Mixture Models and EM

Size: px
Start display at page:

Download "Mixture Models and EM"

Transcription

1 Mixture Models and EM Yoan Miche CIS, HUT March 17, 27 Yoan Miche (CIS, HUT) Mixture Models and EM March 17, 27 1 / 23

2 Mise en Bouche Yoan Miche (CIS, HUT) Mixture Models and EM March 17, 27 2 / 23

3 Mise en Bouche Yoan Miche (CIS, HUT) Mixture Models and EM March 17, 27 2 / 23

4 Outline 1 Starters: K-Means 2 Main Course: EM Algorithm 3 Dessert: General Algorithm Yoan Miche (CIS, HUT) Mixture Models and EM March 17, 27 3 / 23

5 Setting Starters: K-Means On the idea of K-Means Going Further... Data set of N observations of D-dimensional variable x {x 1,..., x N } with each vector D-dimensional x 1 = (x1 1,..., x1 D ) Yoan Miche (CIS, HUT) Mixture Models and EM March 17, 27 4 / 23

6 K-Means Idea: Clustering Starters: K-Means On the idea of K-Means Going Further... Idea Define the K prototype vectors (code-book vectors) D-dimensional All prototypes of the corresponding cluster: Sum of squares of distances from each data point to its closest prototype µ k is minimum. µ k This is the condition to define the µ k Yoan Miche (CIS, HUT) Mixture Models and EM March 17, 27 5 / 23

7 K-Means Idea: Clustering Starters: K-Means On the idea of K-Means Going Further... Idea Define the K prototype vectors (code-book vectors) D-dimensional All prototypes of the corresponding cluster: Sum of squares of distances from each data point to its closest prototype µ k is minimum. µ k This is the condition to define the µ k Yoan Miche (CIS, HUT) Mixture Models and EM March 17, 27 5 / 23

8 K-Means Idea: Clustering Starters: K-Means On the idea of K-Means Going Further... Idea Define the K prototype vectors (code-book vectors) D-dimensional All prototypes of the corresponding cluster: Sum of squares of distances from each data point to its closest prototype µ k is minimum. µ k This is the condition to define the µ k Yoan Miche (CIS, HUT) Mixture Models and EM March 17, 27 5 / 23

9 Clustering idea (2) Starters: K-Means On the idea of K-Means Going Further... Minimize the distortion measure J N K J = r nk x n µ k 2 (1) k=1 Sum of squares of distances of all data points to their prototype. r nk = δ n,k (Kronecker) Yoan Miche (CIS, HUT) Mixture Models and EM March 17, 27 6 / 23

10 The Old Faithful data set Starters: K-Means On the idea of K-Means Going Further... 2 (a) 2 (b) 2 (c) (a) (b) (c) Yoan Miche (CIS, HUT) Mixture Models and EM March 17, 27 7 / 23

11 The Old Faithful data set (2) Starters: K-Means On the idea of K-Means Going Further... 2 (d) 2 (e) 2 (f) (d) (e) (f) Yoan Miche (CIS, HUT) Mixture Models and EM March 17, 27 8 / 23

12 The Old Faithful data set (3) Starters: K-Means On the idea of K-Means Going Further... 2 (g) 2 (h) 2 (i) 2 2! !2 2 (g) (h) (i) Yoan Miche (CIS, HUT) Mixture Models and EM March 17, 27 9 / 23

13 Starters: K-Means On the idea of K-Means Going Further... How to determine r nk and µ k Iterative procedure in two steps E Step: Fix initial values for the {µ k } and minimize J with respect to the r nk M Step: Fix the r nk and minimize J with respect to the {µ k } In practice... r nk = { 1 if k = min x n µ k 2 j else r nk x n µ k = n (2) (3) r nk n Yoan Miche (CIS, HUT) Mixture Models and EM March 17, 27 1 / 23

14 Starters: K-Means On the idea of K-Means Going Further... How to determine r nk and µ k Iterative procedure in two steps E Step: Fix initial values for the {µ k } and minimize J with respect to the r nk M Step: Fix the r nk and minimize J with respect to the {µ k } In practice... r nk = { 1 if k = min x n µ k 2 j else r nk x n µ k = n (2) (3) r nk n Yoan Miche (CIS, HUT) Mixture Models and EM March 17, 27 1 / 23

15 Generalizing to other distances Starters: K-Means On the idea of K-Means Going Further... Generalizing to the K-medoids algorithm. J N K = r nk ν(x n µ k ) (4) k=1 Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

16 Image Clustering Starters: K-Means On the idea of K-Means Going Further... Pixels considered as 3-dimensional vectors (j) K = 2 (k) K = 3 (l) K = 5 (m) K = 1 Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

17 Reminders and Notations Main Course: EM Algorithm Mixtures of Gaussians Gaussian mixture distribution: Recall that a Gaussian mixture can be written as a sum of Gaussians: And let us introduce p(x) = K π k N (x µ k, Σ k ) (5) k=1 z = (,,...,, 1,,..., ) z 1 z 2 z k z K (6) whose distribution, considering p(z k = 1) = π k can be written in the form p(z) = K k=1 π z k k (7) Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

18 Reminders and Notations (2) Main Course: EM Algorithm Mixtures of Gaussians We also have z K p(x z) = N (x µ k, Σ k ) zk (8) k=1 giving finally, by summing the joint distribution p(x) = z K p(z)p(x z) = π k N (x µ k, Σ k ) (9) k=1 x Only interest in these development in the introduction of the latent variable z n Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

19 Reminders and Notations (3) Main Course: EM Algorithm Mixtures of Gaussians Lets us note, further, γ(z k ) = p(z k = 1 x) γ(z k ) = π kn (x µ k, Σ k ) K π j N (x µ j, Σ j ) j=1 the conditional probability of z given x. (1) γ(z k ) is in fact the responsibility that k has in the observation x Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

20 Example for mixture of Gaussians Main Course: EM Algorithm Mixtures of Gaussians 1 (a) 1 (b) 1 (c) (n) (o) (p) Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

21 And again... Main Course: EM Algorithm Mixtures of Gaussians This time, instead of codebook vectors, we use Gaussians: Now... Maximizing the log-likelihood instead of the distortion measure µ k = 1 N N γ(z nk )x n with N k = γ(z nk ) N k Σ k = 1 N k N γ(z nk )(x n µ k )(x n µ k ) T Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

22 And again... Main Course: EM Algorithm Mixtures of Gaussians This time, instead of codebook vectors, we use Gaussians: Now... Maximizing the log-likelihood instead of the distortion measure µ k = 1 N N γ(z nk )x n with N k = γ(z nk ) N k Σ k = 1 N k N γ(z nk )(x n µ k )(x n µ k ) T Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

23 And again... Main Course: EM Algorithm Mixtures of Gaussians This time, instead of codebook vectors, we use Gaussians: Now... Maximizing the log-likelihood instead of the distortion measure µ k = 1 N N γ(z nk )x n with N k = γ(z nk ) N k Σ k = 1 N k N γ(z nk )(x n µ k )(x n µ k ) T Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

24 And again... Main Course: EM Algorithm Mixtures of Gaussians This time, instead of codebook vectors, we use Gaussians: Now... Maximizing the log-likelihood instead of the distortion measure µ k = 1 N N γ(z nk )x n with N k = γ(z nk ) N k Σ k = 1 N k N γ(z nk )(x n µ k )(x n µ k ) T Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

25 And again... Main Course: EM Algorithm Mixtures of Gaussians This time, instead of codebook vectors, we use Gaussians: Now... Maximizing the log-likelihood instead of the distortion measure µ k = 1 N N γ(z nk )x n with N k = γ(z nk ) N k Σ k = 1 N k N γ(z nk )(x n µ k )(x n µ k ) T Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

26 In images... Main Course: EM Algorithm Mixtures of Gaussians (a) 2 (q) 2 (b) 2 (r) 2 (c) 2 (s) (d) 2 2 (e) 2 2 (f) 2 Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

27 EM for Gaussian Mixtures (1) Main Course: EM Algorithm Mixtures of Gaussians EM Algorithm (1) Initialize µ k, Σ k and π k and evaluate log-likelihood with these E Step: γ(z nk ) = π kn (x n µ k, Σ k ) K π j N (x n µ j, Σ j ) j=1 Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

28 EM for Gaussian Mixtures (1) Main Course: EM Algorithm Mixtures of Gaussians EM Algorithm (1) Initialize µ k, Σ k and π k and evaluate log-likelihood with these E Step: γ(z nk ) = π kn (x n µ k, Σ k ) K π j N (x n µ j, Σ j ) j=1 Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

29 EM for Gaussian Mixtures (2) Main Course: EM Algorithm Mixtures of Gaussians EM Algorithm (2) M Step: µ new k Σ new k π new k = 1 N k N = 1 N k N γ(z nk )x n, = N k N with N k = γ(z nk )(x n µ new k )(x n µ new k ) T, N γ(z nk ) Yoan Miche (CIS, HUT) Mixture Models and EM March 17, 27 2 / 23

30 EM for Gaussian Mixtures (3) Main Course: EM Algorithm Mixtures of Gaussians EM Algorithm (3) Evaluate log-likehood N K ln p(x µ, Σ, π) = ln π k N (x n µ k, Σ k ) j=1 Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

31 Dessert: General Algorithm Kidding... The proposed version of the general algorithm in the book is way too heavy to be presented on slides... Meanwhile, I invite you to read section 9.4 about this general algorithm since it gives a general framework that is given in Chapter 1 Or not... Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

32 Had fun? Hope you enjoyed... Yoan Miche (CIS, HUT) Mixture Models and EM March 17, / 23

Pattern Recognition and Machine Learning. Bishop Chapter 9: Mixture Models and EM

Pattern Recognition and Machine Learning. Bishop Chapter 9: Mixture Models and EM Pattern Recognition and Machine Learning Chapter 9: Mixture Models and EM Thomas Mensink Jakob Verbeek October 11, 27 Le Menu 9.1 K-means clustering Getting the idea with a simple example 9.2 Mixtures

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 218 Outlines Overview Introduction Linear Algebra Probability Linear Regression 1

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

Mixtures of Gaussians. Sargur Srihari

Mixtures of Gaussians. Sargur Srihari Mixtures of Gaussians Sargur srihari@cedar.buffalo.edu 1 9. Mixture Models and EM 0. Mixture Models Overview 1. K-Means Clustering 2. Mixtures of Gaussians 3. An Alternative View of EM 4. The EM Algorithm

More information

Latent Variable Models and Expectation Maximization

Latent Variable Models and Expectation Maximization Latent Variable Models and Expectation Maximization Oliver Schulte - CMPT 726 Bishop PRML Ch. 9 2 4 6 8 1 12 14 16 18 2 4 6 8 1 12 14 16 18 5 1 15 2 25 5 1 15 2 25 2 4 6 8 1 12 14 2 4 6 8 1 12 14 5 1 15

More information

Clustering and Gaussian Mixtures

Clustering and Gaussian Mixtures Clustering and Gaussian Mixtures Oliver Schulte - CMPT 883 2 4 6 8 1 12 14 16 18 2 4 6 8 1 12 14 16 18 5 1 15 2 25 5 1 15 2 25 2 4 6 8 1 12 14 2 4 6 8 1 12 14 5 1 15 2 25 5 1 15 2 25 detected tures detected

More information

Latent Variable View of EM. Sargur Srihari

Latent Variable View of EM. Sargur Srihari Latent Variable View of EM Sargur srihari@cedar.buffalo.edu 1 Examples of latent variables 1. Mixture Model Joint distribution is p(x,z) We don t have values for z 2. Hidden Markov Model A single time

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Bishop PRML Ch. 9 Alireza Ghane c Ghane/Mori 4 6 8 4 6 8 4 6 8 4 6 8 5 5 5 5 5 5 4 6 8 4 4 6 8 4 5 5 5 5 5 5 µ, Σ) α f Learningscale is slightly Parameters is slightly larger larger

More information

Latent Variable Models and Expectation Maximization

Latent Variable Models and Expectation Maximization Latent Variable Models and Expectation Maximization Oliver Schulte - CMPT 726 Bishop PRML Ch. 9 2 4 6 8 1 12 14 16 18 2 4 6 8 1 12 14 16 18 5 1 15 2 25 5 1 15 2 25 2 4 6 8 1 12 14 2 4 6 8 1 12 14 5 1 15

More information

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization Prof. Daniel Cremers 6. Mixture Models and Expectation-Maximization Motivation Often the introduction of latent (unobserved) random variables into a model can help to express complex (marginal) distributions

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2017

Cheng Soon Ong & Christian Walder. Canberra February June 2017 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2017 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 679 Part XIX

More information

Clustering, K-Means, EM Tutorial

Clustering, K-Means, EM Tutorial Clustering, K-Means, EM Tutorial Kamyar Ghasemipour Parts taken from Shikhar Sharma, Wenjie Luo, and Boris Ivanovic s tutorial slides, as well as lecture notes Organization: Clustering Motivation K-Means

More information

Clustering and Gaussian Mixture Models

Clustering and Gaussian Mixture Models Clustering and Gaussian Mixture Models Piyush Rai IIT Kanpur Probabilistic Machine Learning (CS772A) Jan 25, 2016 Probabilistic Machine Learning (CS772A) Clustering and Gaussian Mixture Models 1 Recap

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 2 - Spring 2017 Lecture 6 Jan-Willem van de Meent (credit: Yijun Zhao, Chris Bishop, Andrew Moore, Hastie et al.) Project Project Deadlines 3 Feb: Form teams of

More information

CS181 Midterm 2 Practice Solutions

CS181 Midterm 2 Practice Solutions CS181 Midterm 2 Practice Solutions 1. Convergence of -Means Consider Lloyd s algorithm for finding a -Means clustering of N data, i.e., minimizing the distortion measure objective function J({r n } N n=1,

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Variational Mixture of Gaussians. Sargur Srihari

Variational Mixture of Gaussians. Sargur Srihari Variational Mixture of Gaussians Sargur srihari@cedar.buffalo.edu 1 Objective Apply variational inference machinery to Gaussian Mixture Models Demonstrates how Bayesian treatment elegantly resolves difficulties

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Aaron C. Courville Université de Montréal Note: Material for the slides is taken directly from a presentation prepared by Christopher M. Bishop Learning in DAGs Two things could

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University October 29, 2016 David Rosenberg (New York University) DS-GA 1003 October 29, 2016 1 / 42 K-Means Clustering K-Means Clustering David

More information

Probabilistic clustering

Probabilistic clustering Aprendizagem Automática Probabilistic clustering Ludwig Krippahl Probabilistic clustering Summary Fuzzy sets and clustering Fuzzy c-means Probabilistic Clustering: mixture models Expectation-Maximization,

More information

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26 Clustering Professor Ameet Talwalkar Professor Ameet Talwalkar CS26 Machine Learning Algorithms March 8, 217 1 / 26 Outline 1 Administration 2 Review of last lecture 3 Clustering Professor Ameet Talwalkar

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Expectation Maximization (EM) and Mixture Models Hamid R. Rabiee Jafar Muhammadi, Mohammad J. Hosseini Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2 Agenda Expectation-maximization

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Lecture 8: Clustering & Mixture Models

Lecture 8: Clustering & Mixture Models Lecture 8: Clustering & Mixture Models C4B Machine Learning Hilary 2011 A. Zisserman K-means algorithm GMM and the EM algorithm plsa clustering K-means algorithm K-means algorithm Partition data into K

More information

Lecture 6: Gaussian Mixture Models (GMM)

Lecture 6: Gaussian Mixture Models (GMM) Helsinki Institute for Information Technology Lecture 6: Gaussian Mixture Models (GMM) Pedram Daee 3.11.2015 Outline Gaussian Mixture Models (GMM) Models Model families and parameters Parameter learning

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Expectation Maximization (EM) and Mixture Models Hamid R. Rabiee Jafar Muhammadi, Mohammad J. Hosseini Spring 203 http://ce.sharif.edu/courses/9-92/2/ce725-/ Agenda Expectation-maximization

More information

Review and Motivation

Review and Motivation Review and Motivation We can model and visualize multimodal datasets by using multiple unimodal (Gaussian-like) clusters. K-means gives us a way of partitioning points into N clusters. Once we know which

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 20: Expectation Maximization Algorithm EM for Mixture Models Many figures courtesy Kevin Murphy s

More information

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm by Korbinian Schwinger Overview Exponential Family Maximum Likelihood The EM Algorithm Gaussian Mixture Models Exponential

More information

MIXTURE MODELS AND EM

MIXTURE MODELS AND EM Last updated: November 6, 212 MIXTURE MODELS AND EM Credits 2 Some of these slides were sourced and/or modified from: Christopher Bishop, Microsoft UK Simon Prince, University College London Sergios Theodoridis,

More information

Joint Optimization of Segmentation and Appearance Models

Joint Optimization of Segmentation and Appearance Models Joint Optimization of Segmentation and Appearance Models David Mandle, Sameep Tandon April 29, 2013 David Mandle, Sameep Tandon (Stanford) April 29, 2013 1 / 19 Overview 1 Recap: Image Segmentation 2 Optimization

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Machine Learning for Data Science (CS4786) Lecture 12

Machine Learning for Data Science (CS4786) Lecture 12 Machine Learning for Data Science (CS4786) Lecture 12 Gaussian Mixture Models Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016fa/ Back to K-means Single link is sensitive to outliners We

More information

Gaussian Mixture Models, Expectation Maximization

Gaussian Mixture Models, Expectation Maximization Gaussian Mixture Models, Expectation Maximization Instructor: Jessica Wu Harvey Mudd College The instructor gratefully acknowledges Andrew Ng (Stanford), Andrew Moore (CMU), Eric Eaton (UPenn), David Kauchak

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING Text Data: Topic Model Instructor: Yizhou Sun yzsun@cs.ucla.edu December 4, 2017 Methods to be Learnt Vector Data Set Data Sequence Data Text Data Classification Clustering

More information

ECE 5984: Introduction to Machine Learning

ECE 5984: Introduction to Machine Learning ECE 5984: Introduction to Machine Learning Topics: (Finish) Expectation Maximization Principal Component Analysis (PCA) Readings: Barber 15.1-15.4 Dhruv Batra Virginia Tech Administrativia Poster Presentation:

More information

Clustering with k-means and Gaussian mixture distributions

Clustering with k-means and Gaussian mixture distributions Clustering with k-means and Gaussian mixture distributions Machine Learning and Object Recognition 2017-2018 Jakob Verbeek Clustering Finding a group structure in the data Data in one cluster similar to

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectation-Maximization Algorithm Francisco S. Melo In these notes, we provide a brief overview of the formal aspects concerning -means, EM and their relation. We closely follow the presentation in

More information

Another Walkthrough of Variational Bayes. Bevan Jones Machine Learning Reading Group Macquarie University

Another Walkthrough of Variational Bayes. Bevan Jones Machine Learning Reading Group Macquarie University Another Walkthrough of Variational Bayes Bevan Jones Machine Learning Reading Group Macquarie University 2 Variational Bayes? Bayes Bayes Theorem But the integral is intractable! Sampling Gibbs, Metropolis

More information

Machine Learning. Clustering 1. Hamid Beigy. Sharif University of Technology. Fall 1395

Machine Learning. Clustering 1. Hamid Beigy. Sharif University of Technology. Fall 1395 Machine Learning Clustering 1 Hamid Beigy Sharif University of Technology Fall 1395 1 Some slides are taken from P. Rai slides Hamid Beigy (Sharif University of Technology) Machine Learning Fall 1395 1

More information

PROBABILITY DISTRIBUTIONS. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

PROBABILITY DISTRIBUTIONS. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception PROBABILITY DISTRIBUTIONS Credits 2 These slides were sourced and/or modified from: Christopher Bishop, Microsoft UK Parametric Distributions 3 Basic building blocks: Need to determine given Representation:

More information

Machine Learning Lecture 5

Machine Learning Lecture 5 Machine Learning Lecture 5 Linear Discriminant Functions 26.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory

More information

Mixture Models and Expectation-Maximization

Mixture Models and Expectation-Maximization Mixture Models and Expectation-Maximiation David M. Blei March 9, 2012 EM for mixtures of multinomials The graphical model for a mixture of multinomials π d x dn N D θ k K How should we fit the parameters?

More information

The Expectation Maximization or EM algorithm

The Expectation Maximization or EM algorithm The Expectation Maximization or EM algorithm Carl Edward Rasmussen November 15th, 2017 Carl Edward Rasmussen The EM algorithm November 15th, 2017 1 / 11 Contents notation, objective the lower bound functional,

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017

COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017 COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SOFT CLUSTERING VS HARD CLUSTERING

More information

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014.

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014. Clustering K-means Machine Learning CSE546 Carlos Guestrin University of Washington November 4, 2014 1 Clustering images Set of Images [Goldberger et al.] 2 1 K-means Randomly initialize k centers µ (0)

More information

Latent Variable Models

Latent Variable Models Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 5 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 1 / 31 Recap of last lecture 1 Autoregressive models:

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

CSC411 Fall 2018 Homework 5

CSC411 Fall 2018 Homework 5 Homework 5 Deadline: Wednesday, Nov. 4, at :59pm. Submission: You need to submit two files:. Your solutions to Questions and 2 as a PDF file, hw5_writeup.pdf, through MarkUs. (If you submit answers to

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

CS Lecture 18. Topic Models and LDA

CS Lecture 18. Topic Models and LDA CS 6347 Lecture 18 Topic Models and LDA (some slides by David Blei) Generative vs. Discriminative Models Recall that, in Bayesian networks, there could be many different, but equivalent models of the same

More information

STATS 306B: Unsupervised Learning Spring Lecture 2 April 2

STATS 306B: Unsupervised Learning Spring Lecture 2 April 2 STATS 306B: Unsupervised Learning Spring 2014 Lecture 2 April 2 Lecturer: Lester Mackey Scribe: Junyang Qian, Minzhe Wang 2.1 Recap In the last lecture, we formulated our working definition of unsupervised

More information

Latent Variable Models and EM Algorithm

Latent Variable Models and EM Algorithm SC4/SM8 Advanced Topics in Statistical Machine Learning Latent Variable Models and EM Algorithm Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/atsml/

More information

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning Clustering K-means Machine Learning CSE546 Sham Kakade University of Washington November 15, 2016 1 Announcements: Project Milestones due date passed. HW3 due on Monday It ll be collaborative HW2 grades

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Maximum Smoothed Likelihood for Multivariate Nonparametric Mixtures

Maximum Smoothed Likelihood for Multivariate Nonparametric Mixtures Maximum Smoothed Likelihood for Multivariate Nonparametric Mixtures David Hunter Pennsylvania State University, USA Joint work with: Tom Hettmansperger, Hoben Thomas, Didier Chauveau, Pierre Vandekerkhove,

More information

CS 136 Lecture 5 Acoustic modeling Phoneme modeling

CS 136 Lecture 5 Acoustic modeling Phoneme modeling + September 9, 2016 Professor Meteer CS 136 Lecture 5 Acoustic modeling Phoneme modeling Thanks to Dan Jurafsky for these slides + Directly Modeling Continuous Observations n Gaussians n Univariate Gaussians

More information

Variational Auto-Encoders (VAE)

Variational Auto-Encoders (VAE) Variational Auto-Encoders (VAE) Jonathan Pillow Lecture 21 slides NEU 560 Spring 2018 VAE Generative Model latent ~z N (0, I) data f aaacyhicdzhnbhmxemed5assxy0cuvhesfyidiskofb0ungoiktasnk0cpzzxoq/zm+mjsxfeasu8as8ew+dk64qswaks3/n7z9jj2dipfbyfl862z279+4/2huyp3r85omz/ypn5940jkofg2ncymi8skghjwildkwdpiyslibz4xw/widzwugvulqwuuxki1pwhik1qmcvzgdzel9b9ip10f1rtqjl2jgbh3r+vlpdgwuauwted8vc4igwh4jlihnvelcmz9kvdjputiefhfwdi32dmlnag5eorrro/l0rmpj+qsbjqrjo/dzbjf/fhg3wh0zbansgah57ud1iioaupqdt4ycjxcbbubpprztpmgmc0x/leaxhmhulmj6gsuhfdjfhbrnjjkbnywixfrob0xuuhdpegg+bnqnhjusyqjr1d2umhzun/ljwv55tpxjftcqzdkfbehgt6ai4vdkg8xbmy562w27vclech/bkold+ftc9+tjuey+8jk/ig1ks9+sinjaz0iecspknfcc/sk+zza6z5a0167q1l8hgzf9/a5t+5qk=

More information

Series 7, May 22, 2018 (EM Convergence)

Series 7, May 22, 2018 (EM Convergence) Exercises Introduction to Machine Learning SS 2018 Series 7, May 22, 2018 (EM Convergence) Institute for Machine Learning Dept. of Computer Science, ETH Zürich Prof. Dr. Andreas Krause Web: https://las.inf.ethz.ch/teaching/introml-s18

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Clustering: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu November 3, 2015 Methods to Learn Matrix Data Text Data Set Data Sequence Data Time Series Graph

More information

MACHINE LEARNING AND PATTERN RECOGNITION Fall 2006, Lecture 8: Latent Variables, EM Yann LeCun

MACHINE LEARNING AND PATTERN RECOGNITION Fall 2006, Lecture 8: Latent Variables, EM Yann LeCun Y. LeCun: Machine Learning and Pattern Recognition p. 1/? MACHINE LEARNING AND PATTERN RECOGNITION Fall 2006, Lecture 8: Latent Variables, EM Yann LeCun The Courant Institute, New York University http://yann.lecun.com

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Clustering: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu October 19, 2014 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network

More information

Expectation maximization

Expectation maximization Expectation maximization Subhransu Maji CMSCI 689: Machine Learning 14 April 2015 Motivation Suppose you are building a naive Bayes spam classifier. After your are done your boss tells you that there is

More information

Clustering with k-means and Gaussian mixture distributions

Clustering with k-means and Gaussian mixture distributions Clustering with k-means and Gaussian mixture distributions Machine Learning and Category Representation 2014-2015 Jakob Verbeek, ovember 21, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Lecture 10. Announcement. Mixture Models II. Topics of This Lecture. This Lecture: Advanced Machine Learning. Recap: GMMs as Latent Variable Models

Lecture 10. Announcement. Mixture Models II. Topics of This Lecture. This Lecture: Advanced Machine Learning. Recap: GMMs as Latent Variable Models Advanced Machine Learning Lecture 10 Mixture Models II 30.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ Announcement Exercise sheet 2 online Sampling Rejection Sampling Importance

More information

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014 Learning with Noisy Labels Kate Niehaus Reading group 11-Feb-2014 Outline Motivations Generative model approach: Lawrence, N. & Scho lkopf, B. Estimating a Kernel Fisher Discriminant in the Presence of

More information

Clustering with k-means and Gaussian mixture distributions

Clustering with k-means and Gaussian mixture distributions Clustering with k-means and Gaussian mixture distributions Machine Learning and Category Representation 2012-2013 Jakob Verbeek, ovember 23, 2012 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.12.13

More information

Mixture of Gaussians Models

Mixture of Gaussians Models Mixture of Gaussians Models Outline Inference, Learning, and Maximum Likelihood Why Mixtures? Why Gaussians? Building up to the Mixture of Gaussians Single Gaussians Fully-Observed Mixtures Hidden Mixtures

More information

Gaussian Mixture Models

Gaussian Mixture Models Gaussian Mixture Models Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 Some slides courtesy of Eric Xing, Carlos Guestrin (One) bad case for K- means Clusters may overlap Some

More information

Likelihood, MLE & EM for Gaussian Mixture Clustering. Nick Duffield Texas A&M University

Likelihood, MLE & EM for Gaussian Mixture Clustering. Nick Duffield Texas A&M University Likelihood, MLE & EM for Gaussian Mixture Clustering Nick Duffield Texas A&M University Probability vs. Likelihood Probability: predict unknown outcomes based on known parameters: P(x q) Likelihood: estimate

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Expectation Maximization Mark Schmidt University of British Columbia Winter 2018 Last Time: Learning with MAR Values We discussed learning with missing at random values in data:

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

Variational inference

Variational inference Simon Leglaive Télécom ParisTech, CNRS LTCI, Université Paris Saclay November 18, 2016, Télécom ParisTech, Paris, France. Outline Introduction Probabilistic model Problem Log-likelihood decomposition EM

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS Parametric Distributions Basic building blocks: Need to determine given Representation: or? Recall Curve Fitting Binary Variables

More information

Dimension Reduction (PCA, ICA, CCA, FLD,

Dimension Reduction (PCA, ICA, CCA, FLD, Dimension Reduction (PCA, ICA, CCA, FLD, Topic Models) Yi Zhang 10-701, Machine Learning, Spring 2011 April 6 th, 2011 Parts of the PCA slides are from previous 10-701 lectures 1 Outline Dimension reduction

More information

Joint Factor Analysis for Speaker Verification

Joint Factor Analysis for Speaker Verification Joint Factor Analysis for Speaker Verification Mengke HU ASPITRG Group, ECE Department Drexel University mengke.hu@gmail.com October 12, 2012 1/37 Outline 1 Speaker Verification Baseline System Session

More information

Unsupervised Learning

Unsupervised Learning 2018 EE448, Big Data Mining, Lecture 7 Unsupervised Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html ML Problem Setting First build and

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Week 2: Latent Variable Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College

More information

An Introduction to Expectation-Maximization

An Introduction to Expectation-Maximization An Introduction to Expectation-Maximization Dahua Lin Abstract This notes reviews the basics about the Expectation-Maximization EM) algorithm, a popular approach to perform model estimation of the generative

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

1 Expectation Maximization

1 Expectation Maximization Introduction Expectation-Maximization Bibliographical notes 1 Expectation Maximization Daniel Khashabi 1 khashab2@illinois.edu 1.1 Introduction Consider the problem of parameter learning by maximizing

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan Clustering CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Supervised vs Unsupervised Learning Supervised learning Given x ", y " "%& ', learn a function f: X Y Categorical output classification

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Yuriy Sverchkov Intelligent Systems Program University of Pittsburgh October 6, 2011 Outline Latent Semantic Analysis (LSA) A quick review Probabilistic LSA (plsa)

More information

Expectation Maximization Algorithm

Expectation Maximization Algorithm Expectation Maximization Algorithm Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein, Luke Zettlemoyer and Dan Weld The Evils of Hard Assignments? Clusters

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 622 - Section 2 - Spring 27 Pre-final Review Jan-Willem van de Meent Feedback Feedback https://goo.gl/er7eo8 (also posted on Piazza) Also, please fill out your TRACE evaluations!

More information

Manifold Learning for Signal and Visual Processing Lecture 9: Probabilistic PCA (PPCA), Factor Analysis, Mixtures of PPCA

Manifold Learning for Signal and Visual Processing Lecture 9: Probabilistic PCA (PPCA), Factor Analysis, Mixtures of PPCA Manifold Learning for Signal and Visual Processing Lecture 9: Probabilistic PCA (PPCA), Factor Analysis, Mixtures of PPCA Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inria.fr http://perception.inrialpes.fr/

More information

Advanced Introduction to Machine Learning

Advanced Introduction to Machine Learning 10-715 Advanced Introduction to Machine Learning Homework 3 Due Nov 12, 10.30 am Rules 1. Homework is due on the due date at 10.30 am. Please hand over your homework at the beginning of class. Please see

More information

ECE285/SIO209, Machine learning for physical applications, Spring 2017

ECE285/SIO209, Machine learning for physical applications, Spring 2017 ECE285/SIO209, Machine learning for physical applications, Spring 2017 Peter Gerstoft, 534-7768, gerstoft@ucsd.edu We meet Wednesday from 5 to 6:20pm in Spies Hall 330 Text Bishop Grading A or maybe S

More information

Lecture 7: Con3nuous Latent Variable Models

Lecture 7: Con3nuous Latent Variable Models CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 7: Con3nuous Latent Variable Models All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/

More information

STATS 306B: Unsupervised Learning Spring Lecture 3 April 7th

STATS 306B: Unsupervised Learning Spring Lecture 3 April 7th STATS 306B: Unsupervised Learning Spring 2014 Lecture 3 April 7th Lecturer: Lester Mackey Scribe: Jordan Bryan, Dangna Li 3.1 Recap: Gaussian Mixture Modeling In the last lecture, we discussed the Gaussian

More information

Collaborative Filtering: A Machine Learning Perspective

Collaborative Filtering: A Machine Learning Perspective Collaborative Filtering: A Machine Learning Perspective Chapter 6: Dimensionality Reduction Benjamin Marlin Presenter: Chaitanya Desai Collaborative Filtering: A Machine Learning Perspective p.1/18 Topics

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

1 EM algorithm: updating the mixing proportions {π k } ik are the posterior probabilities at the qth iteration of EM.

1 EM algorithm: updating the mixing proportions {π k } ik are the posterior probabilities at the qth iteration of EM. Université du Sud Toulon - Var Master Informatique Probabilistic Learning and Data Analysis TD: Model-based clustering by Faicel CHAMROUKHI Solution The aim of this practical wor is to show how the Classification

More information

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm IEOR E4570: Machine Learning for OR&FE Spring 205 c 205 by Martin Haugh The EM Algorithm The EM algorithm is used for obtaining maximum likelihood estimates of parameters when some of the data is missing.

More information