Joint Factor Analysis for Speaker Verification

Size: px
Start display at page:

Download "Joint Factor Analysis for Speaker Verification"

Transcription

1 Joint Factor Analysis for Speaker Verification Mengke HU ASPITRG Group, ECE Department Drexel University October 12, /37

2 Outline 1 Speaker Verification Baseline System Session Variation 2 Joint Factor Analysis Hidden Markov Model Factor Analysis Model Principal Components Analysis (PCA) Probabilistic PCA 3 JFA for Speaker Verification General Steps Hyperparameter estimation 2/37

3 Baseline System H0: Target Model + Input Speech Feature Extraction Pre-Processing Σ Λ H1: Background Model 3/37

4 Baseline System 1 Given a speech segment X, we test 2 hypotheses: H 0 : X is from claimed target speaker S (GMM) H 1 : X is not from speaker S, it is from the background (UBM). 2 Decision Rule Score = log p(x TargetModel) p(x UBM) H 0 > < H 1 Threshold Note: Score = log p(x TargetModel) log p(x UBM) 4/37

5 Baseline Experiment 1 Feature Extraction (MFCC) 2 Train the UBM model 3 Obtain Adapted GMM model for target speaker model 4 Test trials against 2 hypotheses 5 Scoring 6 DET(Detection Error Tradeoff) curve false accept VS. false reject Problem How to cancel the channel effect? 5/37

6 Outline 1 Speaker Verification Baseline System Session Variation 2 Joint Factor Analysis Hidden Markov Model Factor Analysis Model Principal Components Analysis (PCA) Probabilistic PCA 3 JFA for Speaker Verification General Steps Hyperparameter estimation 6/37

7 Session Variation Inter-Speaker Variation: Two utterances are from different speaker 7/37

8 Session Variation Inter-Speaker Variation: Two utterances are from different speaker Inter-Session Variation: Two utterances are from the same speaker Channel effects: Utterances are recorded from different channels Intra-Speaker Variation: Utterances varies with speaker s health or emotional state etc.. 8/37

9 Outline 1 Speaker Verification Baseline System Session Variation 2 Joint Factor Analysis Hidden Markov Model Factor Analysis Model Principal Components Analysis (PCA) Probabilistic PCA 3 JFA for Speaker Verification General Steps Hyperparameter estimation 9/37

10 Gaussian Mixture Model Review Recall GMM: M s p(s z s ) = N(s;µ s i,σs i )z s,i i=1 p(s) = M s p(z s )p(s z s ) = πi s N(s;µs i,σs i )z s,i z s M s p(z s ) = i=1 π z s,i i i=1 z s is a hidden variable indicate which Gaussian mixture component is active. Remark: {z s,i } i 1...Ms are independent 10/37

11 Hidden Markov Model Graphic Model z 1 z 2 z i 1 z i z i+1 s 1 s 2 s i 1 s i s i+1 P(z n z n 1,...,z 1 ) = P(z n z n 1 ) HMM is often used in speaker recognition. 11/37

12 Hidden Markov Model We have the following joint probability: ( N p(x,z θ) = p(z 1 π) n=2 where A is transition probability matrix and p(z n z n 1,A) = p(z 1 π) = K k=1 p(x n z n,φ) = ) N p(z n z n 1,A) K K m=1 A z n 1,jz n,k jk k=1 j=1 k, π k = 1 π z 1k k K p(x n φ k ) z nk k=1 p(x m z m,φ) 12/37

13 Outline 1 Speaker Verification Baseline System Session Variation 2 Joint Factor Analysis Hidden Markov Model Factor Analysis Model Principal Components Analysis (PCA) Probabilistic PCA 3 JFA for Speaker Verification General Steps Hyperparameter estimation 13/37

14 Supervector definition Given the GMM mean vector (m c ) F 1, c {1,...,C}, C is the total number of mixture components, F is the dimension of feature vector Supervector is: m CF 1 = (m T 1,...,mT c ) 14/37

15 Speaker and Channel Dependent Supervector M h M h CHANNEL SPACE S C SPEAKER SPACE M h is the speaker-and channel-dependent supervector 15/37

16 Notations S: speaker ID Speaker factors: components of y(s) Channel factors: components of x h (s) Speaker space: affine translating the range of vv by m Channel space: the range of uu Loading matrix for speaker factors and channel factors: v and u h = 1,,H(s): one index from set of recordings for a speaker s C: total number of mixture components for a fixed GMM structure F: dimension of the acoustic feature vectors R C : channel rank R S : speaker rank Σ(s): given speaker s and recording h, the covariance of the observation from GMM d: given speaker s, the covariance of the observation from GMM 16/37

17 Joint Factor Analysis Model JFA model M(s) = m+vy(s) +dz(s) M h (s) = M(s)+ux h (s) m C F : Given a HMM/GMM structure with C mixture components, we concatenate the mean vectors m 1,...,m C together then obtain m M(s): single speaker-dependent supervector M h (s): speaker-and-channel dependent u and v are speaker independent d is a block diagonal matrix z is normal 17/37

18 JFA model M h CHANNEL SPACE M(s) ux h (s) SPEAKER SPACE 18/37

19 Problem Purpose: estimate the hyperparameters Λ = (m,u,v,d,σ). The number of GMM component is large. C = 2048 The dimension of the feature vector is F = 39 C F = = m and Σ Problem Σ is very large and it is not full rank, how to estimate? 19/37

20 Outline 1 Speaker Verification Baseline System Session Variation 2 Joint Factor Analysis Hidden Markov Model Factor Analysis Model Principal Components Analysis (PCA) Probabilistic PCA 3 JFA for Speaker Verification General Steps Hyperparameter estimation 20/37

21 Principle Components Analysis Technique x 2 x n u 1 x n PCA technique is to find a principal subspace (magenta line), s.t. the variance of the projected points ( x n ) are maximized. x 1 21/37

22 Maximum Variance Formulation Find the principle components for principle subspace Given feature vectors as observations {(x n ) N 1 }, n = 1,...,N, we want to find the principle subspace with M basis, M < N 22/37

23 Maximum Variance Formulation Find the principle components for principle subspace Given feature vectors as observations {(x n ) N 1 }, n = 1,...,N, we want to find the principle subspace with M basis, M < N Sample mean x and sample covariance S: x = 1 N S = 1 N N n=1 x n N (x n x)(x n x) T n=1 Let the M basis for the principle subspace be u 1,...,u M and u T i u = 1, i [M] P N M = [u 1,...,u M ] N M 23/37

24 Maximum Variance Formulation Optimization problem find the 1 st principle component By Lagrange methode: maximize: take derivative maxu T 1 Su 1 u T 1 u 1 = 1 u T 1 Su 1 +λ 1 (1 u T 1 u 1 ) u T 1 Su 1 +λ 1 (1 u T 1 u 1) u 1 = (S+S T )u 1 +λ 1 ( 2u 1 ) = 2Su 1 2λ 1 u 1 = 0 = Su 1 = λ 1 u 1 Solution: λ 1 is the largest eigenvalue of S, the correspond u 1 is the first principle component 24/37

25 Maximum Variance Formulation Find M principle components: find M largest eigenvalues, and their correspond eigenvectors u i, i [M], such that: u T i u i = 1, i [M] u i u j, i j Eigen-decomposition S, find the M largest eigenvalues, decreasing sorted. Then, find the u 1,u 2,...,u M. Remark: [u T 1,u T 2,...,u T M ]T S[u 1,u 2,...,u M ] = P T SP 25/37

26 Outline 1 Speaker Verification Baseline System Session Variation 2 Joint Factor Analysis Hidden Markov Model Factor Analysis Model Principal Components Analysis (PCA) Probabilistic PCA 3 JFA for Speaker Verification General Steps Hyperparameter estimation 26/37

27 Probabilistic Model PCA model D >> M x D 1 = W D M z M 1 +µ+ǫ x is D-dimension observation vector z is M-dimension hidden variable We are given the following probability distributions: p(z) = N(z 0,I) p(x z) = N(x Wz+µ,σ 2 I) 27/37

28 Probabilistic PCA p(x) is Gaussian p(x) = p(x z)p(z)dz = N(x µ,c), C = WW T +σ 2 I mean and variance of p(x) E[x] = E[Wz+µ+ǫ] = µ cov[x] = E[(Wz+ǫ)(Wz+ǫ) T ] = E[Wzz T W T ]+E[ǫǫ T ] = WW T +σ 2 I 28/37

29 Probabilistic PCA zn σ 2 µ W xn The graph shows for each observation x n is associate with a value of latent variable z n x n can be obtained by marginalization over z n. Using EM algorithm to estimate the parameters in PCA model (Train PCA model) 29/37

30 Outline 1 Speaker Verification Baseline System Session Variation 2 Joint Factor Analysis Hidden Markov Model Factor Analysis Model Principal Components Analysis (PCA) Probabilistic PCA 3 JFA for Speaker Verification General Steps Hyperparameter estimation 30/37

31 5 steps for JFA Speaker Verification System 1 Train the UBM model 2 Train JFA/PCA model: estimate speaker independent hyperparameters Λ = (m,u,v,d,σ) from a large database in which each speaker is recorded in multiple sessions 3 Adapt Λ from one speaker population to another 4 Enrolling a speaker: estimate the speaker-independent hyperparameters Λ(s) = (m(s), u(s), v(s), d(s), Σ(s)) 5 Test: Given test utterance χ and hypothesized speaker, where X are observations. log P Λ(s)(X) P Λ (X) 31/37

32 Outline 1 Speaker Verification Baseline System Session Variation 2 Joint Factor Analysis Hidden Markov Model Factor Analysis Model Principal Components Analysis (PCA) Probabilistic PCA 3 JFA for Speaker Verification General Steps Hyperparameter estimation 32/37

33 Train the JFA/PCA model Estimate Λ Training set: several speakers with multiple recordings for each speaker Use EM algorithms to estimate Λ Maximum Likelihood Approach (slow) Divergence minimization approach (faster, well initialized) Both algorithm are to fit entire collection of speakers in the training data Total likelihood s P Λ(X(s)), s ranges over the speakers in the training set. It increases from 1 iteration to the next. 33/37

34 Adapt from one speaker population to another Adaptation is necessary since data set is limit. For a given speaker, there are at most 2 recordings. Keep channel space related hyperparameters fixed (u and Σ h ), re-estimate only the speaker space hyperparameters (m,v,d). Remark: Assume channel space related hyperparameters are speaker independent 34/37

35 Enroll a target speaker Estimate Λ(s) Recall JFA model: M(s) = m+vy(s) +dz(s) M h (s) = M(s)+ux h (s) Calculate the posterior distribution M(s) Adjusting the Λ(s) to fit this posterior Adopt minimum divergence approach 35/37

36 Likelihood Function Hyperparameters Λ = (m,u,v,d,σ). P Λ (X(s)) = P Λ (X(s) X)N(X 0,I)dX where: X(s) (observable) is the collections of labeled frames for recording h ( ) T X(s) = X 1 (s),...,x H(s) (s) X(s) (unobservable) is the vector of hidden variables ( ) T X(s) = x 1 (s),...,x H(s),y(s),z(s) N(X 0,I) is the standard Gaussian kernel N(X 0,I) = N(x 1 0,I)...N(x H(s) 0,I)N(y 0,I)N(z 0,I) 36/37

37 Likelihood ratio Given speech data X uttered by speaker t Test H 0 = {t = s} against H 1 = {t s} 1 T log P Λ s (X) P Λ (X) 37/37

i-vector and GMM-UBM Bie Fanhu CSLT, RIIT, THU

i-vector and GMM-UBM Bie Fanhu CSLT, RIIT, THU i-vector and GMM-UBM Bie Fanhu CSLT, RIIT, THU 2013-11-18 Framework 1. GMM-UBM Feature is extracted by frame. Number of features are unfixed. Gaussian Mixtures are used to fit all the features. The mixtures

More information

Session Variability Compensation in Automatic Speaker Recognition

Session Variability Compensation in Automatic Speaker Recognition Session Variability Compensation in Automatic Speaker Recognition Javier González Domínguez VII Jornadas MAVIR Universidad Autónoma de Madrid November 2012 Outline 1. The Inter-session Variability Problem

More information

Uncertainty Modeling without Subspace Methods for Text-Dependent Speaker Recognition

Uncertainty Modeling without Subspace Methods for Text-Dependent Speaker Recognition Uncertainty Modeling without Subspace Methods for Text-Dependent Speaker Recognition Patrick Kenny, Themos Stafylakis, Md. Jahangir Alam and Marcel Kockmann Odyssey Speaker and Language Recognition Workshop

More information

speaker recognition using gmm-ubm semester project presentation

speaker recognition using gmm-ubm semester project presentation speaker recognition using gmm-ubm semester project presentation OBJECTIVES OF THE PROJECT study the GMM-UBM speaker recognition system implement this system with matlab document the code and how it interfaces

More information

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University Heeyoul (Henry) Choi Dept. of Computer Science Texas A&M University hchoi@cs.tamu.edu Introduction Speaker Adaptation Eigenvoice Comparison with others MAP, MLLR, EMAP, RMP, CAT, RSW Experiments Future

More information

Support Vector Machines using GMM Supervectors for Speaker Verification

Support Vector Machines using GMM Supervectors for Speaker Verification 1 Support Vector Machines using GMM Supervectors for Speaker Verification W. M. Campbell, D. E. Sturim, D. A. Reynolds MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02420 Corresponding author e-mail:

More information

Around the Speaker De-Identification (Speaker diarization for de-identification ++) Itshak Lapidot Moez Ajili Jean-Francois Bonastre

Around the Speaker De-Identification (Speaker diarization for de-identification ++) Itshak Lapidot Moez Ajili Jean-Francois Bonastre Around the Speaker De-Identification (Speaker diarization for de-identification ++) Itshak Lapidot Moez Ajili Jean-Francois Bonastre The 2 Parts HDM based diarization System The homogeneity measure 2 Outline

More information

Front-End Factor Analysis For Speaker Verification

Front-End Factor Analysis For Speaker Verification IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING Front-End Factor Analysis For Speaker Verification Najim Dehak, Patrick Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouellet, Abstract This

More information

ECE 661: Homework 10 Fall 2014

ECE 661: Homework 10 Fall 2014 ECE 661: Homework 10 Fall 2014 This homework consists of the following two parts: (1) Face recognition with PCA and LDA for dimensionality reduction and the nearest-neighborhood rule for classification;

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

A Small Footprint i-vector Extractor

A Small Footprint i-vector Extractor A Small Footprint i-vector Extractor Patrick Kenny Odyssey Speaker and Language Recognition Workshop June 25, 2012 1 / 25 Patrick Kenny A Small Footprint i-vector Extractor Outline Introduction Review

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Expectation Maximization (EM) and Mixture Models Hamid R. Rabiee Jafar Muhammadi, Mohammad J. Hosseini Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2 Agenda Expectation-maximization

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 21: Speaker Adaptation Instructor: Preethi Jyothi Oct 23, 2017 Speaker variations Major cause of variability in speech is the differences between speakers Speaking

More information

Latent Variable View of EM. Sargur Srihari

Latent Variable View of EM. Sargur Srihari Latent Variable View of EM Sargur srihari@cedar.buffalo.edu 1 Examples of latent variables 1. Mixture Model Joint distribution is p(x,z) We don t have values for z 2. Hidden Markov Model A single time

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization Prof. Daniel Cremers 6. Mixture Models and Expectation-Maximization Motivation Often the introduction of latent (unobserved) random variables into a model can help to express complex (marginal) distributions

More information

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent voices Nonparametric likelihood

More information

Hidden Markov Models and Gaussian Mixture Models

Hidden Markov Models and Gaussian Mixture Models Hidden Markov Models and Gaussian Mixture Models Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 4&5 23&27 January 2014 ASR Lectures 4&5 Hidden Markov Models and Gaussian

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Independent Component Analysis and Unsupervised Learning

Independent Component Analysis and Unsupervised Learning Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien National Cheng Kung University TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent

More information

Speaker Verification Using Accumulative Vectors with Support Vector Machines

Speaker Verification Using Accumulative Vectors with Support Vector Machines Speaker Verification Using Accumulative Vectors with Support Vector Machines Manuel Aguado Martínez, Gabriel Hernández-Sierra, and José Ramón Calvo de Lara Advanced Technologies Application Center, Havana,

More information

Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features

Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features Heiga ZEN (Byung Ha CHUN) Nagoya Inst. of Tech., Japan Overview. Research backgrounds 2.

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Expectation Maximization (EM) and Mixture Models Hamid R. Rabiee Jafar Muhammadi, Mohammad J. Hosseini Spring 203 http://ce.sharif.edu/courses/9-92/2/ce725-/ Agenda Expectation-maximization

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Introduction to Graphical Models

Introduction to Graphical Models Introduction to Graphical Models The 15 th Winter School of Statistical Physics POSCO International Center & POSTECH, Pohang 2018. 1. 9 (Tue.) Yung-Kyun Noh GENERALIZATION FOR PREDICTION 2 Probabilistic

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Bishop PRML Ch. 9 Alireza Ghane c Ghane/Mori 4 6 8 4 6 8 4 6 8 4 6 8 5 5 5 5 5 5 4 6 8 4 4 6 8 4 5 5 5 5 5 5 µ, Σ) α f Learningscale is slightly Parameters is slightly larger larger

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University October 29, 2016 David Rosenberg (New York University) DS-GA 1003 October 29, 2016 1 / 42 K-Means Clustering K-Means Clustering David

More information

Unsupervised Learning

Unsupervised Learning 2018 EE448, Big Data Mining, Lecture 7 Unsupervised Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html ML Problem Setting First build and

More information

Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis

Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture

More information

Maximum variance formulation

Maximum variance formulation 12.1. Principal Component Analysis 561 Figure 12.2 Principal component analysis seeks a space of lower dimensionality, known as the principal subspace and denoted by the magenta line, such that the orthogonal

More information

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma COMS 4771 Probabilistic Reasoning via Graphical Models Nakul Verma Last time Dimensionality Reduction Linear vs non-linear Dimensionality Reduction Principal Component Analysis (PCA) Non-linear methods

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 13: Learning in Gaussian Graphical Models, Non-Gaussian Inference, Monte Carlo Methods Some figures

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Bayesian Analysis of Speaker Diarization with Eigenvoice Priors

Bayesian Analysis of Speaker Diarization with Eigenvoice Priors Bayesian Analysis of Speaker Diarization with Eigenvoice Priors Patrick Kenny Centre de recherche informatique de Montréal Patrick.Kenny@crim.ca A year in the lab can save you a day in the library. Panu

More information

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University PRINCIPAL COMPONENT ANALYSIS DIMENSIONALITY

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Hidden Markov Models in Language Processing

Hidden Markov Models in Language Processing Hidden Markov Models in Language Processing Dustin Hillard Lecture notes courtesy of Prof. Mari Ostendorf Outline Review of Markov models What is an HMM? Examples General idea of hidden variables: implications

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

PCA and admixture models

PCA and admixture models PCA and admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price PCA and admixture models 1 / 57 Announcements HW1

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Speaker recognition by means of Deep Belief Networks

Speaker recognition by means of Deep Belief Networks Speaker recognition by means of Deep Belief Networks Vasileios Vasilakakis, Sandro Cumani, Pietro Laface, Politecnico di Torino, Italy {first.lastname}@polito.it 1. Abstract Most state of the art speaker

More information

Note Set 5: Hidden Markov Models

Note Set 5: Hidden Markov Models Note Set 5: Hidden Markov Models Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2016 1 Hidden Markov Models (HMMs) 1.1 Introduction Consider observed data vectors x t that are d-dimensional

More information

Linear Dimensionality Reduction

Linear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Principal Component Analysis 3 Factor Analysis

More information

Speaker Representation and Verification Part II. by Vasileios Vasilakakis

Speaker Representation and Verification Part II. by Vasileios Vasilakakis Speaker Representation and Verification Part II by Vasileios Vasilakakis Outline -Approaches of Neural Networks in Speaker/Speech Recognition -Feed-Forward Neural Networks -Training with Back-propagation

More information

Lecture 7: Con3nuous Latent Variable Models

Lecture 7: Con3nuous Latent Variable Models CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 7: Con3nuous Latent Variable Models All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Hidden Markov Models and Gaussian Mixture Models

Hidden Markov Models and Gaussian Mixture Models Hidden Markov Models and Gaussian Mixture Models Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 4&5 25&29 January 2018 ASR Lectures 4&5 Hidden Markov Models and Gaussian

More information

Robust Speaker Identification

Robust Speaker Identification Robust Speaker Identification by Smarajit Bose Interdisciplinary Statistical Research Unit Indian Statistical Institute, Kolkata Joint work with Amita Pal and Ayanendranath Basu Overview } } } } } } }

More information

Weighted Finite-State Transducers in Computational Biology

Weighted Finite-State Transducers in Computational Biology Weighted Finite-State Transducers in Computational Biology Mehryar Mohri Courant Institute of Mathematical Sciences mohri@cims.nyu.edu Joint work with Corinna Cortes (Google Research). 1 This Tutorial

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

Course 495: Advanced Statistical Machine Learning/Pattern Recognition

Course 495: Advanced Statistical Machine Learning/Pattern Recognition Course 495: Advanced Statistical Machine Learning/Pattern Recognition Goal (Lecture): To present Probabilistic Principal Component Analysis (PPCA) using both Maximum Likelihood (ML) and Expectation Maximization

More information

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26 Clustering Professor Ameet Talwalkar Professor Ameet Talwalkar CS26 Machine Learning Algorithms March 8, 217 1 / 26 Outline 1 Administration 2 Review of last lecture 3 Clustering Professor Ameet Talwalkar

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

Hidden Markov Models

Hidden Markov Models CS769 Spring 2010 Advanced Natural Language Processing Hidden Markov Models Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu 1 Part-of-Speech Tagging The goal of Part-of-Speech (POS) tagging is to label each

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 8 Continuous Latent Variable

More information

The Expectation Maximization or EM algorithm

The Expectation Maximization or EM algorithm The Expectation Maximization or EM algorithm Carl Edward Rasmussen November 15th, 2017 Carl Edward Rasmussen The EM algorithm November 15th, 2017 1 / 11 Contents notation, objective the lower bound functional,

More information

Mixtures of Gaussians with Sparse Regression Matrices. Constantinos Boulis, Jeffrey Bilmes

Mixtures of Gaussians with Sparse Regression Matrices. Constantinos Boulis, Jeffrey Bilmes Mixtures of Gaussians with Sparse Regression Matrices Constantinos Boulis, Jeffrey Bilmes {boulis,bilmes}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UW Electrical Engineering

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Dimensionality Reduction. CS57300 Data Mining Fall Instructor: Bruno Ribeiro

Dimensionality Reduction. CS57300 Data Mining Fall Instructor: Bruno Ribeiro Dimensionality Reduction CS57300 Data Mining Fall 2016 Instructor: Bruno Ribeiro Goal } Visualize high dimensional data (and understand its Geometry) } Project the data into lower dimensional spaces }

More information

Manifold Learning for Signal and Visual Processing Lecture 9: Probabilistic PCA (PPCA), Factor Analysis, Mixtures of PPCA

Manifold Learning for Signal and Visual Processing Lecture 9: Probabilistic PCA (PPCA), Factor Analysis, Mixtures of PPCA Manifold Learning for Signal and Visual Processing Lecture 9: Probabilistic PCA (PPCA), Factor Analysis, Mixtures of PPCA Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inria.fr http://perception.inrialpes.fr/

More information

Lecture 6: April 19, 2002

Lecture 6: April 19, 2002 EE596 Pat. Recog. II: Introduction to Graphical Models Spring 2002 Lecturer: Jeff Bilmes Lecture 6: April 19, 2002 University of Washington Dept. of Electrical Engineering Scribe: Huaning Niu,Özgür Çetin

More information

Eigenvoice Speaker Adaptation via Composite Kernel PCA

Eigenvoice Speaker Adaptation via Composite Kernel PCA Eigenvoice Speaker Adaptation via Composite Kernel PCA James T. Kwok, Brian Mak and Simon Ho Department of Computer Science Hong Kong University of Science and Technology Clear Water Bay, Hong Kong [jamesk,mak,csho]@cs.ust.hk

More information

CSC411 Fall 2018 Homework 5

CSC411 Fall 2018 Homework 5 Homework 5 Deadline: Wednesday, Nov. 4, at :59pm. Submission: You need to submit two files:. Your solutions to Questions and 2 as a PDF file, hw5_writeup.pdf, through MarkUs. (If you submit answers to

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Week 2: Latent Variable Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

CSC411: Final Review. James Lucas & David Madras. December 3, 2018

CSC411: Final Review. James Lucas & David Madras. December 3, 2018 CSC411: Final Review James Lucas & David Madras December 3, 2018 Agenda 1. A brief overview 2. Some sample questions Basic ML Terminology The final exam will be on the entire course; however, it will be

More information

Advanced Introduction to Machine Learning

Advanced Introduction to Machine Learning 10-715 Advanced Introduction to Machine Learning Homework 3 Due Nov 12, 10.30 am Rules 1. Homework is due on the due date at 10.30 am. Please hand over your homework at the beginning of class. Please see

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Introduction to Machine Learning Midterm, Tues April 8

Introduction to Machine Learning Midterm, Tues April 8 Introduction to Machine Learning 10-701 Midterm, Tues April 8 [1 point] Name: Andrew ID: Instructions: You are allowed a (two-sided) sheet of notes. Exam ends at 2:45pm Take a deep breath and don t spend

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

Estimating Covariance Using Factorial Hidden Markov Models

Estimating Covariance Using Factorial Hidden Markov Models Estimating Covariance Using Factorial Hidden Markov Models João Sedoc 1,2 with: Jordan Rodu 3, Lyle Ungar 1, Dean Foster 1 and Jean Gallier 1 1 University of Pennsylvania Philadelphia, PA joao@cis.upenn.edu

More information

Mixtures of Gaussians. Sargur Srihari

Mixtures of Gaussians. Sargur Srihari Mixtures of Gaussians Sargur srihari@cedar.buffalo.edu 1 9. Mixture Models and EM 0. Mixture Models Overview 1. K-Means Clustering 2. Mixtures of Gaussians 3. An Alternative View of EM 4. The EM Algorithm

More information

Introduction to Probabilistic Graphical Models: Exercises

Introduction to Probabilistic Graphical Models: Exercises Introduction to Probabilistic Graphical Models: Exercises Cédric Archambeau Xerox Research Centre Europe cedric.archambeau@xrce.xerox.com Pascal Bootcamp Marseille, France, July 2010 Exercise 1: basics

More information

Latent Variable Models and Expectation Maximization

Latent Variable Models and Expectation Maximization Latent Variable Models and Expectation Maximization Oliver Schulte - CMPT 726 Bishop PRML Ch. 9 2 4 6 8 1 12 14 16 18 2 4 6 8 1 12 14 16 18 5 1 15 2 25 5 1 15 2 25 2 4 6 8 1 12 14 2 4 6 8 1 12 14 5 1 15

More information

Introduction PCA classic Generative models Beyond and summary. PCA, ICA and beyond

Introduction PCA classic Generative models Beyond and summary. PCA, ICA and beyond PCA, ICA and beyond Summer School on Manifold Learning in Image and Signal Analysis, August 17-21, 2009, Hven Technical University of Denmark (DTU) & University of Copenhagen (KU) August 18, 2009 Motivation

More information

Hidden Markov Bayesian Principal Component Analysis

Hidden Markov Bayesian Principal Component Analysis Hidden Markov Bayesian Principal Component Analysis M. Alvarez malvarez@utp.edu.co Universidad Tecnológica de Pereira Pereira, Colombia R. Henao rhenao@utp.edu.co Universidad Tecnológica de Pereira Pereira,

More information

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II)

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II) CISC 889 Bioinformatics (Spring 24) Hidden Markov Models (II) a. Likelihood: forward algorithm b. Decoding: Viterbi algorithm c. Model building: Baum-Welch algorithm Viterbi training Hidden Markov models

More information

Machine Learning for Signal Processing Bayes Classification and Regression

Machine Learning for Signal Processing Bayes Classification and Regression Machine Learning for Signal Processing Bayes Classification and Regression Instructor: Bhiksha Raj 11755/18797 1 Recap: KNN A very effective and simple way of performing classification Simple model: For

More information

Joint Optimization of Segmentation and Appearance Models

Joint Optimization of Segmentation and Appearance Models Joint Optimization of Segmentation and Appearance Models David Mandle, Sameep Tandon April 29, 2013 David Mandle, Sameep Tandon (Stanford) April 29, 2013 1 / 19 Overview 1 Recap: Image Segmentation 2 Optimization

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Experiments with a Gaussian Merging-Splitting Algorithm for HMM Training for Speech Recognition

Experiments with a Gaussian Merging-Splitting Algorithm for HMM Training for Speech Recognition Experiments with a Gaussian Merging-Splitting Algorithm for HMM Training for Speech Recognition ABSTRACT It is well known that the expectation-maximization (EM) algorithm, commonly used to estimate hidden

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

An Integration of Random Subspace Sampling and Fishervoice for Speaker Verification

An Integration of Random Subspace Sampling and Fishervoice for Speaker Verification Odyssey 2014: The Speaker and Language Recognition Workshop 16-19 June 2014, Joensuu, Finland An Integration of Random Subspace Sampling and Fishervoice for Speaker Verification Jinghua Zhong 1, Weiwu

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

Linear Dynamical Systems (Kalman filter)

Linear Dynamical Systems (Kalman filter) Linear Dynamical Systems (Kalman filter) (a) Overview of HMMs (b) From HMMs to Linear Dynamical Systems (LDS) 1 Markov Chains with Discrete Random Variables x 1 x 2 x 3 x T Let s assume we have discrete

More information

Principal Component Analysis and Linear Discriminant Analysis

Principal Component Analysis and Linear Discriminant Analysis Principal Component Analysis and Linear Discriminant Analysis Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/29

More information

Latent Variable Models and Expectation Maximization

Latent Variable Models and Expectation Maximization Latent Variable Models and Expectation Maximization Oliver Schulte - CMPT 726 Bishop PRML Ch. 9 2 4 6 8 1 12 14 16 18 2 4 6 8 1 12 14 16 18 5 1 15 2 25 5 1 15 2 25 2 4 6 8 1 12 14 2 4 6 8 1 12 14 5 1 15

More information

University of Cambridge. MPhil in Computer Speech Text & Internet Technology. Module: Speech Processing II. Lecture 2: Hidden Markov Models I

University of Cambridge. MPhil in Computer Speech Text & Internet Technology. Module: Speech Processing II. Lecture 2: Hidden Markov Models I University of Cambridge MPhil in Computer Speech Text & Internet Technology Module: Speech Processing II Lecture 2: Hidden Markov Models I o o o o o 1 2 3 4 T 1 b 2 () a 12 2 a 3 a 4 5 34 a 23 b () b ()

More information

Latent Variable Models and EM Algorithm

Latent Variable Models and EM Algorithm SC4/SM8 Advanced Topics in Statistical Machine Learning Latent Variable Models and EM Algorithm Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/atsml/

More information

Fast speaker diarization based on binary keys. Xavier Anguera and Jean François Bonastre

Fast speaker diarization based on binary keys. Xavier Anguera and Jean François Bonastre Fast speaker diarization based on binary keys Xavier Anguera and Jean François Bonastre Outline Introduction Speaker diarization Binary speaker modeling Binary speaker diarization system Experiments Conclusions

More information

Mixtures of Gaussians with Sparse Structure

Mixtures of Gaussians with Sparse Structure Mixtures of Gaussians with Sparse Structure Costas Boulis 1 Abstract When fitting a mixture of Gaussians to training data there are usually two choices for the type of Gaussians used. Either diagonal or

More information

Image Analysis & Retrieval. Lec 14. Eigenface and Fisherface

Image Analysis & Retrieval. Lec 14. Eigenface and Fisherface Image Analysis & Retrieval Lec 14 Eigenface and Fisherface Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346. http://l.web.umkc.edu/lizhu Z. Li, Image Analysis & Retrv, Spring

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Machine Learning CSE546 Carlos Guestrin University of Washington November 13, 2014 1 E.M.: The General Case E.M. widely used beyond mixtures of Gaussians The recipe is the same

More information

Gaussian Mixture Models, Expectation Maximization

Gaussian Mixture Models, Expectation Maximization Gaussian Mixture Models, Expectation Maximization Instructor: Jessica Wu Harvey Mudd College The instructor gratefully acknowledges Andrew Ng (Stanford), Andrew Moore (CMU), Eric Eaton (UPenn), David Kauchak

More information