Information Engineering The Chinese University

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models David Rosenberg New York University April 12, 2015 David Rosenberg (New York University) DS-GA 1003 April 12, 2015 1 / 20 Conditional Gaussian Regression Gaussian Regression Input

More information

Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives. 1(w i = h + 1)β h + ɛ i,

Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives. 1(w i = h + 1)β h + ɛ i, Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives Often interest may focus on comparing a null hypothesis of no difference between groups to an ordered restricted alternative. For

More information

Figure 36: Respiratory infection versus time for the first 49 children.

Figure 36: Respiratory infection versus time for the first 49 children. y BINARY DATA MODELS We devote an entire chapter to binary data since such data are challenging, both in terms of modeling the dependence, and parameter interpretation. We again consider mixed effects

More information

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 Introduction to Generalized Univariate Models: Models for Binary Outcomes EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 EPSY 905: Intro to Generalized In This Lecture A short review

More information

Logistic Regression and Generalized Linear Models

Logistic Regression and Generalized Linear Models Logistic Regression and Generalized Linear Models Sridhar Mahadevan mahadeva@cs.umass.edu University of Massachusetts Sridhar Mahadevan: CMPSCI 689 p. 1/2 Topics Generative vs. Discriminative models In

More information

Generalized linear mixed models (GLMMs) for dependent compound risk models

Generalized linear mixed models (GLMMs) for dependent compound risk models Generalized linear mixed models (GLMMs) for dependent compound risk models Emiliano A. Valdez joint work with H. Jeong, J. Ahn and S. Park University of Connecticut 52nd Actuarial Research Conference Georgia

More information

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models

Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Mixed models in R using the lme4 package Part 5: Generalized linear mixed models Douglas Bates 2011-03-16 Contents 1 Generalized Linear Mixed Models Generalized Linear Mixed Models When using linear mixed

More information