Probabilistic Latent Semantic Analysis

Size: px
Start display at page:

Download "Probabilistic Latent Semantic Analysis"

Transcription

1 Probabilistic Latent Semantic Analysis Yuriy Sverchkov Intelligent Systems Program University of Pittsburgh October 6, 2011

2 Outline Latent Semantic Analysis (LSA) A quick review Probabilistic LSA (plsa) The plsa model Learning EM and tempered EM Applications plsi and phits Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, / 16

3 Outline Latent Semantic Analysis (LSA) A quick review Probabilistic LSA (plsa) The plsa model Learning EM and tempered EM Applications plsi and phits Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, / 16

4 LSA: A quick review LSA uses PCA to find a lower-dimensional topic space. terms documents x 1,1 x 1,n..... x m,1 x m,n = terms topics w 1,1 w 1,r..... w m,1 w m,r topic weights topics documents v 1,1 v 1,n..... v r,1 v r,n TERMS TOPICS DOCUMENTS Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, / 16

5 PCA as reconstruction error minimization For each data vector x n = (x n1,..., x nd ), and for M < d, find U = (u 1,..., u M ) that minimizes E M N x n ˆx n 2 n=1 where ˆx n = x + M y ni u i and x 1 N i=1 N x n giving: n=1 d N d d E M = [u T i (x n ˆx)] 2 = u T i Σu i = i=m+1 n=1 i=m+1 i=m+1 λ i Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, / 16

6 Outline Latent Semantic Analysis (LSA) A quick review Probabilistic LSA (plsa) The plsa model Learning EM and tempered EM Applications plsi and phits Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, / 16

7 Probabilistic LSA The same document topic word idea in a probabilistic framework. Asymmetric generative aspect model: 1. Select a document d with probability P(d). 2. Select a latent class z with probability P(z d). 3. Generate a word w with probability P(w z). A mixture model Each document corresponds to a mixture of topics. Each topic corresponds to a mixture of words. d z w Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, / 16

8 Parametrization d The index of a document in the dataset. P(d) The frequency of the document in the corpus (uniform in practice). z The index of a topic. P(z d) Latent parameters that define the distribution of topics for a particular document. w The index of a word in the dictionary. P(w z) Latent parameters that define the distribution of words for a particular topics. d z w Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, / 16

9 Independence Remember independence equivalence classes in Bayesian networks? A C B A B C A C A B C A B C A B C Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, / 16

10 Symmetric aspect model Parametrization P(d, w) = z Z P(z)P(d z)p(w z) z Inference is BN inference. Learning is the same as for any BN with latent variables: EM. d w Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, / 16

11 plsa vs LSA plsa Assumes conditional independence given a lower-dimensional variable. Maximizes likelihood function. Parameters are multinomial distributions. EM is slow. EM converges to a local optimum. LSA Assumes linear transformation to a low-dimensional space. Minimizes Gaussian error. Parameters have no obvious interpretation. Linear operations are fast. SVD is exact (up to numerical precision). Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, / 16

12 Outline Latent Semantic Analysis (LSA) A quick review Probabilistic LSA (plsa) The plsa model Learning EM and tempered EM Applications plsi and phits Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, / 16

13 Learning: standard EM E-step: M-step: P(z d, w) = P(z)P(d z)p(w z) z Z P(z )P(d z )P(w z ) P(w z) d D n(d, w)p(z d, w) P(d z) n(d, w)p(z d, w) w W P(z) n(d, w)p(z d, w) d D w W Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, / 16

14 Learning: tempered EM (TEM) New E-Step: P(z d, w) = P(z) [P(d z)p(w z)] β z Z P(z ) [P(d z )P(w z )] β Same as the standard E-Step when β = 1. Same as a posterior given uniform data when β = 0. Algorithm: 1. Hold out some data. 2. Set β Perform EM and decrease β at some rate (β ηβ with η < 1). 4. Stop if performance on held-out data doesn t increase, otherwise repeat previous step. 5. Perform some final iterations on full data. Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, / 16

15 Outline Latent Semantic Analysis (LSA) A quick review Probabilistic LSA (plsa) The plsa model Learning EM and tempered EM Applications plsi and phits Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, / 16

16 Applications to information retrieval and link analysis Information Retrieval: plsi Index documents by their topic (z) distributions. Queries are computed by scoring each document with P(w d) (for words in the query). Can fold-in a new query as a hypothetical document P(z q) by updating that probability with EM. Link analysis: phits d are documents, c are citations (correspond to w in plsa). Want to group these into communities (z). Authoritativeness measures: P(c z) authority of c within the community z. P(z c) topic-specific authority. P(z c)p(c z) topic characteristic for community. Yuriy Sverchkov (ISP) Probabilistic Latent Semantic Analysis October 6, / 16

PROBABILISTIC LATENT SEMANTIC ANALYSIS

PROBABILISTIC LATENT SEMANTIC ANALYSIS PROBABILISTIC LATENT SEMANTIC ANALYSIS Lingjia Deng Revised from slides of Shuguang Wang Outline Review of previous notes PCA/SVD HITS Latent Semantic Analysis Probabilistic Latent Semantic Analysis Applications

More information

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang Matrix Factorization & Latent Semantic Analysis Review Yize Li, Lanbo Zhang Overview SVD in Latent Semantic Indexing Non-negative Matrix Factorization Probabilistic Latent Semantic Indexing Vector Space

More information

Document and Topic Models: plsa and LDA

Document and Topic Models: plsa and LDA Document and Topic Models: plsa and LDA Andrew Levandoski and Jonathan Lobo CS 3750 Advanced Topics in Machine Learning 2 October 2018 Outline Topic Models plsa LSA Model Fitting via EM phits: link analysis

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Probabilistic Latent Semantic Analysis Denis Helic KTI, TU Graz Jan 16, 2014 Denis Helic (KTI, TU Graz) KDDM1 Jan 16, 2014 1 / 47 Big picture: KDDM

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING Text Data: Topic Model Instructor: Yizhou Sun yzsun@cs.ucla.edu December 4, 2017 Methods to be Learnt Vector Data Set Data Sequence Data Text Data Classification Clustering

More information

Notes on Latent Semantic Analysis

Notes on Latent Semantic Analysis Notes on Latent Semantic Analysis Costas Boulis 1 Introduction One of the most fundamental problems of information retrieval (IR) is to find all documents (and nothing but those) that are semantically

More information

Modeling Environment

Modeling Environment Topic Model Modeling Environment What does it mean to understand/ your environment? Ability to predict Two approaches to ing environment of words and text Latent Semantic Analysis (LSA) Topic Model LSA

More information

Information retrieval LSI, plsi and LDA. Jian-Yun Nie

Information retrieval LSI, plsi and LDA. Jian-Yun Nie Information retrieval LSI, plsi and LDA Jian-Yun Nie Basics: Eigenvector, Eigenvalue Ref: http://en.wikipedia.org/wiki/eigenvector For a square matrix A: Ax = λx where x is a vector (eigenvector), and

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 6 Non-Negative Matrix Factorization Rainer Gemulla, Pauli Miettinen May 23, 23 Non-Negative Datasets Some datasets are intrinsically non-negative: Counters (e.g., no. occurrences

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 11 CRFs, Exponential Family CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due today Project milestones due next Monday (Nov 9) About half the work should

More information

Dirichlet Enhanced Latent Semantic Analysis

Dirichlet Enhanced Latent Semantic Analysis Dirichlet Enhanced Latent Semantic Analysis Kai Yu Siemens Corporate Technology D-81730 Munich, Germany Kai.Yu@siemens.com Shipeng Yu Institute for Computer Science University of Munich D-80538 Munich,

More information

Pattern Recognition and Machine Learning. Bishop Chapter 9: Mixture Models and EM

Pattern Recognition and Machine Learning. Bishop Chapter 9: Mixture Models and EM Pattern Recognition and Machine Learning Chapter 9: Mixture Models and EM Thomas Mensink Jakob Verbeek October 11, 27 Le Menu 9.1 K-means clustering Getting the idea with a simple example 9.2 Mixtures

More information

Expectation maximization tutorial

Expectation maximization tutorial Expectation maximization tutorial Octavian Ganea November 18, 2016 1/1 Today Expectation - maximization algorithm Topic modelling 2/1 ML & MAP Observed data: X = {x 1, x 2... x N } 3/1 ML & MAP Observed

More information

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin)

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Information Retrieval and Topic Models Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Sec. 1.1 Unstructured data in 1620 Which plays of Shakespeare

More information

Note for plsa and LDA-Version 1.1

Note for plsa and LDA-Version 1.1 Note for plsa and LDA-Version 1.1 Wayne Xin Zhao March 2, 2011 1 Disclaimer In this part of PLSA, I refer to [4, 5, 1]. In LDA part, I refer to [3, 2]. Due to the limit of my English ability, in some place,

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 8 Continuous Latent Variable

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Clustering: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu October 19, 2014 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network

More information

CS 572: Information Retrieval

CS 572: Information Retrieval CS 572: Information Retrieval Lecture 11: Topic Models Acknowledgments: Some slides were adapted from Chris Manning, and from Thomas Hoffman 1 Plan for next few weeks Project 1: done (submit by Friday).

More information

Gibbs Sampling. Héctor Corrada Bravo. University of Maryland, College Park, USA CMSC 644:

Gibbs Sampling. Héctor Corrada Bravo. University of Maryland, College Park, USA CMSC 644: Gibbs Sampling Héctor Corrada Bravo University of Maryland, College Park, USA CMSC 644: 2019 03 27 Latent semantic analysis Documents as mixtures of topics (Hoffman 1999) 1 / 60 Latent semantic analysis

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Machine Learning CSE546 Carlos Guestrin University of Washington November 13, 2014 1 E.M.: The General Case E.M. widely used beyond mixtures of Gaussians The recipe is the same

More information

Topic Models. Brandon Malone. February 20, Latent Dirichlet Allocation Success Stories Wrap-up

Topic Models. Brandon Malone. February 20, Latent Dirichlet Allocation Success Stories Wrap-up Much of this material is adapted from Blei 2003. Many of the images were taken from the Internet February 20, 2014 Suppose we have a large number of books. Each is about several unknown topics. How can

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

Latent Dirichlet Allocation Introduction/Overview

Latent Dirichlet Allocation Introduction/Overview Latent Dirichlet Allocation Introduction/Overview David Meyer 03.10.2016 David Meyer http://www.1-4-5.net/~dmm/ml/lda_intro.pdf 03.10.2016 Agenda What is Topic Modeling? Parametric vs. Non-Parametric Models

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm 1/29 EM & Latent Variable Models Gaussian Mixture Models EM Theory The Expectation-Maximization Algorithm Mihaela van der Schaar Department of Engineering Science University of Oxford MLE for Latent Variable

More information

Lecture 8: Graphical models for Text

Lecture 8: Graphical models for Text Lecture 8: Graphical models for Text 4F13: Machine Learning Joaquin Quiñonero-Candela and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/

More information

Topic Models. Advanced Machine Learning for NLP Jordan Boyd-Graber OVERVIEW. Advanced Machine Learning for NLP Boyd-Graber Topic Models 1 of 1

Topic Models. Advanced Machine Learning for NLP Jordan Boyd-Graber OVERVIEW. Advanced Machine Learning for NLP Boyd-Graber Topic Models 1 of 1 Topic Models Advanced Machine Learning for NLP Jordan Boyd-Graber OVERVIEW Advanced Machine Learning for NLP Boyd-Graber Topic Models 1 of 1 Low-Dimensional Space for Documents Last time: embedding space

More information

Latent Dirichlet Allocation

Latent Dirichlet Allocation Outlines Advanced Artificial Intelligence October 1, 2009 Outlines Part I: Theoretical Background Part II: Application and Results 1 Motive Previous Research Exchangeability 2 Notation and Terminology

More information

An Empirical Study on Dimensionality Optimization in Text Mining for Linguistic Knowledge Acquisition

An Empirical Study on Dimensionality Optimization in Text Mining for Linguistic Knowledge Acquisition An Empirical Study on Dimensionality Optimization in Text Mining for Linguistic Knowledge Acquisition Yu-Seop Kim 1, Jeong-Ho Chang 2, and Byoung-Tak Zhang 2 1 Division of Information and Telecommunication

More information

Replicated Softmax: an Undirected Topic Model. Stephen Turner

Replicated Softmax: an Undirected Topic Model. Stephen Turner Replicated Softmax: an Undirected Topic Model Stephen Turner 1. Introduction 2. Replicated Softmax: A Generative Model of Word Counts 3. Evaluating Replicated Softmax as a Generative Model 4. Experimental

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE Data Provided: None DEPARTMENT OF COMPUTER SCIENCE Autumn Semester 203 204 MACHINE LEARNING AND ADAPTIVE INTELLIGENCE 2 hours Answer THREE of the four questions. All questions carry equal weight. Figures

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 3 Stochastic Gradients, Bayesian Inference, and Occam s Razor https://people.orie.cornell.edu/andrew/orie6741 Cornell University August

More information

Modeling User Rating Profiles For Collaborative Filtering

Modeling User Rating Profiles For Collaborative Filtering Modeling User Rating Profiles For Collaborative Filtering Benjamin Marlin Department of Computer Science University of Toronto Toronto, ON, M5S 3H5, CANADA marlin@cs.toronto.edu Abstract In this paper

More information

Chapter 8 PROBABILISTIC MODELS FOR TEXT MINING. Yizhou Sun Department of Computer Science University of Illinois at Urbana-Champaign

Chapter 8 PROBABILISTIC MODELS FOR TEXT MINING. Yizhou Sun Department of Computer Science University of Illinois at Urbana-Champaign Chapter 8 PROBABILISTIC MODELS FOR TEXT MINING Yizhou Sun Department of Computer Science University of Illinois at Urbana-Champaign sun22@illinois.edu Hongbo Deng Department of Computer Science University

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Advanced Introduction to Machine Learning

Advanced Introduction to Machine Learning 10-715 Advanced Introduction to Machine Learning Homework 3 Due Nov 12, 10.30 am Rules 1. Homework is due on the due date at 10.30 am. Please hand over your homework at the beginning of class. Please see

More information

Inverse regression approach to (robust) non-linear high-to-low dimensional mapping

Inverse regression approach to (robust) non-linear high-to-low dimensional mapping Inverse regression approach to (robust) non-linear high-to-low dimensional mapping Emeline Perthame Joint work with Florence Forbes INRIA, team MISTIS, Grenoble LMNO, Caen October 27, 2016 1 / 25 Outlines

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Dan Oneaţă 1 Introduction Probabilistic Latent Semantic Analysis (plsa) is a technique from the category of topic models. Its main goal is to model cooccurrence information

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Study Notes on the Latent Dirichlet Allocation

Study Notes on the Latent Dirichlet Allocation Study Notes on the Latent Dirichlet Allocation Xugang Ye 1. Model Framework A word is an element of dictionary {1,,}. A document is represented by a sequence of words: =(,, ), {1,,}. A corpus is a collection

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017 CPSC 340: Machine Learning and Data Mining More PCA Fall 2017 Admin Assignment 4: Due Friday of next week. No class Monday due to holiday. There will be tutorials next week on MAP/PCA (except Monday).

More information

Language Information Processing, Advanced. Topic Models

Language Information Processing, Advanced. Topic Models Language Information Processing, Advanced Topic Models mcuturi@i.kyoto-u.ac.jp Kyoto University - LIP, Adv. - 2011 1 Today s talk Continue exploring the representation of text as histogram of words. Objective:

More information

Lecture 8: Clustering & Mixture Models

Lecture 8: Clustering & Mixture Models Lecture 8: Clustering & Mixture Models C4B Machine Learning Hilary 2011 A. Zisserman K-means algorithm GMM and the EM algorithm plsa clustering K-means algorithm K-means algorithm Partition data into K

More information

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS RETRIEVAL MODELS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Boolean model Vector space model Probabilistic

More information

CS Lecture 18. Topic Models and LDA

CS Lecture 18. Topic Models and LDA CS 6347 Lecture 18 Topic Models and LDA (some slides by David Blei) Generative vs. Discriminative Models Recall that, in Bayesian networks, there could be many different, but equivalent models of the same

More information

ECE 5984: Introduction to Machine Learning

ECE 5984: Introduction to Machine Learning ECE 5984: Introduction to Machine Learning Topics: (Finish) Expectation Maximization Principal Component Analysis (PCA) Readings: Barber 15.1-15.4 Dhruv Batra Virginia Tech Administrativia Poster Presentation:

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Bayesian learning of sparse factor loadings

Bayesian learning of sparse factor loadings Magnus Rattray School of Computer Science, University of Manchester Bayesian Research Kitchen, Ambleside, September 6th 2008 Talk Outline Brief overview of popular sparsity priors Example application:

More information

Gaussian Mixture Models, Expectation Maximization

Gaussian Mixture Models, Expectation Maximization Gaussian Mixture Models, Expectation Maximization Instructor: Jessica Wu Harvey Mudd College The instructor gratefully acknowledges Andrew Ng (Stanford), Andrew Moore (CMU), Eric Eaton (UPenn), David Kauchak

More information

Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis

Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture

More information

Latent variable models for discrete data

Latent variable models for discrete data Latent variable models for discrete data Jianfei Chen Department of Computer Science and Technology Tsinghua University, Beijing 100084 chris.jianfei.chen@gmail.com Janurary 13, 2014 Murphy, Kevin P. Machine

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University PRINCIPAL COMPONENT ANALYSIS DIMENSIONALITY

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

EM (cont.) November 26 th, Carlos Guestrin 1

EM (cont.) November 26 th, Carlos Guestrin 1 EM (cont.) Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University November 26 th, 2007 1 Silly Example Let events be grades in a class w 1 = Gets an A P(A) = ½ w 2 = Gets a B P(B) = µ

More information

Dimension Reduction (PCA, ICA, CCA, FLD,

Dimension Reduction (PCA, ICA, CCA, FLD, Dimension Reduction (PCA, ICA, CCA, FLD, Topic Models) Yi Zhang 10-701, Machine Learning, Spring 2011 April 6 th, 2011 Parts of the PCA slides are from previous 10-701 lectures 1 Outline Dimension reduction

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

Linear Factor Models. Sargur N. Srihari

Linear Factor Models. Sargur N. Srihari Linear Factor Models Sargur N. srihari@cedar.buffalo.edu 1 Topics in Linear Factor Models Linear factor model definition 1. Probabilistic PCA and Factor Analysis 2. Independent Component Analysis (ICA)

More information

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) Latent Dirichlet Allocation (LDA) D. Blei, A. Ng, and M. Jordan. Journal of Machine Learning Research, 3:993-1022, January 2003. Following slides borrowed ant then heavily modified from: Jonathan Huang

More information

EM-algorithm for motif discovery

EM-algorithm for motif discovery EM-algorithm for motif discovery Xiaohui Xie University of California, Irvine EM-algorithm for motif discovery p.1/19 Position weight matrix Position weight matrix representation of a motif with width

More information

Text Mining for Economics and Finance Unsupervised Learning

Text Mining for Economics and Finance Unsupervised Learning Text Mining for Economics and Finance Unsupervised Learning Stephen Hansen Text Mining Lecture 3 1 / 46 Introduction There are two main divisions in machine learning: 1. Supervised learning seeks to build

More information

STATS 306B: Unsupervised Learning Spring Lecture 3 April 7th

STATS 306B: Unsupervised Learning Spring Lecture 3 April 7th STATS 306B: Unsupervised Learning Spring 2014 Lecture 3 April 7th Lecturer: Lester Mackey Scribe: Jordan Bryan, Dangna Li 3.1 Recap: Gaussian Mixture Modeling In the last lecture, we discussed the Gaussian

More information

Latent Variable Models and Expectation Maximization

Latent Variable Models and Expectation Maximization Latent Variable Models and Expectation Maximization Oliver Schulte - CMPT 726 Bishop PRML Ch. 9 2 4 6 8 1 12 14 16 18 2 4 6 8 1 12 14 16 18 5 1 15 2 25 5 1 15 2 25 2 4 6 8 1 12 14 2 4 6 8 1 12 14 5 1 15

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2018

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2018 CPSC 340: Machine Learning and Data Mining Sparse Matrix Factorization Fall 2018 Last Time: PCA with Orthogonal/Sequential Basis When k = 1, PCA has a scaling problem. When k > 1, have scaling, rotation,

More information

cross-language retrieval (by concatenate features of different language in X and find co-shared U). TOEFL/GRE synonym in the same way.

cross-language retrieval (by concatenate features of different language in X and find co-shared U). TOEFL/GRE synonym in the same way. 10-708: Probabilistic Graphical Models, Spring 2015 22 : Optimization and GMs (aka. LDA, Sparse Coding, Matrix Factorization, and All That ) Lecturer: Yaoliang Yu Scribes: Yu-Xiang Wang, Su Zhou 1 Introduction

More information

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model (& discussion on the GPLVM tech. report by Prof. N. Lawrence, 06) Andreas Damianou Department of Neuro- and Computer Science,

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 Discriminative vs Generative Models Discriminative: Just learn a decision boundary between your

More information

Discriminative Topic Modeling based on Manifold Learning

Discriminative Topic Modeling based on Manifold Learning Discriminative Topic Modeling based on Manifold Learning Seungil Huh Carnegie Mellon University 00 Forbes Ave. Pittsburgh, PA seungilh@cs.cmu.edu Stephen E. Fienberg Carnegie Mellon University 00 Forbes

More information

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech Probabilistic Graphical Models and Bayesian Networks Artificial Intelligence Bert Huang Virginia Tech Concept Map for Segment Probabilistic Graphical Models Probabilistic Time Series Models Particle Filters

More information

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning Clustering K-means Machine Learning CSE546 Sham Kakade University of Washington November 15, 2016 1 Announcements: Project Milestones due date passed. HW3 due on Monday It ll be collaborative HW2 grades

More information

Machine Learning - MT & 14. PCA and MDS

Machine Learning - MT & 14. PCA and MDS Machine Learning - MT 2016 13 & 14. PCA and MDS Varun Kanade University of Oxford November 21 & 23, 2016 Announcements Sheet 4 due this Friday by noon Practical 3 this week (continue next week if necessary)

More information

CS47300: Web Information Search and Management

CS47300: Web Information Search and Management CS47300: Web Information Search and Management Prof. Chris Clifton 6 September 2017 Material adapted from course created by Dr. Luo Si, now leading Alibaba research group 1 Vector Space Model Disadvantages:

More information

Non-negative Matrix Factorization: Algorithms, Extensions and Applications

Non-negative Matrix Factorization: Algorithms, Extensions and Applications Non-negative Matrix Factorization: Algorithms, Extensions and Applications Emmanouil Benetos www.soi.city.ac.uk/ sbbj660/ March 2013 Emmanouil Benetos Non-negative Matrix Factorization March 2013 1 / 25

More information

topic modeling hanna m. wallach

topic modeling hanna m. wallach university of massachusetts amherst wallach@cs.umass.edu Ramona Blei-Gantz Helen Moss (Dave's Grandma) The Next 30 Minutes Motivations and a brief history: Latent semantic analysis Probabilistic latent

More information

A Unified Posterior Regularized Topic Model with Maximum Margin for Learning-to-Rank

A Unified Posterior Regularized Topic Model with Maximum Margin for Learning-to-Rank A Unified Posterior Regularized Topic Model with Maximum Margin for Learning-to-Rank Shoaib Jameel Shoaib Jameel 1, Wai Lam 2, Steven Schockaert 1, and Lidong Bing 3 1 School of Computer Science and Informatics,

More information

Maximum Likelihood (ML), Expectation Maximization (EM) Pieter Abbeel UC Berkeley EECS

Maximum Likelihood (ML), Expectation Maximization (EM) Pieter Abbeel UC Berkeley EECS Maximum Likelihood (ML), Expectation Maximization (EM) Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Outline Maximum likelihood (ML) Priors, and

More information

CSC 411: Lecture 04: Logistic Regression

CSC 411: Lecture 04: Logistic Regression CSC 411: Lecture 04: Logistic Regression Raquel Urtasun & Rich Zemel University of Toronto Sep 23, 2015 Urtasun & Zemel (UofT) CSC 411: 04-Prob Classif Sep 23, 2015 1 / 16 Today Key Concepts: Logistic

More information

EM & Variational Bayes

EM & Variational Bayes EM & Variational Bayes Hanxiao Liu September 9, 2014 1 / 19 Outline 1. EM Algorithm 1.1 Introduction 1.2 Example: Mixture of vmfs 2. Variational Bayes 2.1 Introduction 2.2 Example: Bayesian Mixture of

More information

Lecture 19, November 19, 2012

Lecture 19, November 19, 2012 Machine Learning 0-70/5-78, Fall 0 Latent Space Analysis SVD and Topic Models Eric Xing Lecture 9, November 9, 0 Reading: Tutorial on Topic Model @ ACL Eric Xing @ CMU, 006-0 We are inundated with data

More information

Latent Dirichlet Alloca/on

Latent Dirichlet Alloca/on Latent Dirichlet Alloca/on Blei, Ng and Jordan ( 2002 ) Presented by Deepak Santhanam What is Latent Dirichlet Alloca/on? Genera/ve Model for collec/ons of discrete data Data generated by parameters which

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Dimensionality Reduction and Principle Components Analysis

Dimensionality Reduction and Principle Components Analysis Dimensionality Reduction and Principle Components Analysis 1 Outline What is dimensionality reduction? Principle Components Analysis (PCA) Example (Bishop, ch 12) PCA vs linear regression PCA as a mixture

More information

Note on Algorithm Differences Between Nonnegative Matrix Factorization And Probabilistic Latent Semantic Indexing

Note on Algorithm Differences Between Nonnegative Matrix Factorization And Probabilistic Latent Semantic Indexing Note on Algorithm Differences Between Nonnegative Matrix Factorization And Probabilistic Latent Semantic Indexing 1 Zhong-Yuan Zhang, 2 Chris Ding, 3 Jie Tang *1, Corresponding Author School of Statistics,

More information

Latent Variable Models and Expectation Maximization

Latent Variable Models and Expectation Maximization Latent Variable Models and Expectation Maximization Oliver Schulte - CMPT 726 Bishop PRML Ch. 9 2 4 6 8 1 12 14 16 18 2 4 6 8 1 12 14 16 18 5 1 15 2 25 5 1 15 2 25 2 4 6 8 1 12 14 2 4 6 8 1 12 14 5 1 15

More information

Topic Models. Material adapted from David Mimno University of Maryland INTRODUCTION. Material adapted from David Mimno UMD Topic Models 1 / 51

Topic Models. Material adapted from David Mimno University of Maryland INTRODUCTION. Material adapted from David Mimno UMD Topic Models 1 / 51 Topic Models Material adapted from David Mimno University of Maryland INTRODUCTION Material adapted from David Mimno UMD Topic Models 1 / 51 Why topic models? Suppose you have a huge number of documents

More information

Probabilistic Graphical Models for Image Analysis - Lecture 4

Probabilistic Graphical Models for Image Analysis - Lecture 4 Probabilistic Graphical Models for Image Analysis - Lecture 4 Stefan Bauer 12 October 2018 Max Planck ETH Center for Learning Systems Overview 1. Repetition 2. α-divergence 3. Variational Inference 4.

More information

Sparse Stochastic Inference for Latent Dirichlet Allocation

Sparse Stochastic Inference for Latent Dirichlet Allocation Sparse Stochastic Inference for Latent Dirichlet Allocation David Mimno 1, Matthew D. Hoffman 2, David M. Blei 1 1 Dept. of Computer Science, Princeton U. 2 Dept. of Statistics, Columbia U. Presentation

More information

Gentle Introduction to Infinite Gaussian Mixture Modeling

Gentle Introduction to Infinite Gaussian Mixture Modeling Gentle Introduction to Infinite Gaussian Mixture Modeling with an application in neuroscience By Frank Wood Rasmussen, NIPS 1999 Neuroscience Application: Spike Sorting Important in neuroscience and for

More information