TOPICS IN INEQUALITIES. Hojoo Lee

Size: px
Start display at page:

Download "TOPICS IN INEQUALITIES. Hojoo Lee"

Transcription

1 TOPICS IN INEQUALITIES Hojoo Lee Version 0.5 [005/08/5] Introdution Inequlities re useful in ll fields of Mthemtis. The purpose in this ook is to present stndrd tehniques in the theory of inequlities. The reders will meet lssil theorems inluding Shur s inequlity, Muirhed s theorem, the Cuhy-Shwrtz inequlity, AM-GM inequlity, nd Ho lder s theorem, et. There re mny prolems from Mthemtil olympids nd ompetitions. The ook is ville t idehitme/eng.html I wish to express my ppreition to Stnley Rinowitz who kindly sent me his pper On The Computer Solution of Symmetri Homogeneous Tringle Inequlities. This is n unfinished mnusript. I would gretly ppreite hering out ny errors in the ook, even minor ones. You n send ll omments to the uthor t hojoolee@kore.om. To Students The given tehniques in this ook re just the tip of the inequlities ieerg. Wht young students red this ook should e wre of is tht they should find their own retive methods to ttk prolems. It s impossile to present ll tehniques in smll ook. I don t even lim tht the methods in this ook re mthemtilly eutiful. For instne, lthough Muirhed s theorem nd Shur s theorem whih n e found t hpter re extremely powerful to ttk homogeneous metri polynomil inequlities, it s not good ide for eginners to lern how to pply them to prolems. (Why?) However, fter mstering homogeniztion method using Muirhed s theorem nd Shur s theorem, you n hve more rod mind in the theory of inequlities. Tht s why I inlude the methods in this ook. Hve fun! Reommended Reding List. K. S. Kedly, A < B, I. Niven, Mxim nd Minim Without Clulus, MAA. T. Andreesu, Z. Feng, 0 Trigonometry Prolems From the Trining of the USA IMO Tem, Birkhuser 4. O. Bottem, R. Z. Djordjević, R. R. Jnić, D. S. Mitrinović, P. M. Vsić, Geometri Inequlities, Wolters-Noordhoff Pulishing, Groningen 969

2 Contents 00 Prolems Sustitutions. Euler s Theorem nd the Rvi Sustitution Trigonometri Sustitutions Algeri Sustitutions Supplementry Prolems for Chpter Homogeniztions 6. Homogeneous Polynomil Inequlities Shur s Theorem Muirhed s Theorem Polynomil Inequlities with Degree Supplementry Prolems for Chpter Normliztions 7 4. Normliztions Clssil Theorems : Cuhy-Shwrtz, (Weighted) AM-GM, nd Hölder Homogeniztions nd Normliztions Supplementry Prolems for Chpter Multivrile Inequlities 45 6 Referenes 5

3 Chpter 00 Prolems Eh prolem tht I solved eme rule, whih served fterwrds to solve other prolems. Rene Desrtes I. (Hungry 996) ( + =,, > 0) I. (Columi 00) (x, y R) I. (0 < x, y < ) (x + y + ) + xy x y + y x > I 4. (APMC 99) (, 0) ( ) I 5. (Czeh nd Slovki 000) (, > 0) 4 ( + ) + + ( + ) + I 6. (Die W URZEL, Heinz-Jürgen Seiffert) (xy > 0, x, y R) xy x + y + x + y xy + x + y I 7. (Crux Mthemtiorum, Prolem 645, Hojoo Lee) (,, > 0) ( + + ) + 9( + + ) ( + + ) ( + ) I 8. (x, y, z > 0) I 9. (,,, x, y, z > 0) xyz + x y + y z + z x x + y + z ( + x)( + y)( + z) + xyz

4 I 0. (x, y, z > 0) x x + (x + y)(x + z) + I. (x + y + z =, x, y, z > 0) I. (Irn 998) x x + ( x + y + z =, x, y, z > ) y y + (y + z)(y + x) + y y + z z x + y + z x + y + z z z + (z + x)(z + y) I. (KMO Winter Progrm Test 00) (,, > 0) ( + + ) ( + + ) + ( + ) ( + ) ( + ) I 4. (KMO Summer Progrm Test 00) (,, > 0) I 5. (Gzet Mtemtiã, Hojoo Lee) (,, > 0) I 6. (,, R) I 7. (,, > 0) + ( ) + + ( ) + + ( ) I 8. (Belrus 00) (,,, d > 0) ( + ) + ( + d) + d ( + ) + ( + d) d ( + ) + ( + d) I 9. (Hong Kong 998) (,, ) + + ( + ) I 0. (Crlson s inequlity) (,, > 0) ( + )( + )( + ) I. (Kore 998) (x + y + z = xyz, x, y, z > 0) x + y + z I. (IMO 00) (,, > 0) I. (IMO Short List 004) ( + + =,,, > 0)

5 I 4. (,, > 0) ( + ) + ( + ) + ( + ) 4 + ( + )( + )( + ) I 5. (Medoni 995) (,, > 0) I 6. (Nesitt s inequlity) (,, > 0) I 7. (IMO 000) ( =,,, > 0) ( + ) ( + ) ( + ) I 8. ([ONI], Vsile Cirtoje) (,, > 0) ( + ) ( + ) + ( + ) ( + ) + ( + ) ( + ) I 9. (IMO Short List 998) (xyz =, x, y, z > 0) x ( + y)( + z) + y ( + z)( + x) + z ( + x)( + y) 4 I 0. (IMO Short List 996) ( =,,, > 0) I. (IMO 995) ( =,,, > 0) I. (IMO Short List 99) (,,, d > 0) + + d ( + ) + ( + ) + ( + ) + d + + d I. (IMO Short List 990) ( + + d + d =,,,, d > 0) + + d + + d + + d d d I 4. (IMO 968) (x, x > 0, y, y, z, z R, x y > z, x y > z ) I 5. (Romni 997) (,, > 0) I 6. (Cnd 00) (,, > 0) x y z + x y z 8 (x + x )(y + y ) (z + z )

6 I 7. (USA 997) (,, > 0) I 8. (Jpn 997) (,, > 0) I 9. (USA 00) (,, > 0) ( + ) ( + ) ( + ) ( + ) + + ( + ) + + ( + ) + 5 ( + + ) ( + + ) ( + + ) + + ( + ) + + ( + ) + ( + ) 8 I 40. (Crux Mthemtiorum, Prolem 580, Hojoo Lee) (,, > 0) I 4. (Crux Mthemtiorum, Prolem 58, Hojoo Lee) (,, > 0) I 4. (Crux Mthemtiorum, Prolem 5, Hojoo Lee) ( + + =,,, > 0) I 4. (Belrus 999) ( + + =,,, > 0) ( + + ) I 44. (Crux Mthemtiorum, Prolem 0, Vsile Cirtoje) ( + + =,,, > 0) I 45. (Greee 00) ( + + =,,, > 0) ( + + ) 4 I 46. (Irn 996) (,, > 0) ( ) ( + + ) ( + ) + ( + ) + ( + ) 9 4 I 47. (Alni 00) (,, > 0) + ( ( + + ) + + ) I 48. (Belrus 997) (,, > 0) I 49. (Belrus 998, I. Gorodnin) (,, > 0)

7 I 50. (Polnd 996) ( + + =,,, I 5. (Bulgri 997) ( =,,, > 0) I 5. (Romni 997) (xyz =, x, y, z > 0) I 5. (Vietnm 99) (x y z > 0) I 54. (Ukrine 99) ( 0) ) x 9 + y 9 x 6 + x y + y 6 + y 9 + z 9 y 6 + y z + z 6 + z 9 + x 9 z 6 + z x + x 6 x y z + y z x + + z x y x + y + z I 55. (Irn 997) (x x x x 4 =, x, x, x, x 4 > 0) ) x + x + x + x 4 mx (x + x + x + x 4, x + x + x + x4 I 56. (Hong Kong 000) ( =,,, > 0) + I 57. (Hong Kong 997) (x, y, z > 0) I 58. (Czeh-Slovk Mth 999) (,, > 0) I 59. (Moldov 999) (,, > 0) ( + ) + I 60. (Blti Wy 995) (,,, d > 0) xyz(x + y + z + x + y + z ) (x + y + z )(xy + yz + zx) + + ( + ) + I 6. ([ONI], Vsile Cirtoje) (,,, d > 0) I 6. (Polnd 99) (x, y, u, v > 0) + + ( + ) d d + d + d d + d d + + d + 0 xy + xv + uy + uv x + y + u + v + + xy x + y + uv u + v + 7

8 I 6. (Belrus 997) (, x, y, z > 0) + y + x x + + z + x y + + x + y z x + y + z + z + z x + + x + y y + + y + z z I 64. (Lithuni 987) (x, y, z > 0) x x + xy + y + y y + yz + z + z z + zx + x x + y + z I 65. (Klmkin s inequlity) ( < x, y, z < ) I 66. (xy + yz + zx =, x, y, z > 0) ( x)( y)( z) + ( + x)( + y)( + z) x + x + y + y + z + z x( x ) ( + x ) + y( y ) ( + y ) + z( z ) ( + z ) I 67. (Russi 00) (x + y + z =, x, y, z > 0) x + y + z xy + yz + zx I 68. (APMO 998) (,, > 0) ( + ) ( + ) ( + ) ( ) I 69. (Elemente der Mthemtik, Prolem 07, Sefket Arslngić) (x, y, z > 0) x y + y z + z x x + y + z xyz I 70. (Die W URZEL, Wlther Jnous) (x + y + z =, x, y, z > 0) ( + x)( + y)( + z) ( x ) + ( y ) + ( z ) I 7. (United Kingdom 999) (p + q + r =, p, q, r > 0) I 7. (USA 979) (x + y + z =, x, y, z > 0) I 7. (IMO 984) (x + y + z =, x, y, z 0) 7(pq + qr + rp) + 9pqr x + y + z + 6xyz 4. 0 xy + yz + zx xyz 7 7 I 74. (IMO Short List 99) ( d =,,,, d > 0) I 75. (Polnd 99) (,, R) + d + d + d d ( + ) ( + ) ( + ) ( + )( + )( + ) 8

9 I 76. (Cnd 999) (x + y + z =, x, y, z 0) x y + y z + z x 4 7 I 77. (Hong Kong 994) (xy + yz + zx =, x, y, z > 0) x( y )( z ) + y( z )( x ) + z( x )( y ) 4 9 I 78. (Vietnm 996) (( + + d + + d + d) + + d + d + d = 6,,,, d 0) d ( + + d + + d + d) I 79. (Polnd 998) ( d + e + f =, e + df 08,,, d, e, f > 0) I 80. (Itly 99) (0,, ) + d + de + def + ef + f I 8. (Czeh Repuli 000) (m, n N, x [0, ]) I 8. (Irelnd 997) ( + +,,, 0) I 8. (BMO 00) ( + +,,, 0) ( x n ) m + ( ( x) m ) n I 84. (Berus 996) (x + y + z = xyz, x, y, z > 0) xy + yz + zx 9(x + y + z) I 85. (Polnd 99) (x + y + z =, x, y, z R) x + y + z + xyz I 86. (Mongoli 99) ( + + =,,, R) + + I 87. (Vietnm 00, Dung Trn Nm) ( + + = 9,,, R) I 88. (Vietnm 996) (,, > 0) ( + + ) 0 ( + ) 4 + ( + ) 4 + ( + ) 4 4 ( ) 7 I 89. (x, y, z 0) xyz (y + z x)(z + x y)(x + y z) ( ) I 90. (Ltvi 00) d =,,,, d > 0 4 d 9

10 I 9. (Proposed for 999 USAMO, [AB, pp.5]) (x, y, z > ) I 9. (APMO 004) (,, > 0) I 9. (USA 004) (,, > 0) x x +yz y y +zx z z +xy (xyz) xy+yz+zx ( + )( + )( + ) 9( + + ) ( 5 + )( 5 + )( 5 + ) ( + + ) I 94. (USA 00) ( = 4,,, 0) I 95. (Turkey, 999) ( 0) ( + )( + 4)( + ) 60 I 96. (Medoni 999) ( + + =,,, > 0) I 97. (Polnd 999) ( + + =,,, > 0) I 98. (Medoni 000) (x, y, z > 0) I 99. (APMC 995) (m, n N, x, y > 0) x + y + z (xy + yz) (n )(m )(x n+m + y n+m ) + (n + m )(x n y m + x m y n ) nm(x n+m y + xy n+m ) I 00. ([ONI], Griel Dospinesu, Mire Lsu, Mrin Tetiv) (,, > 0) ( + )( + )( + ) 0

11 Chpter Sustitutions. Euler s Theorem nd the Rvi Sustitution Mny inequlities re simplified y some suitle sustitutions. tringle geometry. We egin with lssil inequlity in In 765, Euler showed tht Wht is the first nontrivil geometri inequlity? Theorem. Let R nd r denote the rdii of the irumirle nd inirle of the tringle ABC. Then, we hve R r nd the equlity holds if nd only if ABC is equilterl. Proof. Let BC =, CA =, AB =, s = ++ nd S = [ABC]. Rell the well-known identities : S = 4R, S = rs, S = s(s )(s )(s ). Hene, R r is equivlent to 4S S S s or 8 s or 8(s )(s )(s ). We need to prove the following. Theorem. ([AP], A. Pdo) Let,, e the lengths of tringle. Then, we hve 8(s )(s )(s ) or ( + )( + )( + ) nd the equlity holds if nd only if = =. First Proof. We use the Rvi Sustitution : Sine,, re the lengths of tringle, there re positive rels x, y, z suh tht = y + z, = z + x, = x + y. (Why?) Then, the inequlity is (y + z)(z + x)(x + y) 8xyz for x, y, z > 0. However, we get (y + z)(z + x)(x + y) 8xyz = x(y z) + y(z x) + z(x y) 0. Seond Proof. ([RI]) We my ssume tht. It s equivlent to ( + ) + ( + ) + ( + ). Sine ( + ) ( + ) ( + ), pplying the Rerrngement inequlity, we otin ( + ) + ( + ) + ( + ) ( + ) + ( + ) + ( + ), ( + ) + ( + ) + ( + ) ( + ) + ( + ) + ( + ). Adding these two inequlities, we get the result. Exerise. Let ABC e right tringle. Show tht R ( + )r. When does the equlity hold? It s nturl to sk tht the inequlity in the theorem holds for ritrry positive rels,,? Yes! It s possile to prove the inequlity without the dditionl ondition tht,, re the lengths of tringle : The first geometri inequlity is the Tringle Inequlity : AB + BC AC In this ook, [P ] stnds for the re of the polygon P. For exmple, we hve ( + ) ( + ) = ( )( + ) 0.

12 Theorem. Let x, y, z > 0. Then, we hve xyz (y + z x)(z + x y)(x + y z). The equlity holds if nd only if x = y = z. Proof. Sine the inequlity is metri in the vriles, without loss of generlity, we my ssume tht x y z. Then, we hve x + y > z nd z + x > y. If y + z > x, then x, y, z re the lengths of the sides of tringle. And y the theorem, we get the result. Now, we my ssume tht y + z x. Then, xyz > 0 (y + z x)(z + x y)(x + y z). The inequlity in the theorem holds when some of x, y, z re zeros : Theorem 4. Let x, y, z 0. Then, we hve xyz (y + z x)(z + x y)(x + y z). Proof. Sine x, y, z 0, we n find positive sequenes {x n }, {y n }, {z n } for whih (For exmple, tke x n = x + n lim x n = x, n lim y n = y, lim z n = z. n n (n =,, ), et.) Applying the theorem yields x n y n z n (y n + z n x n )(z n + x n y n )(x n + y n z n ) Now, tking the limits to oth sides, we get the result. Clerly, the equlity holds when x = y = z. However, xyz = (y+z x)(z +x y)(x+y z) nd x, y, z 0 does not gurntee tht x = y = z. In ft, for x, y, z 0, the equlity xyz = (y +z x)(z +x y)(x+y z) is equivlent to x = y = z or x = y, z = 0 or y = z, x = 0 or z = x, y = 0. It s strightforwrd to verify the equlity xyz (y + z x)(z + x y)(x + y z) = x(x y)(x z) + y(y z)(y x) + z(z x)(z y). Hene, the theorem 4 is prtiulr se of Shur s inequlity. 4 Prolem. (IMO 000/) Let,, e positive numers suh tht =. Prove tht ( + ) ( + ) ( + ). First Solution. Sine =, we mke the sustitution = x y, = y z, = z x for x, y, z > 0.5 We rewrite the given inequlity in the terms of x, y, z : ( x y + z ) (y y z + x ) ( z z x + y ) xyz (y + z x)(z + x y)(x + y z). x The Rvi Sustitution is useful for inequlities for the lengths,, of tringle. After the Rvi Sustitution, we n remove the ondition tht they re the lengths of the sides of tringle. Prolem. (IMO 98/6) Let,, e the lengths of the sides of tringle. Prove tht ( ) + ( ) + ( ) 0. Solution. After setting = y + z, = z + x, = x + y for x, y, z > 0, it eomes x z + y x + z y x yz + xy z + xyz or x y + y z + z x x + y + z, whih follows from the Cuhy-Shwrtz inequlity ( ) x (y + z + x) y + y z + z (x + y + z). x 4 See the theorem 0 in the hpter. Tke r =. 5 For exmple, tke x =, y =, z =.

13 Prolem. (IMO 96/, Weitzenök s inequlity) Let,, e the lengths of tringle with re S. Show tht S. Solution. Write = y + z, = z + x, = x + y for x, y, z > 0. It s equivlent to whih n e otined s following : ((y + z) + (z + x) + (x + y) ) 48(x + y + z)xyz, ((y + z) + (z + x) + (x + y) ) 6(yz + zx + xy) 6 (xy yz + yz zx + xy yz). 6 Exerise. (Hdwiger-Finsler inequlity) Show tht, for ny tringle with sides,, nd re S, + + ( + + ) 4 S. Exerise. (Pedoe s inequlity) Let,, denote the sides of the tringle A B C with re F. Let,, denote the sides of the tringle A B C with re F. Show tht ( + ) + ( + ) + ( + ) 6F F. 6 Here, we used the well-known inequlities p + q pq nd (p + q + r) (pq + qr + rp).

14 . Trigonometri Sustitutions If you re fed with n integrl tht ontins squre root expressions suh s x dx, + y dy, z dz then trigonometri sustitutions suh s x = sin t, y = tn t, z = se t re very useful. When deling with squre root expressions, mking suitle trigonometri sustitution simplifies the given inequlity. Prolem 4. (Ltvi 00) Let,,, d e the positive rel numers suh tht Prove tht d d 4 =. Solution. We n write = tn A, = tn B, = tn C, d = tn D, where A, B, C, D ( 0, π ). Then, the lgeri identity eomes the following trigonometri identity : Applying the AM-GM inequlity, we otin Similrly, we otin os A + os B + os C + os D =. sin A = os A = os B + os C + os D (os B os C os D). sin B (os C os D os A), sin C (os D os A os B), nd sin D (os A os B os C). Multiplying these inequlities, we get the result! Exerise 4. ([ONI], Titu Andreesu, Griel Dosinesu) Let,,, d e the rel numers suh tht ( + )( + )( + )( + d ) = 6. Prove tht + + d + + d + d d 5. Prolem 5. (Kore 998) Let x, y, z e the positive rels with x + y + z = xyz. Show tht + x + + y + + z. Sine the funtion f is not onve down on R +, we nnot pply Jensen s inequlity to the funtion f(t) = +t. However, the funtion f(tn θ) is onve down on ( 0, π )! Solution. We n write x = tn A, y = tn B, z = tn C, where A, B, C ( 0, π ). Using the ft tht + tn θ = ( os θ ), where os θ 0, we rewrite it in the terms of A, B, C : os A + os B + os C. It follows from tn(π C) = z = x+y xy = tn(a + B) nd from π C, A + B (0, π) tht π C = A + B or A + B + C = π. Hene, it suffies to show the following. Theorem 5. In ny ute tringle ABC, we hve os A + os B + os C. Proof. Sine os x is onve down on ( 0, π ), it s diret onsequene of Jensen s inequlity. We note tht the funtion os x is not onve down on (0, π). In ft, it s onve up on ( π, π). One my think tht the inequlity os A + os B + os C doesn t hold for ny tringles. However, it s known tht it lso holds for ny tringles. 4

15 Theorem 6. In ny tringle ABC, we hve os A + os B + os C. First Proof. It follows from π C = A + B tht os C = os(a + B) = os A os B + sin A sin B or (os A + os B + os C) = (sin A sin B) + (os A + os B ) 0. Seond Proof. Let BC =, CA =, AB =. Use the Cosine Lw to rewrite the given inequlity in the terms of,, : + Clering denomintors, this eomes ( + ) + ( + ) + ( + ), whih is equivlent to ( + )( + )( + ) in the theorem. In se even when there is no ondition suh s x + y + z = xyz or xy + yz + zx =, the trigonometri sustitutions re useful. Prolem 6. (APMO 004/5) Prove tht, for ll positive rel numers,,, ( + )( + )( + ) 9( + + ). Proof. Choose A, B, C ( ) 0, π with = tn A, = tn B, nd = tn C. Using the well-known trigonometri identity + tn θ = os θ, one my rewrite it s 4 os A os B os C (os A sin B sin C + sin A os B sin C + sin A sin B os C). 9 One my esily hek the following trigonometri identity os(a + B + C) = os A os B os C os A sin B sin C sin A os B sin C sin A sin B os C. Then, the ove trigonometri inequlity tkes the form 4 os A os B os C (os A os B os C os(a + B + C)). 9 Let θ = A+B+C. Applying the AM-GM inequlity nd Jesen s inequlity, we hve ( ) os A + os B + os C os A os B os C os θ. We now need to show tht Using the trigonometri identity 4 9 os θ(os θ os θ). os θ = 4 os θ os θ or os θ os θ = os θ os θ, it eomes 4 7 os4 θ ( os θ ), whih follows from the AM-GM inequlity ( os θ os θ ( os θ )) ( os θ + os θ + ( os θ )) =. One find tht the equlity holds if nd only if tn A = tn B = tn C = if nd only if = = =. 5

16 Exerise 5. ([TZ], pp.7) Let x, y, z e rel numers suh tht 0 < x, y, z < nd xy + yz + zx =. Prove tht x x + y y + z z. Exerise 6. ([TZ], pp.7) Let x, y, z e positive rel numers suh tht x + y + z = xyz. Prove tht x + x + y + y + z + z. Exerise 7. ([ONI], Florin Crln, Mrin Tetiv) Prove tht if x, y, z > 0 stisfy the ondition x + y + z = xyz then xy + yz + zx + + x + + y + + z. Exerise 8. ([ONI], Griel Dospinesu, Mrin Tetiv) Let x, y, z e positive rel numers suh tht x + y + z = xyz. Prove tht (x )(y )(z ) 6 0. Exerise 9. ([TZ], pp.) Let,, e rel numers. Prove tht ( + )( + )( + ) ( + + ). Exerise 0. ([TZ], pp.49) Let nd e positive rel numers. Prove tht if either () 0 <, or (). In the theorem nd, we see tht the geometri inequlity R r is equivlent to the lgeri inequlity ( + )( + )( + ). We now find tht, in the proof of the theorem 6, ( + )( + )( + ) is equivlent to the trigonometri inequlity os A + os B + os C. One my sk tht In ny tringles ABC, is there nturl reltion etween os A + os B + os C nd R r, where R nd r re the rdii of the irumirle nd inirle of ABC? Theorem 7. Let R nd r denote the rdii of the irumirle nd inirle of the tringle ABC. Then, we hve os A + os B + os C = + r R. Proof. Use the identity ( + )+( + )+( + ) = +(+ )(+ )(+ ). We leve the detils for the reders. Exerise. Let R nd r e the rdii of the irumirle nd inirle of the tringle ABC with BC =, CA =, AB =. Let s denote the semiperimeter of ABC. Verify the follwing identities 7 : () + + = s + 4Rr + r, () = 4Rrs, () os A os B + os B os C + os C os A = s 4R +r 4R, (4) os A os B os C = s (R+r) 4R Exerise. () Let p, q, r e the positive rel numers suh tht p + q + r + pqr =. Show tht there exists n ute tringle ABC suh tht p = os A, q = os B, r = os C. () Let p, q, r 0 with p + q + r + pqr =. Show tht there re A, B, C [ 0, π ] with p = os A, q = os B, r = os C, nd A + B + C = π. 7 For more identities, see the exerise 0. 6

17 Exerise. ([ONI], Mrin Tetiv) Let x, y, z e positive rel numers stisfying the ondition Prove tht () xyz 8, () xy + yz + zx 4, () x + y + z 4, nd (4) xy + yz + zx xyz +. x + y + z + xyz =. Exerise 4. ([ONI], Mrin Tetiv) Let x, y, z e positive rel numers stisfying the ondition Prove tht () xyz 7, () xy + yz + zx 7, () x + y + z 9, nd (4) xy + yz + zx (x + y + z) + 9. x + y + z = xyz. Prolem 7. (USA 00) Let,, nd e nonnegtive rel numers suh tht = 4. Prove tht Solution. Notie tht,, > implies tht > 4. If, then we hve ++ ( ) 0. We now prove tht + +. Letting = p, = q, = r, we get p + q + r + pqr =. By the exerise, we n write [ = os A, = os B, = os C for some A, B, C 0, π ] with A + B + C = π. We re required to prove os A os B + os B os C + os C os A os A os B os C. One my ssume tht A π or os A 0. Note tht os A os B + os B os C + os C os A os A os B os C = os A(os B + os C) + os B os C( os A). We pply Jensen s inequlity to dedue os B + os C os A. Note tht os B os C = os(b C) + os(b + C) os A. These imply tht ( ) ( ) os A os A(os B + os C) + os B os C( os A) os A os A + ( os A). However, it s esy to verify tht os A ( os A) + ( ) os A ( os A) =. In the ove solution, we showed tht os A os B + os B os C + os C os A os A os B os C holds for ll ute tringles. Using the results () nd (d) in the exerise (4), we n rewrite it in the terms of R, r, s : R + 8Rr + r s. In 965, W. J. Blundon found the est possile inequlities of the form A(R, r) s B(R, r), where A(x, y) nd B(x, y) re rel qudrti forms αx + βxy + γy : 8 Exerise 5. Let R nd r denote the rdii of the irumirle nd inirle of the tringle ABC. Let s e the semiperimeter of ABC. Show tht 6Rr 5r s 4R + 4Rr + r. 8 For proof, see [WJB]. 7

18 . Algeri Sustitutions We know tht some inequlities in tringle geometry n e treted y the Rvi sustitution nd trigonometri sustitutions. We n lso trnsform the given inequlities into esier ones through some lever lgeri sustitutions. Prolem 8. (IMO 00/) Let,, e positive rel numers. Prove tht First Solution. To remove the squre roots, we mke the following sustitution : x = + 8, y = + 8, z = + 8. Clerly, x, y, z (0, ). Our im is to show tht x + y + z. We notie tht 8 = x x, 8 = Hene, we need to show tht y y, 8 = z z = ( ) ( ) ( ) x y z 5 = x y z. x + y + z, where 0 < x, y, z < nd ( x )( y )( z ) = 5(xyz). However, > x + y + z implies tht, y the AM-GM inequlity, ( x )( y )( z ) > ((x + y + z) x )((x + y + z) y )((x + y + z) z ) = (x + x + y + z)(y + z) (x + y + y + z)(z + x)(x + y + z + z)(x + y) 4(x yz) 4 (yz) 4(y zx) 4 (zx) 4(z xy) 4 (xy) = 5(xyz). This is ontrdition! Prolem 9. (IMO 995/) Let,, e positive numers suh tht =. Prove tht ( + ) + ( + ) + ( + ). First Solution. After the sustitution = x, = y, = z, we get xyz =. The inequlity tkes the form x y + z + y z + x + It follows from the Cuhy-shwrtz inequlity tht ( x [(y + z) + (z + x) + (x + y)] y + z + so tht, y the AM-GM inequlity, x y + z + y z + x + z x + y. y z + x + z x + y x + y + z (xyz) ) z (x + y + z) x + y =. We offer n lterntive solution of the prolem 5 : (Kore 998) Let x, y, z e the positive rels with x + y + z = xyz. Show tht x + y + z. 8

19 Seond Solution. The strting point is letting = x, = y, = z. We find tht + + = is equivlent to = xy + yz + zx. The inequlity eomes x x + + y y + + z z + or or x x + xy + yz + zx + x (x + y)(x + z) + y y + xy + yz + zx + y (y + z)(y + x) + z z + xy + yz + zx z (z + x)(z + y). By the AM-GM inequlity, we hve x = x (x + y)(x + z) x[(x + y) + (x + z)] = ( x (x + y)(x + z) (x + y)(x + z) (x + y)(x + z) x + z + x ). x + z In like mnner, we otin y (y + z)(y + x) ( y y + z + Adding these three yields the required result. y ) y + x nd z ( z (z + x)(z + y) z + x + z ). z + y We now prove lssil theorem in vrious wys. Theorem 8. (Nesitt, 90) For ll positive rel numers,,, we hve Proof. After the sustitution x = +, y = +, z = +, it eomes yli y + z x x whih follows from the AM-GM inequlity s following: or yli y + z x 6, yli y + z x = y x + z x + z y + x y + x z + y ( y z 6 x z x z y x y x z y ) 6 = 6. z Proof. We mke the sustitution It follows tht x = f(x) = yli +, y = yli +, z = +. =, where f(t) = t + + Sine f is onve down on (0, ), Jensen s inequlity shows tht ( ) f = = ( ) x + y + z f(x) f or f yli ( ) f + t. ( x + y + z ). Sine f is monotone deresing, we hve x + y + z or yli + = x + y + z. 9

20 Proof. As in the previous proof, it suffies to show tht T where T = x + y + z nd yli x + x =. One n esily hek tht the ondition yli x + x = eomes = xyz + xy + yz + zx. By the AM-GM inequlity, we hve = xyz + xy + yz + zx T + T T + T 0 (T )(T + ) 0 T. Proof 4. Sine the inequlity is metri in the three vriles, we my ssume tht. After the sustitution x =, y =, we hve x y. It eomes We pply the AM-GM inequlity to otin It suffies to show tht y + + x + x + y + or x y + + y x + x + y. x + y + + y + x + or x y + + y x + y + + x +. y + x + x + y However, the lst inequlity lerly holds for x y. Proof 5. As in the previous proof, we need to prove Let A = x + y nd B = xy. It eomes x y + + y x + + x + y where x y. y ( + y) y (x + )(x + y). x + y + x + y (x + )(y + ) + x + y or A B + A A + B + + A or A A A + B(7A ). Sine 7A > (x + y ) > 0 nd A = (x + y) 4xy = 4B, it s enough to show tht 4(A A A + ) A (7A ) A A 4A However, it s esy to hek tht A A 4A + 8 = (A ) (A + ) 0. We now present lterntive solutions of prolem. (IMO 000/) Let,, e positive numers suh tht =. Prove tht ( + ) ( + ) ( + ). Seond Solution. ([IV], Iln Vrdi) Sine =, we my ssume tht. 9 It follows tht ( + ) ( + ) ( + ) = ( + ) ( + ) ( )( ) Why? Note tht the inequlity is not metri in the three vriles. Chek it! 0 For verifition of the identity, see [IV]. 0

21 Third Solution. As in the first solution, fter the sustitution = x y, = y z, = z x for x, y, z > 0, we n rewrite it s xyz (y + z x)(z + x y)(x + y z). Without loss of generlity, we n ssume tht z y x. Set y x = p nd z x = q with p, q 0. It s strightforwrd to verify tht xyz (y + z x)(z + x y)(x + y z) = (p pq + q )x + (p + q p q pq ). Sine p pq + q (p q) 0 nd p + q p q pq = (p q) (p + q) 0, we get the result. Fourth Solution. (sed on work y n IMO 000 ontestnt from Jpn) Putting =, it eomes ( + ) ( ( + ) + ) or Setting x =, it eomes f(x) 0, where f (t) = t + t t + t t t +. Fix positive numer. We need to show tht F (t) := f (t) 0 for ll t 0. It s esy to hek tht the ui polynomil F / (t) = t ( + )t ( + ) hs two rel roots nd λ = Sine F hs lol minimum t t = λ, we find tht F (t) Min {F (0), F (λ)} for ll t 0. We hve to prove tht F (0) 0 nd F (λ) 0. Sine F (0) = + = ( ) ( + ) 0, it remins to show tht F (λ) 0. Notie tht λ is root of F / (t). After long division, we get ( F (t) = F / (t) t + ) + ( ( )t ). 9 9 Putting t = λ, we hve F (λ) = ( ( )λ ). 9 Thus, our jo is now to estlish tht, for ll 0, ( ( ) ) , whih is equivlent to ( ) Sine oth nd re positive, it s equivlent to or ( ) ( ) ( ) or Let G(x) = 864x 4 75x + 50x 75x We prove tht G(x) 0 for ll x R. We find tht G / (x) = 456x 05x x 75 = (x )(456x 6669x + 75). Sine 456x 6669x + 75 > 0 for ll x R, we find tht G(x) nd x hve the sme sign. It follows tht G(x) is monotone deresing on (, ] nd monotone inresing on [, ). We onlude tht G(x) hs the glol minimum t x =. Hene, G(x) G() = 0 for ll x R. It s esy to hek tht = 6( + ) + + > 6( )( ) 0 nd = 8( ) + > 0.

22 Fifth Solution. (From the IMO 000 Short List) Using the ondition =, it s strightforwrd to verify the equlities = ( + ) ( + + ), = = ( + ) ( + + ), ( + ) ( + + ). In prtiulr, they show tht t most one of the numers u = +, v = +, w = + is negtive. If there is suh numer, we hve ( + ) ( + ) ( + ) = uvw < 0 <. And if u, v, w 0, the AM-GM inequlity yields = u + v uv, = v + w vw, = w + w wu. Thus, uv, vw, wu, so (uvw) =. Sine u, v, w 0, this ompletes the proof. It turns out tht the sustitution p = x + y + z, q = xy + yz + zx, r = xyz is powerful for the three vriles inequlities. We need the following lemm. Lemm. Let x, y, z e non-negtive rel numers numers. Set p = x + y + z, q = xy + yz + zx, nd r = xyz. Then, we hve () p 4pq + 9r 0, () p 4 5p q + 4q + 6pr 0, () pq 9r 0. Proof. They re equivlent to ( ) x(x y)(x z) + y(y z)(y x) + z(z x)(z y) 0, ( ) x (x y)(x z) + y (y z)(y x) + z (z x)(z y) 0, ( ) x(y z) + y(z x) + z(x y) 0. We leve the detils for the reders. Prolem 0. (Irn 996) Let x, y, z e positive rel numers. Prove tht ( ) (xy + yz + zx) (x + y) + (y + z) + (z + x) 9 4. First Solution. We mke the sustitution p = x + y + z, q = xy + yz + zx, r = xyz. Notie tht (x + y)(y + z)(z + x) = (x + y + z)(xy + yz + zx) xyz = pq r. One my esily rewrite the given inequlity in the terms of p, q, r : ( (p + q) ) 4p(pq r) q (pq r) 9 4 or 4p 4 q 7p q + 4q + 4pqr 9r 0 or pq(p 4pq + 9r) + q(p 4 5p q + 4q + 6pr) + r(pq 9r) 0. We find tht every term on the left hnd side is nonnegtive y the lemm. When does equlity hold in eh inequlity? For more p-q-r inequlities, visit the site [ESF]. See the theorem 0.

23 Prolem. Let x, y, z e nonnegtive rel numers with xy + yz + zx =. Prove tht x + y + y + z + z + x 5. First Solution. Rewrite the inequlity in the terms of p = x + y + z, q = xy + yz + zx, r = xyz: It n e rewritten s 4p 4 q + 4q 7p q 5r + 50pqr 0. pq(p 4pq + 9r) + q(p 4 5p q + 4q + 6pr) + 7r(pq 9r) + 8r 0. However, the every term on the left hnd side is nonnegtive y the lemm. Exerise 6. (Crlson s inequlity) Prove tht, for ll positive rel numers,,, ( + )( + )( + ) Exerise 7. (Bulgri 997) Let,, e positive rel numers suh tht =. Prove tht We lose this setion y presenting prolem whih n e solved y two lgeri sustitutions nd trigonometri sustitution. Prolem. (Irn 998) Prove tht, for ll x, y, z > suh tht x + y + z =, x + y + z x + y + z. First Solution. We egin with the lgeri sustitution = x, = y, = z. Then, the ondition eomes nd the inequlity is equivlent to = = Let p =, q =, r =. Our jo is to prove tht p + q + r where p + q + r + pqr =. By the exerise, we n mke the trigonometri sustitution [ p = os A, q = os B, r = os C for some A, B, C 0, π ) with A + B + C = π. Wht we need to show is now tht os A+os B+os C. However, it follows from Jensen s inequlity!

24 .4 Supplementry Prolems for Chpter Exerise 8. Let x, y, nd z e positive numers. Let p = x + y + z, q = xy + yz + zx, nd r = xyz. Prove the following inequlities : () p q () p 7r () q pr (d) p + 9r 7pq (e) p q + pr 4q (f) p q pr + q (g) p 4 + q 4p q (h) pq p r + qr (i) q + 9r 7pqr (j) q + 9r 4pqr (k) p r + q 6pqr Exerise 9. ([ONI], Mire Lsu, Mrin Tetiv) Let x, y, z e positive rel numers stisfying the ondition xy + yz + zx + xyz =. Prove tht () xyz 8, () x + y + z, () x + y + z 4(x + y + z), nd (4) x + y + (z ) z 4(x + y + z) z(z+), where z x, y. Exerise 0. Let f(x, y) e rel polynomil suh tht, for ll θ R, f(os θ, sin θ) = 0. Show tht the polynomil f(x, y) is divisile y x + y. Exerise. Let f(x, y, z) e rel polynomil. Suppose tht f(os α, os β, os γ) = 0, for ll α, β, γ R with α + β + γ = π. Show tht f(x, y, z) is divisile y x + y + z + xyz. 4 Exerise. (IMO Unused 986) Let,, e positive rel numers. Show tht ( + ) ( + ) ( + + ) ( + )( + )( + + ). 5 Exerise. With the usul nottion for tringle, verify the following identities : () sin A + sin B + sin C = s R () sin A sin B + sin B sin C + sin C sin A = s +4Rr+r 4R () sin A sin B sin C = sr R (4) sin A + sin B + sin C = s(s 6Rr r ) 4R (5) os A + os B + os C = (R+r) rs 4R 4R rs (6) tn A + tn B + tn C = tn A tn B tn C = s (R+r) (7) tn A tn B + tn B tn C + tn C tn A = s 4Rr r s (R+r) (8) ot A + ot B + ot C = s 4Rr r sr (9) sin A sin B sin C = r 4R (0) os A os B os C = s 4R 4 For proof, see [JmhMh]. 5 If we ssume tht there is tringle ABC with BC =, CA =, AB =, then it s equivlent to the inequlity s 4R + 4Rr + r in the exerise 6. 4

25 Exerise 4. Let,, e the lengths of the sides of tringle. Let s e the semi-perimeter of the tringle. Then, the following inequlities holds. () ( + + ) ( + + ) ( < 4( ) + + ) () [JfdWm] s + s () [AP] 8(s )(s )(s ) (d) [EC] 8 ( + )( + )( + ) (e) [AP] ( + )( + )( + ) 8( + + ) (f) [MC] ( + + )( + + ) ( ) (g) < (s ) + (s ) + (s ) (h) ( + ) + ( + ) + ( + ) 48(s )(s )(s ) (i) s + s + s 9 s (j) [AMN], [MP] < (k) 5 4 s+ + + s+ + + s+ + < 9 (l) [SR] ( + + ) 5[( + ) + ( + ) + ( + )] Exerise 5. ([RS], R. Sondt) Let R, r, s e positive rel numers. Show tht neessry nd suffiient ondition for the existene of tringle with irumrdius R, inrdius r, nd semiperimeter s is s 4 (R + 0Rr r )s + r(4r + r) 0. Exerise 6. With the usul nottion for tringle, show tht 4R + r s. 6 Exerise 7. ([WJB],[RAS], W. J. Blundon) Let R nd r denote the rdii of the irumirle nd inirle of the tringle ABC. Let s e the semiperimeter of ABC. Show tht s R + ( 4)r. Exerise 8. Let G nd I e the entroid nd inenter of the tringle ABC with inrdius r, semiperimeter s, irumrdius R. Show tht GI = ( s + 5r 6Rr ). 7 9 Exerise 9. Show tht, for ny tringle with sides,,, > It s equivlent to the Hdwiger-Finsler inequlity. 7 See the exerise 6. For solution, see [KWL]. 5

26 Chpter Homogeniztions. Homogeneous Polynomil Inequlities Mny inequlity prolems ome with onstrints suh s =, xyz =, x+y +z =. A non-homogeneous metri inequlity n e trnsformed into homogeneous one. Then we pply two powerful theorems : Shur s inequlity nd Muirhed s theorem. We egin with simple exmple. Prolem. (Hungry 996) Let nd e positive rel numers with + =. Prove tht Solution. Using the ondition + =, we n redue the given inequlity to homogeneous one, i. e., ( + )( + ( + )) + ( + )( + ( + )) or + +, whih follows from ( + ) ( + ) = ( ) (+) 0. The equlity holds if nd only if = =. The ove inequlity + + n e generlized s following : Theorem 9. Let,,, e positive rel numers suh tht + = + nd mx(, ) mx(, ). Let x nd y e nonnegtive rel numers. Then, we hve x y + x y x y + x y. Proof. Without loss of generlity, we n ssume tht,,. If x or y is zero, then it lerly holds. So, we lso ssume tht oth x nd y re nonzero. It s esy to hek x y + x y x y x y = x y ( x + y x y x y ) = x y ( x y ) ( x y ) ( = x y x y ) ( x y ) 0. Remrk. When does the equlity hold in the theorem 8? We now introdue two summtion nottions yli nd. Let P (x, y, z) e three vriles funtion of x, y, z. Let us define : P (x, y, z) = P (x, y, z) + P (y, z, x) + P (z, x, y), yli P (x, y, z) = P (x, y, z) + P (x, z, y) + P (y, x, z) + P (y, z, x) + P (z, x, y) + P (z, y, x) 6

27 For exmple, we know tht yli x y = x y + y z + z x, x = (x + y + z ) x y = x y + x z + y z + y x + z x + z y, xyz = 6xyz. Prolem 4. (IMO 984/) Let x, y, z e nonnegtive rel numers suh tht x + y + z =. Prove tht 0 xy + yz + zx xyz 7 7. Solution. Using the ondition x + y + z =, we redue the given inequlity to homogeneous one, i. e., 0 (xy + yz + zx)(x + y + z) xyz 7 7 (x + y + z). The left hnd side inequlity is trivil euse it s equivlent to 0 xyz + x y. The right hnd side inequlity simplifies to 7 yli x + 5xyz 6 x y 0. In the view of 7 yli x + 5xyz 6 x y = yli x x y + 5 xyz + yli x it s enough to show tht yli x x y nd xyz + yli x x y. Note tht yli x x y, x y = (x + y ) (x y + xy ) = (x + y x y xy ) 0. yli The seond inequlity n e rewritten s yli yli x(x y)(x z) 0, whih is prtiulr se of the theorem 0 in the next setion. yli 7

28 . Shur s Theorem Theorem 0. (Shur) Let x, y, z e nonnegtive rel numers. For ny r > 0, we hve x r (x y)(x z) 0. yli Proof. Sine the inequlity is metri in the three vriles, we my ssume without loss of generlity tht x y z. Then the given inequlity my e rewritten s (x y)[x r (x z) y r (y z)] + z r (x z)(y z) 0, nd every term on the left-hnd side is lerly nonnegtive. Remrk. When does the equlity hold in Theorem 0? The following speil se of Shur s inequlity is useful : x(x y)(x z) 0 xyz + yli yli x x y xyz + x Exerise 0. ([TZ], pp.4) Prove tht for ny ute tringle ABC, ot A + ot B + ot C + 6 ot A ot B ot C ot A + ot B + ot C. Exerise. (Kore 998) Let I e the inenter of tringle ABC. Prove tht IA + IB + IC BC + CA + AB. Exerise. ([IN], pp.0) Let,, e the lengths of tringle. Prove tht > We present nother solution of the prolem : (IMO 000/) Let,, e positive numers suh tht =. Prove tht ( + ) ( + ) ( + ). x y. Seond Solution. It is equivlent to the following homogeneous inequlity : ) ) ) ( () / + ( ()/ () / + ( ()/ () / + ()/. After the sustitution = x, = y, = z with x, y, z > 0, it eomes ) ) ) (x xyz + (y (xyz) xyz + (z (xyz) xyz + (xyz) x y z, whih simplifies to y z ( x y y z + z x ) ( y z z x + x y ) ( z x x y + y z ) x y z x or x y z + x 6 y x 4 y 4 z + x 5 y z yli yli yli or (x y)(y z)(z x) + yli(x y) (x y) (y z) whih is speil se of Shur s inequlity. For n lterntive homogeniztion, see the prolem in the hpter. 8

29 Here is nother inequlity prolem with the onstrint =. Prolem 5. (Tournment of Towns 997) Let,, e positive numers suh tht =. Prove tht Solution. We n rewrite the given inequlity s following : + + () + / + + () + / + + () / (). / We mke the sustitution = x, = y, = z with x, y, z > 0. Then, it eomes x + y + xyz + y + z + xyz + z + x + xyz xyz whih is equivlent to xyz (x + y + xyz)(y + z + xyz) (x + y + xyz)(y + z + xyz)(z + x + xyz) yli nd hene to x6 y x5 y z, whih is speil se of theorem in the next setion. 9

30 . Muirhed s Theorem Theorem. (Muirhed) Let,,,,, e rel numers suh tht 0, 0,, + +, + + = + +. Let x, y, z e positive rel numers. Then, we hve x y z x y z. Proof. Cse. : It follows from + nd from tht mx( +, ) so tht mx(, ) = mx( +, ). From + + = nd +, we hve mx( +, ) mx(, ). Apply the theorem 8 twie to otin x y z = z (x y + x y ) yli z (x + y + x y + ) yli = x (y + z + y z + ) yli x (y z + y z ) yli = x y z. Cse. : It follows from + + = tht + nd tht +. Therefore, we hve mx(, ) mx(, + ) nd mx(, + ) mx(, ). Apply the theorem 8 twie to otin x y z = x (y z + y z ) yli x (y z + + y + z ) yli = y (x z + + x + z ) yli y (x z + x z ) yli = x y z. Remrk. The equlity holds if nd only if x = y = z. However, if we llow x = 0 or y = 0 or z = 0, then one my esily hek tht the equlity holds if nd only if x = y = z or x = y, z = 0 or y = z, x = 0 or z = x, y = 0. We n use Muirhed s theorem to prove Nesitt s inequlity. (Nesitt) For ll positive rel numers,,, we hve Note the equlity in the finl eqution. However, in this se, we ssume tht 0 0 = in the sense tht lim x 0 + x 0 =. In generl, 0 0 is not defined. Note lso tht lim x x = 0. 0

31 Proof 6. Clering the denomintors of the inequlity, it eomes yli ( + )( + ) ( + )( + )( + ) or Prolem 6. ((IMO 995) Let,, e positive numers suh tht =. Prove tht Solution. It s equivlent to ( + ) + ( + ) + ( + ). ( + ) + ( + ) + ( + ) (). 4/ Set = x, = y, = z with x, y, z > 0. Then, it eomes yli denomintors, this eomes or ( x y x y + x y 9 z + x 9 y 9 z 6 x y 8 z 5 ) + ( x y 9 z x y 8 z 5 ) +. x 9 (y +z ) x 4 y 4 z. 4 x y 8 z 5 + 6x 8 y 8 z 8 ( nd every term on the left hnd side is nonnegtive y Muirhed s theorem. x 9 y 9 z 6 x 8 y 8 z 8 ) 0, We n lso ttk prolem 0 nd prolem with Shur s inequlity nd Muirhed s theorem. (Irn 996) Let x, y, z e positive rel numers. Prove tht ( ) (xy + yz + zx) (x + y) + (y + z) + (z + x) 9 4. Seond Solution. It s equivlent to 4 x 5 y + x 4 yz + 6x y z x 4 y 6 x y x y z 0. yli yli We rewrite this s following ( x 5 y x 4 y ) + ( x 5 y ) x y + xyz x(x y)(x z) 0. By Muirhed s theorem nd Shur s inequlity, it s sum of three terms whih re nonnegtive. yli Let x, y, z e nonnegtive rel numers with xy + yz + zx =. Prove tht x + y + y + z + z + x 5. Seond Solution. Using xy + yz + zx =, we homogenize the given inequlity s following : Clering or ( (xy + yz + zx) x + y + y + z + ) z + x 4 x 5 y + x 4 yz + 4 x y z + 8x y z ( ) 5 x 4 y + x y

32 or ( x 5 y x 4 y ) + ( x 5 y x y ) + xyz ( x + 4 x y + 8xyz By Muirhed s theorem, we get the result. In the ove inequlity, without the ondition xy + yz + zx =, the equlity holds if nd only if x = y, z = 0 or y = z, x = 0 or z = x, y = 0. Sine xy + yz + zx =, the equlity ours when (x, y, z) = (,, 0), (, 0, ), (0,, ). Now, we pply Muirhed s theorem to otin geometri inequlity [ZsJ] : Prolem 7. If m,m,m re medins nd r,r,r the exrdii of tringle, prove tht r r m m + r r m m + r r m m. An Impossile Verifition. Let s = + +. Using the well-known identities s(s )(s ) r =, m = + s, et. we hve yli r r = m m yli Applying the AM-GM inequlity, we otin yli r r m m yli We now give moonshine proof of the inequlity 4s(s ) ( + )( + ). 8s(s ) ( + ) + ( + ) = yli ( + + )( + ) yli ) ( + + )( + ) After expnding the ove inequlity, it eomes yli yli yli We see tht this nnot e diretly proven y pplying Muirhed s theorem. Sine,, re the sides of tringle, we n mke the Rvi Sustitution = y + z, = z + x, = x + y, where x, y, z > 0. After some rute-fore lger, we n rewrite the ove inequlity s yli 5 x x 5 y + 5 x 4 y + 0 x y + 80 x 4 yz yli 0. Now, y Muirhed s theorem, we get the result! 6 x y z + 4 x y z.

33 .4 Polynomil Inequlities with Degree The solution of prolem shows us diffiulties in pplying Muirhed s theorem. Furthermore, there exist homogeneous metri polynomil inequlities whih nnot e verified y just pplying Muirhed s theorem. See the following inequlity : 5 x 5 y + 8 x 4 yz + 6 x y yli x x 4 y + x y z + x y z 8 This holds for ll positive rel numers x, y, nd z. However, it is not diret onsequene of Muirhed s theorem euse the oeffiients of x5 y nd yli x y re too ig. In ft, it is equivlent to Another exmple is 6 yli (y z) 4 (x + 5y + 5z + 8xy + 4yz + 8zx) 0. 4 yli x 4 + x y x y. yli yli We relized tht the ove inequlity is stronger thn x (x y)(x z) 0 or x 4 + yli yli yli x y It n e proved y the identities 4 x 4 + x y x y = (x y) 4 + (y z) 4 + (z x) 4 yli yli or x y. x 4 + x y x y = (x + y + z xy yz zx). yli yli As I know, there is no generl riterion to ttk the metri polynomil inequlities. However, there is result for the homogeneous metri polynomil inequlities with degree. It s diret onsequene of Muirhed s theorem nd Shur s inequlity. Theorem. Let P (u, v, w) R[u, v, w] e homogeneous metri polynomil with degree. Then the following two sttements re equivlent. () P (,, ), P (,, 0), P (, 0, 0) 0. () P (x, y, z) 0 for ll x, y, z 0. Proof. (See [SR].) We only prove tht () implies (). Let P (u, v, w) = A yli u + B u v + Cuvw. Let p = P (,, ) = A+6B +C, q = P (,, 0) = A+B, nd r = P (, 0, 0) = A. We hve A = r, B = q r, C = p 6q + r, nd p, q, r 0. Let x, y, z 0. It follows tht P (x, y, z) = r x y + (p 6q + r)xyz. However, we see tht P (x, y, z) = r yli x + (q r) yli x + xyz x y + q yli ( ) x y 6xyz + pxyz 0. 4 See [JC].

34 Here is n lterntive wy to prove of the ft tht P (x, y, z) 0. Cse. q r : We find tht P (x, y, z) = r ( x xyz ) + (q r) nd tht the every term on the right hnd side is nonnegtive. Cse. q r : We find tht P (x, y, z) = q ( x ) xyz + (r q) nd tht the every term on the right hnd side is nonnegtive. ( x y xyz yli x + xyz ) + pxyz. x y + pxyz. For exmple, we n pply the theorem to hek the inequlity in the prolem 4. (IMO 984/) Let x, y, z e nonnegtive rel numers suh tht x + y + z =. Prove tht 0 xy + yz + zx xyz 7 7. Solution. Using x + y + z =, we homogenize the given inequlity s following : Let us define L(u, v, w), R(u, v, w) R[u, v, w] y 0 (xy + yz + zx)(x + y + z) xyz 7 (x + y + z) 7 L(u, v, w) = (uv + vw + wu)(u + v + w) uvw, R(u, v, w) = 7 7 (u + v + w) (uv + vw + wu)(u + v + w) + uvw. However, one my esily hek tht L(,, ) = 7, L(,, 0) =, L(, 0, 0) = 0, R(,, ) = 0, R(,, 0) = 7, nd R(, 0, 0) = 7 7. Exerise. (M. S. Klmkin [MEK]) Determine the mximum nd minimum vlues of x + y + z + λxyz where x + y + z =, x, y, z 0, nd λ is given onstnt. Exerise 4. (Wlter Jnous [MC]) let x, y, z 0 with x + y + z =. For fixed rel numers 0 nd, determine the mximum = (, ) suh tht + xyz (xy + yz + zx). Here is the riterion for homogeneous metri polynomil inequlities for the tringles : Theorem. (K. B. Stolrsky) Let P (u, v, w) e rel metri form of degree. 5 If P (,, ), P (,, 0), P (,, ) 0, then we hve P (,, ) 0, where,, re the lengths of the sides of tringle. Proof. Mke the Rvi sustitution = y + z, = z + x, = x + y nd pply the ove theorem. We leve the detils for the reders. For n lterntive proof, see [KBS]. As noted in [KBS], we n pply Stolrsky s theorem to prove ui inequlities in tringle geometry. We rell the exerise. 5 P (x, y, z) = ( px + qx y + rxyz ) (p, q, r R.) 4

35 Let,, e the lengths of the sides of tringle. Let s e the semi-perimeter of the tringle. Then, the following inequlities holds. () ( + + ) ( + + ) ( < 4( ) + + ) () [JfdWm] s + s () [AP] 8(s )(s )(s ) (d) [EC] 8 ( + )( + )( + ) (e) [AP] ( + )( + )( + ) 8( + + ) (f) [MC] ( + + )( + + ) ( ) (g) < (s ) + (s ) + (s ) (h) ( + ) + ( + ) + ( + ) 48(s )(s )(s ) (i) s + s + s 9 s (j) [AMN], [MP] < (k) 5 4 s+ + + s+ + + s+ + < 9 (l) [SR] ( + + ) 5[( + ) + ( + ) + ( + )] Proof. For exmple, we show the right hnd side inequlity in (j). It s equivlent to the ui inequlity T (,, ) 0, where ( T (,, ) = ( + )( + )( + ) ( + )( + )( + ) ). + Sine T (,, ) = 4, T (,, 0) = 0, nd T (,, ) = 6, the result follows from Stolrsky s theorem. lterntive proofs of the ove inequlities, see [GI]. For 5

36 .5 Supplementry Prolems for Chpter Exerise 5. Let x, y, z e positive rel numers. Prove tht (x + y z)(x y) + (y + z x)(y z) + (z + x y)(z x) 0. Exerise 6. Let x, y, z e positive rel numers. Prove tht (x + y z )(x y) + (y + z x )(y z) + (z + x y )(z x) 0. Exerise 7. (APMO 998) Let,, e positive rel numers. Prove tht ( + ) ( + ) ( + ) ( ). Exerise 8. (Irelnd 000) Let x, y 0 with x + y =. Prove tht x y (x + y ). Exerise 9. (IMO Short-listed 998) Let x, y, z e positive rel numers suh tht xyz =. Prove tht x ( + y)( + z) + y ( + z)( + x) + z ( + x)( + y) 4. Exerise 40. (United Kingdom 999) Some three nonnegtive rel numers p, q, r stisfy p + q + r =. Prove tht 7(pq + qr + rp) + 9pqr. 6

37 Chpter 4 Normliztions 4. Normliztions In the previous hpter, we trnsformed non-homogeneous inequlities into homogeneous ones. On the other hnd, homogeneous inequlities lso n e normlized in vrious wys. We offer two lterntive solutions of the prolem 8 y normliztions : (IMO 00/) Let,, e positive rel numers. Prove tht Seond Solution. We mke the sustitution x = ++, y = ++, z = xf(x + 8yz) + yf(y + 8zx) + zf(z + 8xy), ++. The prolem is where f(t) = t. Sine the funtion f is onvex down on R + nd x + y + z =, we pply (the weighted) Jensen s inequlity to hve xf(x + 8yz) + yf(y + 8zx) + zf(z + 8xy) f(x(x + 8yz) + y(y + 8zx) + z(z + 8xy)). Note tht f() =. Sine the funtion f is stritly deresing, it suffies to show tht x(x + 8yz) + y(y + 8zx) + z(z + 8xy). Using x + y + z =, we homogenize it s (x + y + z) x(x + 8yz) + y(y + 8zx) + z(z + 8xy). However, this is esily seen from (x + y + z) x(x + 8yz) y(y + 8zx) z(z + 8xy) = [x(y z) + y(z x) + z(x y) ] 0. In the ove solution, we normlized to x + y + z =. We now prove it y normlizing to xyz =. Third Solution. We mke the sustitution x =, y =, z =. Then, we get xyz = nd the inequlity eomes x + 8y + 8z whih is equivlent to ( + 8x)( + 8y) ( + 8x)( + 8y)( + 8z) yli Dividing y + + gives the equivlent inequlity yli ++. (++) + 8 (++) 7

38 hene, fter squring oth sides, equivlent to 8(x + y + z) + ( + 8x)( + 8y)( + 8z) + 8x 50. Rell tht xyz =. The AM-GM inequlity gives us x + y + z, ( + 8x)( + 8y)( + 8z) 9x 8 9 9y 8 9 9z 8 9 = 79 nd Using these three inequlities, we get the result. We now present nother proofs of Nesitt s inequlity. (Nesitt) For ll positive rel numers,,, we hve yli yli x yli 9x 8 9 9(xyz) 4 7 = 9. Proof 7. We my normlize to + + =. Note tht 0 <,, <. The prolem is now to prove yli + = yli f(), where f(x) = x x. Sine f is onve down on (0, ), Jensen s inequlity shows tht ( ) ( ) + + f() f = f = or f(). yli Proof 8. As in the previous proof, we need to prove yli yli, where + + =. It follows from 4x ( x)(9x ) = (x ) or 4x ( x)(9x ) tht yli yli 9 4 = =. yli 8

39 4. Clssil Theorems : Cuhy-Shwrtz, (Weighted) AM-GM, nd Hölder We now illustrte the normliztion tehnique to estlish lssil theorems. Theorem 4. (The Cuhy-Shwrtz inequlity) Let,, n,,, n e rel numers. Then, we hve ( + + n )( + + n ) ( + + n n ). Proof. Let A = + + n nd B = + + n. In the se when A = 0, we get = = n = 0. Thus, the given inequlity lerly holds. So, we now my ssume tht A, B > 0. Now, we mke the sustitution x i = i A (i =,, n). Then, it s equivlent to (x + + x n )( + + n ) (x + + x n n ). However, we hve x + + x n =. (Why?). Hene, it s equivlent to Next, we mke the sustitution y i = i B Hene, we need to to show tht + + n (x + + x n n ). (i =,, n). Then, it s equivlent to = y + + y n (x y + + x n y n ) or x y + + x n y n. x y + + x n y n, where x + + x n = y + + y n =. However, it s very esy. We pply the AM-GM inequlity to dedue x y + + x n y n x y + + x n y n x + y + + x n + y n = A + B =. Exerise 4. Prove the Lgrnge s identity : n i= i ( n n ) i i i = i= i= i<j n ( i j j i ). Exerise 4. Let,, n,,, n e positive rel numers. Show tht ( + + n )( + + n ) + + n n. Exerise 4. Let,, n,,, n e positive rel numers. Show tht + + n ( + + n ). n + + n Exerise 44. Let,, n,,, n e positive rel numers. Show tht + + ( n + + ) n. n + + n n Exerise 45. Let,, n,,, n e positive rel numers. Show tht + + n n ( + + n ) + + n n. We now pply the Cuhy-Shwrtz inequlity to prove Nesitt s inequlity. 9

40 (Nesitt) For ll positive rel numers,,, we hve Proof 9. Applying the Cuhy-Shwrtz inequlity, we hve ( (( + ) + ( + ) + ( + )) ). + It follows tht Proof 0. The Cuhy-Shwrtz inequlity yields ( + ) + yli yli yli Here is n extremely short proof of the prolem : or 9 or + yli yli (Irn 998) Prove tht, for ll x, y, z > suh tht x + y + z =, x + y + z x + y + z ( + + ) + ( + + ). Seond Solution. We notie tht x + y + z = x + y + z =. x y z We now pply the Cuhy-Shwrtz inequlity to dedue ( x x + y + z = (x + y + z) + y + z ) x + y + z. x y z Prolem 8. (Gzet Mtemtiã, Hojoo Lee) Prove tht, for ll,, > 0, Solution. We otin the hin of equlities nd inequlities = ( ) ( ) yli yli ( ) (Cuhy Shwrtz) yli ( = ) yli ( ) ( ) (AM GM) yli 4 + (Cuhy Shwrtz) yli = 4 +. yli 40

41 Using the sme ide in the proof of the Cuhy-Shwrtz inequlity, we find nturl generliztion : Theorem 5. Let ij (i, j =,, n) e positive rel numers. Then, we hve ( n + + n n ) ( n n + + nn n ) ( n + + n n nn ) n. Proof. Sine the inequlity is homogeneous, s in the proof of the theorem, we n normlize to ( i n + + in n ) n = or i n + + in n = (i =,, n). Then, the inequlity tkes the form n + + n n nn or n i= i in. Hene, it suffies to show tht, for ll i =,, n, i in n, where i + + in =. To finish the proof, it remins to show the following homogeneous inequlity : Theorem 6. (AM-GM inequlity) Let,, n e positive rel numers. Then, we hve + + n n ( n ) n. Proof. Sine it s homogeneous, we my resle,, n so tht n =. Hene, we wnt to show tht n = = + + n n. The proof is y indution on n. If n =, it s trivil. If n =, then we get + = + = ( ) 0. Now, we ssume tht it holds for some positive integer n. And let,, n+ e positive numers suh tht n n+ =. We my ssume tht. (Why?) Sine ( ) n =, y the indution hypothesis, we hve n+ n. Thus, it suffies to show tht + +. However, we hve + = ( )( ) 0. The following simple oservtion is not triky : Let, > 0 nd m, n N. Tke x = = x m = nd x m+ = = x xm+n =. Applying the AM-GM inequlity to x,, x m+n > 0, we otin m + n m + n (m n ) m+n or m m + n + n m + n m n m+n m+n. Hene, for ll positive rtionls ω nd ω with ω + ω =, we get We immeditely hve ω + ω ω ω. Theorem 7. Let ω, ω > 0 with ω + ω =. Then, for ll x, y > 0, we hve ω x + ω y x ω y ω. Proof. We n hoose positive rtionl sequene,,, suh tht And letting i = i, we get From the previous oservtion, we hve lim n = ω. n lim n = ω. n n x + n y x n y n Now, tking the limits to oth sides, we get the result. i Set x i = ( n ) n (i =,, n). Then, we get x x n = nd it eomes x + + x n n. 4

INEQUALITIES. Ozgur Kircak

INEQUALITIES. Ozgur Kircak INEQUALITIES Ozgur Kirk Septemer 27, 2009 2 Contents MEANS INEQUALITIES 5. EXERCISES............................. 7 2 CAUCHY-SCHWARZ INEQUALITY 2. EXERCISES............................. REARRANGEMENT INEQUALITY

More information

INEQUALITIES THROUGH PROBLEMS. 1. Heuristics of problem solving

INEQUALITIES THROUGH PROBLEMS. 1. Heuristics of problem solving INEQUALITIES THROUGH PROBLEMS Hojoo Lee. Heuristis of prolem solving Strtegy or ttis in prolem solving is lled heuristis. Here is summry tken from Prolem-Solving Through Prolems y Loren C. Lrson.. Serh

More information

Topics in Inequalities - Theorems and Techniques. Hojoo Lee

Topics in Inequalities - Theorems and Techniques. Hojoo Lee Topis in Inequlities - Theorems nd Tehniques Hojoo Lee Introdution Inequlities re useful in ll fields of Mthemtis The im of this problem-oriented book is to present elementry tehniques in the theory of

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

How many proofs of the Nebitt s Inequality?

How many proofs of the Nebitt s Inequality? How mny roofs of the Neitt s Inequlity? Co Minh Qung. Introdution On Mrh, 90, Nesitt roosed the following rolem () The ove inequlity is fmous rolem. There re mny eole interested in nd solved (). In this

More information

Inequalities of Olympiad Caliber. RSME Olympiad Committee BARCELONA TECH

Inequalities of Olympiad Caliber. RSME Olympiad Committee BARCELONA TECH Ineulities of Olymid Clier José Luis Díz-Brrero RSME Olymid Committee BARCELONA TECH José Luis Díz-Brrero RSME Olymi Committee UPC BARCELONA TECH jose.luis.diz@u.edu Bsi fts to rove ineulities Herefter,

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

A Study on the Properties of Rational Triangles

A Study on the Properties of Rational Triangles Interntionl Journl of Mthemtis Reserh. ISSN 0976-5840 Volume 6, Numer (04), pp. 8-9 Interntionl Reserh Pulition House http://www.irphouse.om Study on the Properties of Rtionl Tringles M. Q. lm, M.R. Hssn

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

Basics of Olympiad Inequalities. Samin Riasat

Basics of Olympiad Inequalities. Samin Riasat Bsics of Olympid Inequlities Smin Rist ii Introduction The im of this note is to cquint students, who wnt to prticipte in mthemticl Olympids, to Olympid level inequlities from the sics Inequlities re used

More information

CHENG Chun Chor Litwin The Hong Kong Institute of Education

CHENG Chun Chor Litwin The Hong Kong Institute of Education PE-hing Mi terntionl onferene IV: novtion of Mthemtis Tehing nd Lerning through Lesson Study- onnetion etween ssessment nd Sujet Mtter HENG hun hor Litwin The Hong Kong stitute of Edution Report on using

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

Topics in Inequalities - Theorems and Techniques

Topics in Inequalities - Theorems and Techniques Topics in Inequlities - Theorems nd Techniques Hojoo Lee The st edition 8th August, 007 Introduction Inequlities re useful in ll fields of Mthemtics The im of this problem-oriented book is to present elementry

More information

Factorising FACTORISING.

Factorising FACTORISING. Ftorising FACTORISING www.mthletis.om.u Ftorising FACTORISING Ftorising is the opposite of expning. It is the proess of putting expressions into rkets rther thn expning them out. In this setion you will

More information

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS #A42 INTEGERS 11 (2011 ON THE CONDITIONED BINOMIAL COEFFICIENTS Liqun To Shool of Mthemtil Sienes, Luoyng Norml University, Luoyng, Chin lqto@lynuedun Reeived: 12/24/10, Revised: 5/11/11, Aepted: 5/16/11,

More information

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions. Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

ON AN INEQUALITY FOR THE MEDIANS OF A TRIANGLE

ON AN INEQUALITY FOR THE MEDIANS OF A TRIANGLE Journl of Siene nd Arts Yer, No. (9), pp. 7-6, OIGINAL PAPE ON AN INEQUALITY FO THE MEDIANS OF A TIANGLE JIAN LIU Mnusript reeived:.5.; Aepted pper:.5.; Pulished online: 5.6.. Astrt. In this pper, we give

More information

MAT 403 NOTES 4. f + f =

MAT 403 NOTES 4. f + f = MAT 403 NOTES 4 1. Fundmentl Theorem o Clulus We will proo more generl version o the FTC thn the textook. But just like the textook, we strt with the ollowing proposition. Let R[, ] e the set o Riemnn

More information

Learning Objectives of Module 2 (Algebra and Calculus) Notes:

Learning Objectives of Module 2 (Algebra and Calculus) Notes: 67 Lerning Ojetives of Module (Alger nd Clulus) Notes:. Lerning units re grouped under three res ( Foundtion Knowledge, Alger nd Clulus ) nd Further Lerning Unit.. Relted lerning ojetives re grouped under

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Part 4. Integration (with Proofs)

Part 4. Integration (with Proofs) Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

Polynomials. Polynomials. Curriculum Ready ACMNA:

Polynomials. Polynomials. Curriculum Ready ACMNA: Polynomils Polynomils Curriulum Redy ACMNA: 66 www.mthletis.om Polynomils POLYNOMIALS A polynomil is mthemtil expression with one vrile whose powers re neither negtive nor frtions. The power in eh expression

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

( ) { } [ ] { } [ ) { } ( ] { }

( ) { } [ ] { } [ ) { } ( ] { } Mth 65 Prelulus Review Properties of Inequlities 1. > nd > >. > + > +. > nd > 0 > 4. > nd < 0 < Asolute Vlue, if 0, if < 0 Properties of Asolute Vlue > 0 1. < < > or

More information

Chapter 8 Roots and Radicals

Chapter 8 Roots and Radicals Chpter 8 Roots nd Rdils 7 ROOTS AND RADICALS 8 Figure 8. Grphene is n inredily strong nd flexile mteril mde from ron. It n lso ondut eletriity. Notie the hexgonl grid pttern. (redit: AlexnderAIUS / Wikimedi

More information

Bridging the gap: GCSE AS Level

Bridging the gap: GCSE AS Level Bridging the gp: GCSE AS Level CONTENTS Chpter Removing rckets pge Chpter Liner equtions Chpter Simultneous equtions 8 Chpter Fctors 0 Chpter Chnge the suject of the formul Chpter 6 Solving qudrtic equtions

More information

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths Intermedite Mth Cirles Wednesdy 17 Otoer 01 Geometry II: Side Lengths Lst week we disussed vrious ngle properties. As we progressed through the evening, we proved mny results. This week, we will look t

More information

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP QUADRATIC EQUATION EXERCISE - 0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions

More information

LESSON 11: TRIANGLE FORMULAE

LESSON 11: TRIANGLE FORMULAE . THE SEMIPERIMETER OF TRINGLE LESSON : TRINGLE FORMULE In wht follows, will hve sides, nd, nd these will e opposite ngles, nd respetively. y the tringle inequlity, nd..() So ll of, & re positive rel numers.

More information

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations)

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations) KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS 6-7 CLASS - XII MATHEMATICS (Reltions nd Funtions & Binry Opertions) For Slow Lerners: - A Reltion is sid to e Reflexive if.. every A

More information

Integral points on the rational curve

Integral points on the rational curve Integrl points on the rtionl curve y x bx c x ;, b, c integers. Konstntine Zeltor Mthemtics University of Wisconsin - Mrinette 750 W. Byshore Street Mrinette, WI 5443-453 Also: Konstntine Zeltor P.O. Box

More information

MTH 505: Number Theory Spring 2017

MTH 505: Number Theory Spring 2017 MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of $ nd $ s two denomintions of coins nd $c

More information

Algebra 2 Semester 1 Practice Final

Algebra 2 Semester 1 Practice Final Alger 2 Semester Prtie Finl Multiple Choie Ientify the hoie tht est ompletes the sttement or nswers the question. To whih set of numers oes the numer elong?. 2 5 integers rtionl numers irrtionl numers

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Section 4.4. Green s Theorem

Section 4.4. Green s Theorem The Clulus of Funtions of Severl Vriles Setion 4.4 Green s Theorem Green s theorem is n exmple from fmily of theorems whih onnet line integrls (nd their higher-dimensionl nlogues) with the definite integrls

More information

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours Mi-Term Exmintion - Spring 0 Mthemtil Progrmming with Applitions to Eonomis Totl Sore: 5; Time: hours. Let G = (N, E) e irete grph. Define the inegree of vertex i N s the numer of eges tht re oming into

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES CHARLIE COLLIER UNIVERSITY OF BATH These notes hve been typeset by Chrlie Collier nd re bsed on the leture notes by Adrin Hill nd Thoms Cottrell. These

More information

MATH Final Review

MATH Final Review MATH 1591 - Finl Review November 20, 2005 1 Evlution of Limits 1. the ε δ definition of limit. 2. properties of limits. 3. how to use the diret substitution to find limit. 4. how to use the dividing out

More information

University of Sioux Falls. MAT204/205 Calculus I/II

University of Sioux Falls. MAT204/205 Calculus I/II University of Sioux Flls MAT204/205 Clulus I/II Conepts ddressed: Clulus Textook: Thoms Clulus, 11 th ed., Weir, Hss, Giordno 1. Use stndrd differentition nd integrtion tehniques. Differentition tehniques

More information

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable INTEGRATION NOTE: These notes re supposed to supplement Chpter 4 of the online textbook. 1 Integrls of Complex Vlued funtions of REAL vrible If I is n intervl in R (for exmple I = [, b] or I = (, b)) nd

More information

Quadratic reciprocity

Quadratic reciprocity Qudrtic recirocity Frncisc Bozgn Los Angeles Mth Circle Octoer 8, 01 1 Qudrtic Recirocity nd Legendre Symol In the eginning of this lecture, we recll some sic knowledge out modulr rithmetic: Definition

More information

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P. Chpter 7: The Riemnn Integrl When the derivtive is introdued, it is not hrd to see tht the it of the differene quotient should be equl to the slope of the tngent line, or when the horizontl xis is time

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals. MATH 409 Advned Clulus I Leture 22: Improper Riemnn integrls. Improper Riemnn integrl If funtion f : [,b] R is integrble on [,b], then the funtion F(x) = x f(t)dt is well defined nd ontinuous on [,b].

More information

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4. Mth 5 Tutoril Week 1 - Jnury 1 1 Nme Setion Tutoril Worksheet 1. Find ll solutions to the liner system by following the given steps x + y + z = x + y + z = 4. y + z = Step 1. Write down the rgumented mtrix

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

The Evaluation Theorem

The Evaluation Theorem These notes closely follow the presenttion of the mteril given in Jmes Stewrt s textook Clculus, Concepts nd Contexts (2nd edition) These notes re intended primrily for in-clss presenttion nd should not

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design nd Anlysis LECTURE 5 Supplement Greedy Algorithms Cont d Minimizing lteness Ching (NOT overed in leture) Adm Smith 9/8/10 A. Smith; sed on slides y E. Demine, C. Leiserson, S. Rskhodnikov,

More information

TOPIC: LINEAR ALGEBRA MATRICES

TOPIC: LINEAR ALGEBRA MATRICES Interntionl Blurete LECTUE NOTES for FUTHE MATHEMATICS Dr TOPIC: LINEA ALGEBA MATICES. DEFINITION OF A MATIX MATIX OPEATIONS.. THE DETEMINANT deta THE INVESE A -... SYSTEMS OF LINEA EQUATIONS. 8. THE AUGMENTED

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx,

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx, MATH3403: Green s Funtions, Integrl Equtions nd the Clulus of Vritions 1 Exmples 5 Qu.1 Show tht the extreml funtion of the funtionl I[y] = 1 0 [(y ) + yy + y ] dx, where y(0) = 0 nd y(1) = 1, is y(x)

More information

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions MEP: Demonstrtion Projet UNIT 4: Trigonometry UNIT 4 Trigonometry tivities tivities 4. Pythgors' Theorem 4.2 Spirls 4.3 linometers 4.4 Rdr 4.5 Posting Prels 4.6 Interloking Pipes 4.7 Sine Rule Notes nd

More information

Final Exam Review. [Top Bottom]dx =

Final Exam Review. [Top Bottom]dx = Finl Exm Review Are Between Curves See 7.1 exmples 1, 2, 4, 5 nd exerises 1-33 (odd) The re of the region bounded by the urves y = f(x), y = g(x), nd the lines x = nd x = b, where f nd g re ontinuous nd

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 utomt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Prolem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) nton Setzer (Bsed on ook drft y J. V. Tucker nd K. Stephenson)

More information

The Riemann and the Generalised Riemann Integral

The Riemann and the Generalised Riemann Integral The Riemnn nd the Generlised Riemnn Integrl Clvin 17 July 14 Contents 1 The Riemnn Integrl 1.1 Riemnn Integrl............................................ 1. Properties o Riemnn Integrble Funtions.............................

More information

Trigonometry Revision Sheet Q5 of Paper 2

Trigonometry Revision Sheet Q5 of Paper 2 Trigonometry Revision Sheet Q of Pper The Bsis - The Trigonometry setion is ll out tringles. We will normlly e given some of the sides or ngles of tringle nd we use formule nd rules to find the others.

More information

12.4 Similarity in Right Triangles

12.4 Similarity in Right Triangles Nme lss Dte 12.4 Similrit in Right Tringles Essentil Question: How does the ltitude to the hpotenuse of right tringle help ou use similr right tringles to solve prolems? Eplore Identifing Similrit in Right

More information

Hyers-Ulam stability of Pielou logistic difference equation

Hyers-Ulam stability of Pielou logistic difference equation vilble online t wwwisr-publitionsom/jns J Nonliner Si ppl, 0 (207, 35 322 Reserh rtile Journl Homepge: wwwtjnsom - wwwisr-publitionsom/jns Hyers-Ulm stbility of Pielou logisti differene eqution Soon-Mo

More information

Quadratic Forms. Quadratic Forms

Quadratic Forms. Quadratic Forms Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

2. There are an infinite number of possible triangles, all similar, with three given angles whose sum is 180.

2. There are an infinite number of possible triangles, all similar, with three given angles whose sum is 180. SECTION 8-1 11 CHAPTER 8 Setion 8 1. There re n infinite numer of possile tringles, ll similr, with three given ngles whose sum is 180. 4. If two ngles α nd β of tringle re known, the third ngle n e found

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version A Lower Bound for the Length of Prtil Trnsversl in Ltin Squre, Revised Version Pooy Htmi nd Peter W. Shor Deprtment of Mthemtil Sienes, Shrif University of Tehnology, P.O.Bo 11365-9415, Tehrn, Irn Deprtment

More information

Absolute values of real numbers. Rational Numbers vs Real Numbers. 1. Definition. Absolute value α of a real

Absolute values of real numbers. Rational Numbers vs Real Numbers. 1. Definition. Absolute value α of a real Rtionl Numbers vs Rel Numbers 1. Wht is? Answer. is rel number such tht ( ) =. R [ ( ) = ].. Prove tht (i) 1; (ii). Proof. (i) For ny rel numbers x, y, we hve x = y. This is necessry condition, but not

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Fun Gme Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Fun Gme Properties Arrow s Theorem Leture Overview 1 Rep 2 Fun Gme 3 Properties

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

More Properties of the Riemann Integral

More Properties of the Riemann Integral More Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologil Sienes nd Deprtment of Mthemtil Sienes Clemson University Februry 15, 2018 Outline More Riemnn Integrl Properties The Fundmentl

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

PYTHAGORAS THEOREM,TRIGONOMETRY,BEARINGS AND THREE DIMENSIONAL PROBLEMS

PYTHAGORAS THEOREM,TRIGONOMETRY,BEARINGS AND THREE DIMENSIONAL PROBLEMS PYTHGORS THEOREM,TRIGONOMETRY,ERINGS ND THREE DIMENSIONL PROLEMS 1.1 PYTHGORS THEOREM: 1. The Pythgors Theorem sttes tht the squre of the hypotenuse is equl to the sum of the squres of the other two sides

More information

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e Green s Theorem. Let be the boundry of the unit squre, y, oriented ounterlokwise, nd let F be the vetor field F, y e y +, 2 y. Find F d r. Solution. Let s write P, y e y + nd Q, y 2 y, so tht F P, Q. Let

More information

Geometry of the Circle - Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272.

Geometry of the Circle - Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272. Geometry of the irle - hords nd ngles Geometry of the irle hord nd ngles urriulum Redy MMG: 272 www.mthletis.om hords nd ngles HRS N NGLES The irle is si shpe nd so it n e found lmost nywhere. This setion

More information

Linear Inequalities. Work Sheet 1

Linear Inequalities. Work Sheet 1 Work Sheet 1 Liner Inequlities Rent--Hep, cr rentl compny,chrges $ 15 per week plus $ 0.0 per mile to rent one of their crs. Suppose you re limited y how much money you cn spend for the week : You cn spend

More information

Section 3.6. Definite Integrals

Section 3.6. Definite Integrals The Clulus of Funtions of Severl Vribles Setion.6 efinite Integrls We will first define the definite integrl for funtion f : R R nd lter indite how the definition my be extended to funtions of three or

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

Bisimulation, Games & Hennessy Milner logic

Bisimulation, Games & Hennessy Milner logic Bisimultion, Gmes & Hennessy Milner logi Leture 1 of Modelli Mtemtii dei Proessi Conorrenti Pweł Soboiński Univeristy of Southmpton, UK Bisimultion, Gmes & Hennessy Milner logi p.1/32 Clssil lnguge theory

More information

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE RGMIA Reserch Report Collection, Vol., No., 998 http://sci.vut.edu.u/ rgmi SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE S.S. DRAGOMIR Astrct. Some clssicl nd new integrl inequlities of Grüss type re presented.

More information

AP Calculus AB Unit 4 Assessment

AP Calculus AB Unit 4 Assessment Clss: Dte: 0-04 AP Clulus AB Unit 4 Assessment Multiple Choie Identify the hoie tht best ompletes the sttement or nswers the question. A lultor my NOT be used on this prt of the exm. (6 minutes). The slope

More information

Coalgebra, Lecture 15: Equations for Deterministic Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

More information

THE PYTHAGOREAN THEOREM

THE PYTHAGOREAN THEOREM THE PYTHAGOREAN THEOREM The Pythgoren Theorem is one of the most well-known nd widely used theorems in mthemtis. We will first look t n informl investigtion of the Pythgoren Theorem, nd then pply this

More information

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r CO-ORDINTE GEOMETR II I Qudrnt Qudrnt (-.+) (++) X X - - - 0 - III IV Qudrnt - Qudrnt (--) - (+-) Region CRTESIN CO-ORDINTE SSTEM : Retngulr Co-ordinte Sstem : Let X' OX nd 'O e two mutull perpendiulr

More information

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved. Clculus Module C Ares Integrtion Copright This puliction The Northern Alert Institute of Technolog 7. All Rights Reserved. LAST REVISED Mrch, 9 Introduction to Ares Integrtion Sttement of Prerequisite

More information

Green function and Eigenfunctions

Green function and Eigenfunctions Green function nd Eigenfunctions Let L e regulr Sturm-Liouville opertor on n intervl (, ) together with regulr oundry conditions. We denote y, φ ( n, x ) the eigenvlues nd corresponding normlized eigenfunctions

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

440-2 Geometry/Topology: Differentiable Manifolds Northwestern University Solutions of Practice Problems for Final Exam

440-2 Geometry/Topology: Differentiable Manifolds Northwestern University Solutions of Practice Problems for Final Exam 440-2 Geometry/Topology: Differentible Mnifolds Northwestern University Solutions of Prctice Problems for Finl Exm 1) Using the cnonicl covering of RP n by {U α } 0 α n, where U α = {[x 0 : : x n ] RP

More information

The Intouch Triangle and the OI-line

The Intouch Triangle and the OI-line Forum Geometriorum Volume 4 004 15 134. FORUM GEOM ISSN 1534-1178 The Intouh Tringle nd the OI-line Eri Dnneel Abtrt. We prove ome intereting reult relting the intouh tringle nd the OI line of tringle.

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design nd Anlysis LECTURE 8 Mx. lteness ont d Optiml Ching Adm Smith 9/12/2008 A. Smith; sed on slides y E. Demine, C. Leiserson, S. Rskhodnikov, K. Wyne Sheduling to Minimizing Lteness Minimizing

More information

Non Right Angled Triangles

Non Right Angled Triangles Non Right ngled Tringles Non Right ngled Tringles urriulum Redy www.mthletis.om Non Right ngled Tringles NON RIGHT NGLED TRINGLES sin i, os i nd tn i re lso useful in non-right ngled tringles. This unit

More information

16z z q. q( B) Max{2 z z z z B} r z r z r z r z B. John Riley 19 October Econ 401A: Microeconomic Theory. Homework 2 Answers

16z z q. q( B) Max{2 z z z z B} r z r z r z r z B. John Riley 19 October Econ 401A: Microeconomic Theory. Homework 2 Answers John Riley 9 Otober 6 Eon 4A: Miroeonomi Theory Homework Answers Constnt returns to sle prodution funtion () If (,, q) S then 6 q () 4 We need to show tht (,, q) S 6( ) ( ) ( q) q [ q ] 4 4 4 4 4 4 Appeling

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Voting Prdoxes Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Voting Prdoxes Properties Arrow s Theorem Leture Overview 1 Rep

More information