INEQUALITIES. Ozgur Kircak

Size: px
Start display at page:

Download "INEQUALITIES. Ozgur Kircak"

Transcription

1 INEQUALITIES Ozgur Kirk Septemer 27, 2009

2 2

3 Contents MEANS INEQUALITIES 5. EXERCISES CAUCHY-SCHWARZ INEQUALITY 2. EXERCISES REARRANGEMENT INEQUALITY 7. EXERCISES CHEBYSHEV S INEQUALITY 2 4. EXERCISES MIXED PROBLEMS 25 6 PROBLEMS FROM OLYMPIADS Yers Yers Supplementry Prolems

4 4 CONTENTS

5 Chpter MEANS INEQUALITIES Definition Arithmeti men of, 2,..., n is AM = n n Definition 2 Geometri men of, 2,..., n is GM = n 2... n Definition Hrmoni men of, 2,..., n is HM = Definition 4 Qudrti men of, 2,..., n is QM = n n n n Definition 5 The rth power men of, 2,..., n is P r = r r + r r n n Theorem Let i R + QM(, 2,..., n ) AM(, 2,..., n ) GM(, 2,..., n ) HM(, 2,..., n ) nd equlity holds if nd only if = 2 =... = n. Theorem 2 Let i R + then P r P r2 whenever r r 2. Exmple Let,, > 0, prove tht Solution: By AM-GM inequlity we hve Similrly, nd Adding these three inequlities we get 2( ) 2( + + ) = Let s link this result sine we will use it in mny prolems (.) 5

6 6 CHAPTER. MEANS INEQUALITIES Exmple 2 Prove tht if,, > 0, then + +. Solution: By AM-GM we hve + + =. So, + +. Exmple Prove tht for ny positive rel numers,, we hve ( + + ). Solution: By AM-HM inequlity, we hve = 2( + + ). Therefore, ( + + ). Exmple 4 Prove tht if,, > 0 then Solution: By the previous exmple we hve, + 2. (.2) ( + + )[ ] This inequlity is lled Nesitt s inequlity. Exmple 5 Prove tht + + < 2. Solution: By AM P we hve, ( + ) + ( ) 2 =. Sine the terms re not equl we hve strit inequlity. So, + + < 2.

7 .. EXERCISES 7. EXERCISES. Prove tht for ny positive rel numers,, we hve ( + 2)( + )( + 6) Prove tht if,, > 0, then ( + )( + )( + ) 8.. Prove tht if,, > 0, then 4. Prove tht if,, > 0, then 5. Prove tht if x, y > 0 then, x x 4 + y 2 + y x 2 + y 4 xy. 6. Prove tht ( + )( + )( + ) if (),, re sides of tringle (),, re positive rel numers. 7. Prove tht if,, > 0 nd =, then Prove tht if x, y, z re rel numers with z > 0, then x 2 + y 2 + 2z 2 + 4z x + y Prove tht the inequlity ( + + ) 2 2( + ) holds for ny rel numers,,. 0. Prove tht if x, y, z > 0, then () xy + yz + zx x + y + z. () x2 y + y2 2 z + z2 2 x x 2 z + z y + y x. () x2 y + y2 z + z2 x x y z + y z x + z x y. (d) x 4 + y 4 + z 4 xyz( xy + yz + zx).

8 8 CHAPTER. MEANS INEQUALITIES. Prove tht if x, y > 0, then x + y 4x + 4y. 2. Let,, 0 nd + +. Prove tht Prove the inequlity x 4 + y xy for positive rel numers x, y. 4. Prove tht if nd re positive rel numers, then ( + )n + ( + )n 2 n+. 5. Prove tht if p, q > 0 nd p + q =, then (p + p )2 + (q + q ) Prove tht if x + y + z = then, 8( ( ) 2 xy yz zx) (x + y) 2 + (y + z) 2 + (z + x) Prove tht if, 2,..., n re distint positive rel numers nd n = S, then S S + 8. Find the minimum vlue of S S S S n > n2 n where, 2,..., 2009 > 0 nd =. 9. Prove tht for ny x R we hve x 2 +x Let x, y. Prove tht x y + y x xy. 2. Prove the inequlity x2 +2 x2 2 for ny x R Let x > y > 0 nd xy =. Prove tht x2 +y 2 x y > Prove tht if x > y 0, then x + 4 (x y)(y+) 2.

9 .. EXERCISES Prove tht if,, > 0 then Prove tht if + + =, then Prove tht if + + =, then Let,, e positive rel numers suh tht =. Prove tht 28. Prove tht the inequlity holds for ny rel numers,,. 29. Prove tht if x, y, z > 0, then ( + + )2 + + x 2 y 2 + y2 z 2 + z2 x 2 x y + y z + z x. 0. Prove tht if x + y = 2, then x + y 2.. Let,, e positive rel numers with + + = 24. Prove tht Prove tht if,, > 0, then ++d +. Prove tht if +, then Let,, > 0. Prove tht d + ++d Prove tht for positive rel numers x, y, z we hve x x + 2y + 2z + 6. Prove tht if,, > 0, then y y + 2z + 2x z z + 2x + 2y d Prove the inequlity 2 x + 2 x < x < 2 x 2 x for x. 8. Prove tht if,, > 0 then ( + ) + ( + ) + ( + ) 27 2( + + ) 2.

10 0 CHAPTER. MEANS INEQUALITIES 9. Prove tht for x, y > 0, ( + x) + 2 ( + y) 2 2 x + y Prove tht if,, > 0 then 4. Prove tht if,, > 0, then 42. Solve the system in R d = 2 d = d + + d + d. 4. Solve the system in the set of rel numers 44. Solve the system where x, y, z R 4x 2 4x 2 + = y, 4y 2 4y 2 + = z, 4z 2 4z 2 + = x. x + 2 x = 2y, y + 2 y = 2z, z + 2 z = 2x. 45. Find the positive rel numers x, y, z, t stisfying the system 6xyzt = (x 2 + y 2 + z 2 + t 2 )(xyz + xyt + xzt + yzt), 8 = 2xy + 2zt + xz + xt + yz + yt.

11 Chpter 2 CAUCHY-SCHWARZ INEQUALITY Theorem (Cuhy-Shwrz)If x i, y i re rel numers, then (x 2 + x x 2 n)(y 2 + y y 2 n) (x y + x 2 y x n y n ) 2 nd equlity holds if nd only if x y = x2 y 2 =... = xn y n. Exmple 6 Prove tht (++)2 for ny rel numers,,. Solution: By Cuhy-Shwrz we hve tht ( )( ) ( + + ) 2 = ( + + ) 2. Therefore, (++)2. Exmple 7 Let x, y, z e positive rel numers. Prove tht x 2 x + y + y2 y + z + z2 z + x x + y + z 2 Solution: By Cuhy-Shwrz inequlity we hve [( x + y) 2 + ( y + z) 2 + ( ( ) z + x) 2 x ] ( ) 2 y + ( ) 2 z + ( ) 2 x + y y + z z + x ( x + y x x + y + y + z y y + z + z + x. z z + x ) 2 = (x + y + z) 2 ( ) x So, wht we got is (2x + 2y + 2z) 2 x+y + y2 y+z + z2 z+x x Therefore, 2 x+y + y2 y+z + z2 z+x x+y+z 2. (x + y + z) 2.

12 2 CHAPTER 2. CAUCHY-SCHWARZ INEQUALITY This is very useful trik tht n e pplied to mny prolems. We n generlize this result s: x 2 y + x2 2 y x2 n y n (x + x x n ) 2 y + y y n (2.) Exmple 8 Let,, > 0. Prove tht Solution: We n write + = 4 +. So y (2.) we hve + = 4 + nd similrly + = 4 + nd LHS = y (.) s desired ( ) 2 2( + + )

13 2.. EXERCISES 2. EXERCISES 46. Prove tht the inequlity x 2 +y 2 +z 2 (x+2y+z)2 4 holds for ny x, y, z R. 47. Prove tht if,, > 0, then ( + + )( + + ) Prove tht if x, y > 0 nd x + y = then x 2 + y ,,, x, y, z re rel numers nd = 6, x 2 + y 2 + z 2 = 25 nd x + y + z = 20. Compute ++ x+y+z. 50. Prove tht if, > 0, then + 5. Solve the system where x i R x + x x k = 9 x + x x k = 52. Prove tht if,, re positive rel numers with =, then Prove tht if x, y, z > 0 nd x + y + z =, then 8( ( ) 2 xy yz zx) (x + y) 2 + (y + z) 2 + (z + x) Prove tht if,, > 0 then ( + ) 2 + ( + ) 2 + ( + ) 2 9 4( + + ). 55. Prove tht if,,, d re positive rel numers, then d d. 56. Let,,, d e positive rel numers. Prove tht ( + )( + d) + d. 57. Let > > 0 nd > > 0. Prove tht ( ) + ( ).

14 4 CHAPTER 2. CAUCHY-SCHWARZ INEQUALITY 58. Let,, > 0 with + + =. Prove tht Let,, > 0 with =. Prove tht Let,, e positive rel numers suh tht =. Prove tht Let,,, x, y, z e positive rel numers suh tht x + y + z =. Prove tht x + y + z + 2 (xy + yz + zx)( + + ) Let,, e positive rel numers. Prove tht 6. Prove tht if,,, x, y, z > 0, then x 4 + y4 + z4 (x + y + z)4 ( + + ). 64. Prove tht if,, re positive rel numers, then Prove tht if,, re positive rel numers, then Prove tht if,, > 0, then Let,,, d e positive rel numers suh tht ( ) = 2 + d 2. Prove tht + d.

15 2.. EXERCISES Let, e positive rel numers. Prove tht Let,, > 0 with =. Prove tht Prove tht if,,, x, y, z > 0 nd ( ) = x 2 + y 2 + z 2, then x + y + z. 7. Prove tht if,, re positive rel numers, then ( + ) Let,,, d 0 with + + d + d =. Prove tht + + d d d + d Let, 2,..., n ;, 2,..., n e positive rel numers suh tht n = n. Show tht Let,, > 0. Prove tht ( + ) 2 + ( + ) Let,, > 0 with + + =. Prove tht 2 n n n + n 2 ( + ) 2 9 4( ). 2 ( + ) ( + ) ( + )

16 6 CHAPTER 2. CAUCHY-SCHWARZ INEQUALITY

17 Chpter REARRANGEMENT INEQUALITY Definition 6 Let 2... n nd 2... n. The numer A = n n is lled ordered sum nd the numer B = n + 2 n n is lled reversed sum. And if x, x 2,..., x n is permuttion of, 2,..., n then X = x + 2 x n x n is lled mixed sum. Theorem 4 Let 2... n nd 2... n e given. For ny mixed sum X we hve B X A. Exmple 9 Prove tht for positive rel numers,, the inequlity holds. Solution: Sine the inequlity is symmetri, WLOG we n ssume tht. So y Rerrngement inequlity, eing the ordered sum = Exmple 0 Prove tht if,, re positive rel numers, then Solution: WLOG, we n ssume tht. Then nd. By Rerrngement inequlity we hve, LHS = =

18 8 CHAPTER. REARRANGEMENT INEQUALITY Exmple Prove tht if,, re positive rel numers, then Solution: By symmetry ssume tht then nd. By Rerrngement inequlity we hve tht LHS = = And gin y Rerrngement inequlity, eing the reversed sum + + = Comining these two inequlities we get tht. EXERCISES Let,, e positive rel numers. Prove tht () + ( + ) () ( + ) () (d) (e) (f) (g) ( + + ) (h) Prove tht if,, re positive rel numers, then Let x i R + nd y, y 2,..., y n e permuttion of x, x 2,..., x n. Prove tht x 2 y + x2 2 y x2 n y n x + x x n. 79. Let x, x 2,..., x n e positive rel numers. Prove tht x 2 x 2 + x2 2 x x2 n x x + x x n.

19 .. EXERCISES Let, 2,..., n e distint positive integers. Prove tht 8. Prove tht if for ny,, we hve then = = n n n Let 2 nd 2. Prove tht ( )( )

20 20 CHAPTER. REARRANGEMENT INEQUALITY

21 Chpter 4 CHEBYSHEV S INEQUALITY Theorem 5 Let 2... n nd 2... n. Then n n n ( n )( n ) n + 2 n n. Exmple 2 Prove tht ( + + )2. Solution: By Cheyshev s inequlity, = + + ( + + )( + + ) = ( + + )2. Exmple Let,, > 0. Prove tht Solution: Due to symmetry, we n ssume tht then So y Cheyshev s inequlity we hve And y AM-HM we hve + ( + + )( ) (4.) ( ) = 2( + + ) Comining (4.) nd (4.2) we get, (4.2)

22 22 CHAPTER 4. CHEBYSHEV S INEQUALITY Exmple 4 Prove tht if,, > 0 nd =, then Solution: WLOG, suppose tht. Then nd So y Cheyshev s inequlity we hve, ( )( ) By Exmple nd (4.2) we hve tht ( )( ( + + )2 ) + 4. EXERCISES 8. Prove tht if,, > 0. then () + (+)(2 + 2 ) 2 () n+ + n+ n + n + 2 () ( + + ) (d) + + (++) Prove tht if,, > 0, then Prove tht if,, > 0, then Prove tht if,, > 0 nd =, then 87. Prove tht if,, > 0, then = ( + + ) = 2

23 4.. EXERCISES Prove tht if,, > 0 with =, then Let,,, d 0 with + + d + d =. Prove tht + + d d d + d 90. Prove tht if,, > 0, then Prove tht if,, > 0, then Prove tht if,, > 0 nd = then Let x, y, z e positive rel numers with xyz = nd. Prove tht x y + z + y z + x + z x + y Prove tht if,, > 0 with + + =, then Prove tht if,, > 0 then Let,, > 0. Prove tht ( + + )

24 24 CHAPTER 4. CHEBYSHEV S INEQUALITY

25 Chpter 5 MIXED PROBLEMS 97. Prove tht if,, > 0 nd =, then Prove tht if,, > 0 nd =, then 99. Prove tht if x, y, z > 0 then xy x 2 + xy + yz Prove tht if x, y, z > 0 then xy x 2 + 2y 2 + z 2 + yz y 2 + yz + zx + yz y 2 + 2z 2 + x Prove tht if,, > 0 nd =, then zx z 2 + zx + xy. zx z 2 + 2x 2 + y Let,, e rel numers suh tht =. Prove tht (IMO95/2) Let,, nd e positive rel numers suh tht =. Prove tht ( + ) + ( + ) + ( + ) 2. 25

26 26 CHAPTER 5. MIXED PROBLEMS 04. Let,, > 0 with + + =. Prove tht (IMO2000/2) Let,, e positive rel numers with produt. Prove tht ( + )( + )( + ). 06. Prove tht if,, > 0 nd =, then Let,, e positive rel numers suh tht. Prove tht Let,, e positive rel numers suh tht =. Prove tht If,, (0, ), then prove tht + ( )( )( ) <. 0. Prove tht 2 + ( ) ( ) ( ) for ritrry rel numers,,.. Prove tht ( ) for ny rel numers nd. 2. (Russi2002) Let x, y, z e positive rel numers with sum. Prove tht x + y + z xy + yz + zx.. Let,, e positive rel numers. Prove tht 4. Prove tht for positive rel numers,,.

27 27 5. Prove tht if,, > 0, then ( + + ) (IMO200/2)Let,, e positive rel numers. Prove tht Prove tht if,, re positive, then Prove tht for positive rel numers,,, d the inequlity holds + d ( + + )( + + d). 9. Let x, y, z e positive rels with x + y + z = nd let = x 2 + xy + y 2, = y 2 + yz + z 2, = z 2 + zx + x 2. Prove tht Let,, > 0. Prove tht ( + + ). 2. Let,, > 0 with =. Prove tht ( + )( + )( + ) If x, y > 0 nd x 2 + y x + y 4. Prove tht x + y Let,, e positive rel numers. Prove tht ( ). 24. Prove tht if,, re positive rel numers with + + =, then Let,, > 0 with =. Prove tht

28 28 CHAPTER 5. MIXED PROBLEMS 26. (Mthemtil Exliur) Let x, y, z >. Prove tht x 4 (y ) 2 + y 4 (z ) 2 + z 4 (x ) (MMO/2009) Let,, > 0 suh tht + + =. Prove tht Prove tht x, y, z R + we hve: x Let x, y, z > 0. Prove tht 0. Prove tht if,, > 0, then x yz + yz 4 2. x y(x 2 + 2y 2 ) + y z(y 2 + 2z 2 ) + z x(z 2 + 2x 2 ) Prove tht if,, > 0 with =, then Prove tht if x, y, z > 0, then x 2 z 2 + y 4 + y 2 z 2 yz(xz + y 2 + yz).. Let,, > 0 with ( + )( + )( + ) = 8. Prove tht Let x, y, z e positive rels. Prove tht yz 2x 2 + yz zx 2y 2 + zx + 5. Let x, y, z e positive rels. Prove tht 6. Let,, x, y, z R +. Prove tht xy 2z 2 + xy. x 2 2x 2 + yz + y 2 2y 2 + zx + z 2 2z 2 + xy. x y + z + y z + x + z x + y +.

29 Chpter 6 PROBLEMS FROM OLYMPIADS (From Inequlities Through Prolems -Hojoo Lee) (BMO 2005, Proposed y Seri nd Montenegro) (,, > 0) ( ) (Romni 2005, Cezr Lupu) (,, > 0) (Romni 2005, Trin Tmin) (,, > 0) d + + 2d + + d d (Romni 2005, Cezr Lupu) ( ,,, > 0) (Romni 2005, Cezr Lupu) ( = ( + )( + )( + ),,, > 0)

30 0 CHAPTER 6. PROBLEMS FROM OLYMPIADS 6 (Romni 2005, Roert Szsz) ( + + =,,, > 0) ( 2)( 2)( 2) 7 (Romni 2005) (,,, > 0) (Romni 2005, Unused) ( =,,, > 0) 2 ( + ) + 2 ( + ) + 2 ( + ) 2 9 (Romni 2005, Unused) ( ,,, > 0) ( + ) + ( + ) + ( + ) 2 0 (Romni 2005, Unused) ( + + =,,, > 0) (Romni 2005, Unused) ( =,,, > 0) (Chzeh nd Solvk 2005) ( =,,, > 0) ( + )( + ) + ( + )( + ) + ( + )( + ) 4 (Jpn 2005) ( + + =,,, > 0) ( + ) + ( + ) + ( + )

31 4 (Germny 2005) ( + + =,,, > 0) ( ) (Vietnm 2005) (,, > 0) ( ) ( ) ( ) (Chin 2005) ( + + =,,, > 0) 0( + + ) 9( ) 7 (Chin 2005) (d =,,,, d > 0) ( + ) 2 + ( + ) 2 + ( + ) 2 + ( + d) 2 8 (Chin 2005) ( + + =,,, 0) (Polnd 2005) (0,, ) (Polnd 2005) ( + + =,,, > 0) (Blti Wy 2005) ( =,,, > 0)

32 2 CHAPTER 6. PROBLEMS FROM OLYMPIADS 22 (Seri nd Montenegro 2005) (,, > 0) ( + + ) 2 2 (Seri nd Montenegro 2005) ( + + =,,, > 0) (Bosni nd Heregovin 2005) ( + + =,,, > 0) (Irn 2005) (,, > 0) ( + + ) 2 ( ( + + ) + + ) 26 (Austri 2005) (,,, d > 0) d d d 27 (Moldov 2005) ( =,,, > 0) (APMO 2005) ( = 8,,, > 0) 2 ( + )( + ) + 2 ( + )( + ) + 2 ( + )( + ) 4 29 (IMO 2005) (xyz, x, y, z > 0) x 5 x 2 x 5 + y 2 + z 2 + y5 y 2 y 5 + z 2 + x 2 + z5 z 2 z 5 + x 2 + y 2 0

33 0 (Polnd 2004) ( + + = 0,,, R) (Blti Wy 2004) ( =,,, > 0, n N) n + n + + n + n + + n + n + 2 (Junior Blkn 2004) ((x, y) R 2 {(0, 0)}) 2 2 x 2 + y 2 x + y x 2 xy + y 2 (IMO Short List 2004) ( + + =,,, > 0) (APMO 2004) (,, > 0) ( 2 + 2)( 2 + 2)( 2 + 2) 9( + + ) 5 (USA 2004) (,, > 0) ( )( )( ) ( + + ) 6 (Junior BMO 200) (x, y, z > ) + x 2 + y + z y2 + z + x z2 + x + y (USA 200) (,, > 0) (2 + + ) 2 (2 + + )2 (2 + + ) ( + ) ( + ) ( + ) 2 8

34 4 CHAPTER 6. PROBLEMS FROM OLYMPIADS 8 (Russi 2002) (x + y + z =, x, y, z > 0) x + y + z xy + yz + zx ( ) 9 (Ltvi 2002) d =,,,, d > 0 4 d 40 (Alni 2002) (,, > 0) + ( ( ) + + ) (Belrus 2002) (,,, d > 0) ( + )2 + ( + d) 2 2 d + ( + )2 + ( + d) d 2 ( + ) 2 + ( + d) (Cnd 2002) (,, > 0) (Vietnm 2002, Dung Trn Nm) ( = 9,,, R) 2( + + ) 0 44 (Bosni nd Heregovin 2002) ( =,,, R) (Junior BMO 2002) (,, > 0) ( + ) + ( + ) + ( + ) 27 2( + + ) 2

35 5 46 (Greee 2002) ( =,,, > 0) ( + + ) (Greee 2002) ( 0, 2 0,,, R) 0( ) (Tiwn 2002) (,,, d ( 0, 2 ]) d ( )( )( )( d) d 4 ( ) 4 + ( ) 4 + ( ) 4 + ( d) 4 49 (APMO 2002) ( x + y + z =, x, y, z > 0) x + yz + y + zx + z + xy xyz + x + y + z 50 (Irelnd 200) (x + y = 2, x, y 0) x 2 y 2 (x 2 + y 2 ) 2. 5 (BMO 200) ( + +,,, 0) (USA 200) ( = 4,,, 0) (Columi 200) (x, y R) (x + y + ) 2 + xy

36 6 CHAPTER 6. PROBLEMS FROM OLYMPIADS 54 (KMO Winter Progrm Test 200) (,, > 0) ( ) ( ) + ( + ) ( + ) ( + ) 55 (KMO Summer Progrm Test 200) (,, > 0) (IMO 200) (,, > 0) Yers (IMO 2000, Titu Andreesu) ( =,,, > 0) ( + ) ( + ) ( + ) 58 (Czeh nd Slovki 2000) (, > 0) ( 2( + ) + ) + 59 (Hong Kong 2000) ( =,,, > 0) (Czeh Repuli 2000) (m, n N, x [0, ]) ( x n ) m + ( ( x) m ) n

37 6.. YEARS (Medoni 2000) (x, y, z > 0) x 2 + y 2 + z 2 2 (xy + yz) 62 (Russi 999) (,, > 0) > 6 (Belrus 999) ( =,,, > 0) (Czeh-Slovk Mth 999) (,, > 0) (Moldov 999) (,, > 0) ( + ) + ( + ) + ( + ) (United Kingdom 999) (p + q + r =, p, q, r > 0) 7(pq + qr + rp) 2 + 9pqr 67 (Cnd 999) (x + y + z =, x, y, z 0) x 2 y + y 2 z + z 2 x (Proposed for 999 USAMO, [AB, pp.25]) (x, y, z > ) x x2 +2yz y y2 +2zx z z2 +2xy (xyz) xy+yz+zx

38 8 CHAPTER 6. PROBLEMS FROM OLYMPIADS 69 (Turkey, 999) ( 0) ( + )( + 4)( + 2) (Medoni 999) ( =,,, > 0) (Polnd 999) ( + + =,,, > 0) (Cnd 999) (x + y + z =, x, y, z 0) x 2 y + y 2 z + z 2 x (Irn 998) ( x + y + z = 2, x, y, z > ) x + y + z x + y + z 74 (Belrus 998, I. Gorodnin) (,, > 0) (APMO 998) (,, > 0) ( + ) ( + ) ( + ) 2 ( ) 76 (Polnd 998) ( d + e + f =, e + df 08,,, d, e, f > 0) + d + de + def + ef + f 6

39 6.. YEARS (Kore 998) (x + y + z = xyz, x, y, z > 0) x 2 + y 2 + z (Hong Kong 998) (,, ) + + ( + ) 79 (IMO Short List 998) (xyz =, x, y, z > 0) x ( + y)( + z) + y ( + z)( + x) + z ( + x)( + y) 4 80 (Belrus 997) (, x, y, z > 0) + y + x x + + z + x y + + x + y z x + y + z + z + z x + + x + y y + + y + z z 8 (Irelnd 997) ( + +,,, 0) (Irn 997) (x x 2 x x 4 =, x, x 2, x, x 4 > 0) ) x + x 2 + x + x 4 mx (x + x 2 + x + x 4, x + x2 + x + x4 8 (Hong Kong 997) (x, y, z > 0) + 9 xyz(x + y + z + x 2 + y 2 + z 2 ) (x 2 + y 2 + z 2 )(xy + yz + zx) 84 (Belrus 997) (,, > 0)

40 40 CHAPTER 6. PROBLEMS FROM OLYMPIADS 85 (Bulgri 997) ( =,,, > 0) (Romni 997) (xyz =, x, y, z > 0) x 9 + y 9 x 6 + x y + y 6 + y 9 + z 9 y 6 + y z + z 6 + z 9 + x 9 z 6 + z x + x (Romni 997) (,, > 0) (USA 997) (,, > 0) (Jpn 997) (,, > 0) ( + ) 2 ( + )2 ( + )2 ( + ) ( + ) ( + ) (Estoni 997) (x, y R) x 2 + y 2 + > x y y x (APMC 996) (x + y + z + t = 0, x 2 + y 2 + z 2 + t 2 =, x, y, z, t R) xy + yz + zt + tx 0 92 (Spin 996) (,, > 0) ( )( )

41 6.. YEARS (IMO Short List 996) ( =,,, > 0) (Polnd 996) ( + + =,,, ) (Hungry 996) ( + =,, > 0) (Vietnm 996) (,, R) ( + ) 4 + ( + ) 4 + ( + ) ( ) 97 (Berus 996) (x + y + z = xyz, x, y, z > 0) xy + yz + zx 9(x + y + z) 98 (Irn 996) (,, > 0) ( ) ( + + ) ( + ) 2 + ( + ) 2 + ( + ) (Vietnm 996) (2( + + d + + d + d) + + d + d + d = 6,,,, d 0) d 2 ( + + d + + d + d)

42 42 CHAPTER 6. PROBLEMS FROM OLYMPIADS 6.2 Yers Any good ide n e stted in fifty words or less. S. M. Ulm 00 (Blti Wy 995) (,,, d > 0) d d + d + d (Cnd 995) (,, > 0) (IMO 995, Nzr Agkhnov) ( =,,, > 0) ( + ) + ( + ) + ( + ) 2 0 (Russi 995) (x, y > 0) xy x x 4 + y 2 + y y 4 + x 2 04 (Medoni 995) (,, > 0) (APMC 995) (m, n N, x, y > 0) (n )(m )(x n+m +y n+m )+(n+m )(x n y m +x m y n ) nm(x n+m y+xy n+m ) 06 (Hong Kong 994) (xy + yz + zx =, x, y, z > 0) x( y 2 )( z 2 ) + y( z 2 )( x 2 ) + z( x 2 )( y 2 ) 4 9

43 6.2. YEARS (IMO Short List 99) (,,, d > 0) d + + 2d (APMC 99) (, 0) ( ) d d ( ) 09 (Polnd 99) (x, y, u, v > 0) xy + xv + uy + uv x + y + u + v xy x + y + uv u + v 0 (IMO Short List 99) ( d =,,,, d > 0) (Itly 99) (0,, ) + d + d + d d (Polnd 992) (,, R) ( + ) 2 ( + ) 2 ( + ) 2 ( )( )( ) (Vietnm 99) (x y z > 0) x 2 y z + y2 z x + z2 x y x2 + y 2 + z 2 4 (Polnd 99) (x 2 + y 2 + z 2 = 2, x, y, z R) x + y + z 2 + xyz 5 (Mongoli 99) ( = 2,,, R) (IMO Short List 990) ( + + d + d =,,,, d > 0) + + d + + d + + d d + +

44 44 CHAPTER 6. PROBLEMS FROM OLYMPIADS 6. Supplementry Prolems 7 (Lithuni 987) (x, y, z > 0) x x 2 + xy + y 2 + y y 2 + yz + z 2 + z z 2 + zx + x 2 x + y + z 8 (Yugoslvi 987) (, > 0) 2 ( + )2 + 4 ( + ) + 9 (Yugoslvi 984) (,,, d > 0) d + d + + d (IMO 984) (x + y + z =, x, y, z 0) 0 xy + yz + zx 2xyz (USA 980) (,, [0, ]) ( )( )( ) (USA 979) (x + y + z =, x, y, z > 0) x + y + z + 6xyz 4. 2 (IMO 974) (,,, d > 0) < + + d d + d + + d < 2

45 6.. SUPPLEMENTARY PROBLEMS (IMO 968) (x, x 2 > 0, y, y 2, z, z 2 R, x y > z 2, x 2 y 2 > z 2 2 ) x y z 2 + x 2 y 2 z (x + x 2 )(y + y 2 ) (z + z 2 ) 2 25 (Nesitt s inequlity) (,, > 0) (Poly s inequlity) (,, > 0) ( ) ln ln 2 27 (Klmkin s inequlity) ( < x, y, z < ) ( x)( y)( z) + ( + x)( + y)( + z) 2 28 (Crlson s inequlity) (,, > 0) ( + )( + )( + ) ([ONI], Vsile Cirtoje) (,, > 0) ( + ) ( + ) + ( + ) ( + ) + ( + ) ( + ) 0 ([ONI], Vsile Cirtoje) (,,, d > 0) d + d d + + d + 0

46 46 CHAPTER 6. PROBLEMS FROM OLYMPIADS (Elemente der Mthemtik, Prolem 207, Sefket Arslngić) (x, y, z > 0) x y + y z + z x x + y + z xyz 2 ( W URZEL, Wlther Jnous) (x + y + z =, x, y, z > 0) ( + x)( + y)( + z) ( x 2 ) 2 + ( y 2 ) 2 + ( z 2 ) 2 ( W URZEL, Heinz-Jürgen Seiffert) (xy > 0, x, y R) 2xy x + y + x2 + y 2 xy + x + y ( W URZEL, Šefket Arslngić) (,, > 0) x + y + ( + + ) z (x + y + z) 5 ( W URZEL, Šefket Arslngić) ( =,,, > 0) 2 ( + ) + 2 ( + ) + 2 ( + ) 2. 6 ( W URZEL, Peter Strek, Donuwörth) ( =,,, > 0) + + ( + ) ( + ) ( + ). 2 7 ( W URZEL, Peter Strek, Donuwörth) (x+y+z =, x 2 +y 2 +z 2 = 7, x, y, z > 0) + 6 xyz ( x z + y x + z ) y

47 6.. SUPPLEMENTARY PROBLEMS 47 8 ( W URZEL, Šefket Arslngić) (,, > 0) ( + + ) (, 0) ( + ) + ( + ) 2 ( + 2 ) + 2 ( + 2 ) 40 (Ltvi 997) (n N,,, > 0) n < n ( + n) 4 ([ONI], Griel Dospinesu, Mire Lsu, Mrin Tetiv) (,, > 0) ( + )( + )( + ) 42 (Gzet Mtemtiã) (,, > 0) (C 262, Mohmmed Assil) (,, > 0) (C2580) (,, > 0) (C258) (,, > 0) CRUX with MAYHEM

48 48 CHAPTER 6. PROBLEMS FROM OLYMPIADS 46 (C252) ( =,,, > 0) ( + + ) 47 (C02, Vsile Cirtoje) ( =,,, > 0) (C2645) (,, > 0) 2( + + ) + 9( + + )2 ( ) 49 (x, y R) 2 (x + y)( xy) ( + x 2 )( + y 2 ) 2 50 (0 < x, y < ) x y + y x > 5 (x, y, z > 0) xyz + x y + y z + z x x + y + z 52 (,,, x, y, z > 0) ( + x)( + y)( + z) + xyz 5 (x, y, z > 0) x x + (x + y)(x + z) + y y + (y + z)(y + x) + z z + (z + x)(z + y)

49 6.. SUPPLEMENTARY PROBLEMS (x + y + z =, x, y, z > 0) x x + y y + z z 2 55 (,, R) 2 + ( ) ( ) ( ) (,, > 0) (xy + yz + zx =, x, y, z > 0) x + x 2 + y + y 2 + z + z 2 2x( x2 ) ( + x 2 ) 2 + 2y( y2 ) ( + y 2 ) 2 + 2z( z2 ) ( + z 2 ) 2 58 (x, y, z 0) xyz (y + z x)(z + x y)(x + y z) 59 (,, > 0) ( + ) + ( + ) + ( + ) 4 + ( + )( + )( + ) 60 (Drij Grinerg) (x, y, z 0) ( x (y + z) + y (z + x) + z (x + y) ) x + y + z 2 (y + z) (z + x) (x + y). 6 (Drij Grinerg) (x, y, z > 0) y + z z + x x + y + + x y z 4 (x + y + z) (y + z) (z + x) (x + y).

50 50 CHAPTER 6. PROBLEMS FROM OLYMPIADS 62 (Drij Grinerg) (,, > 0) 2 ( + ) ( ) (2 + + ) + 2 ( + ) ( ) (2 + + ) + 2 ( + ) ( ) (2 + + ) > 2. 6 (Drij Grinerg) (,, > 0) ( + ) ( + ) ( + ) 2 < (Vsile Cirtoje) (,, R) ( ) 2 ( + + )

INEQUALITIES THROUGH PROBLEMS. 1. Heuristics of problem solving

INEQUALITIES THROUGH PROBLEMS. 1. Heuristics of problem solving INEQUALITIES THROUGH PROBLEMS Hojoo Lee. Heuristis of prolem solving Strtegy or ttis in prolem solving is lled heuristis. Here is summry tken from Prolem-Solving Through Prolems y Loren C. Lrson.. Serh

More information

TOPICS IN INEQUALITIES. Hojoo Lee

TOPICS IN INEQUALITIES. Hojoo Lee TOPICS IN INEQUALITIES Hojoo Lee Version 0.5 [005/08/5] Introdution Inequlities re useful in ll fields of Mthemtis. The purpose in this ook is to present stndrd tehniques in the theory of inequlities.

More information

How many proofs of the Nebitt s Inequality?

How many proofs of the Nebitt s Inequality? How mny roofs of the Neitt s Inequlity? Co Minh Qung. Introdution On Mrh, 90, Nesitt roosed the following rolem () The ove inequlity is fmous rolem. There re mny eole interested in nd solved (). In this

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

Basics of Olympiad Inequalities. Samin Riasat

Basics of Olympiad Inequalities. Samin Riasat Bsics of Olympid Inequlities Smin Rist ii Introduction The im of this note is to cquint students, who wnt to prticipte in mthemticl Olympids, to Olympid level inequlities from the sics Inequlities re used

More information

Inequalities Marathon version 1.00

Inequalities Marathon version 1.00 MthLinks.ro Inequlities Mrthon version.00 Author: MthLink ers http://www.mthlinks.ro/viewtopic.php?t=99899 Editor: Hssn Al-Siyni Octoer 0, 009 Introduction Hello everyone, this file contin 00 prolem in

More information

Inequalities of Olympiad Caliber. RSME Olympiad Committee BARCELONA TECH

Inequalities of Olympiad Caliber. RSME Olympiad Committee BARCELONA TECH Ineulities of Olymid Clier José Luis Díz-Brrero RSME Olymid Committee BARCELONA TECH José Luis Díz-Brrero RSME Olymi Committee UPC BARCELONA TECH jose.luis.diz@u.edu Bsi fts to rove ineulities Herefter,

More information

The Law of Averages. MARK FLANAGAN School of Electrical, Electronic and Communications Engineering University College Dublin

The Law of Averages. MARK FLANAGAN School of Electrical, Electronic and Communications Engineering University College Dublin The Law of Averages MARK FLANAGAN School of Electrical, Electronic and Communications Engineering University College Dublin Basic Principle of Inequalities: For any real number x, we have 3 x 2 0, with

More information

Topics in Inequalities - Theorems and Techniques

Topics in Inequalities - Theorems and Techniques Topics in Inequlities - Theorems nd Techniques Hojoo Lee The st edition 8th August, 007 Introduction Inequlities re useful in ll fields of Mthemtics The im of this problem-oriented book is to present elementry

More information

Number 12 Spring 2019

Number 12 Spring 2019 Number 2 Spring 209 ROMANIAN MATHEMATICAL MAGAZINE Avilble online www.ssmrmh.ro Founding Editor DANIEL SITARU ISSN-L 250-0099 ROMANIAN MATHEMATICAL MAGAZINE PROBLEMS FOR JUNIORS JP.66. If, b [0; + ) nd

More information

Topics in Inequalities - Theorems and Techniques. Hojoo Lee

Topics in Inequalities - Theorems and Techniques. Hojoo Lee Topis in Inequlities - Theorems nd Tehniques Hojoo Lee Introdution Inequlities re useful in ll fields of Mthemtis The im of this problem-oriented book is to present elementry tehniques in the theory of

More information

Algebraic Expressions

Algebraic Expressions Algebraic Expressions 1. Expressions are formed from variables and constants. 2. Terms are added to form expressions. Terms themselves are formed as product of factors. 3. Expressions that contain exactly

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

Lecture notes. Fundamental inequalities: techniques and applications

Lecture notes. Fundamental inequalities: techniques and applications Lecture notes Fundmentl inequlities: techniques nd pplictions Mnh Hong Duong Mthemtics Institute, University of Wrwick Emil: m.h.duong@wrwick.c.uk Februry 8, 207 2 Abstrct Inequlities re ubiquitous in

More information

A Study on the Properties of Rational Triangles

A Study on the Properties of Rational Triangles Interntionl Journl of Mthemtis Reserh. ISSN 0976-5840 Volume 6, Numer (04), pp. 8-9 Interntionl Reserh Pulition House http://www.irphouse.om Study on the Properties of Rtionl Tringles M. Q. lm, M.R. Hssn

More information

CIRCULAR COLOURING THE PLANE

CIRCULAR COLOURING THE PLANE CIRCULAR COLOURING THE PLANE MATT DEVOS, JAVAD EBRAHIMI, MOHAMMAD GHEBLEH, LUIS GODDYN, BOJAN MOHAR, AND REZA NASERASR Astrct. The unit distnce grph R is the grph with vertex set R 2 in which two vertices

More information

Quadratic reciprocity

Quadratic reciprocity Qudrtic recirocity Frncisc Bozgn Los Angeles Mth Circle Octoer 8, 01 1 Qudrtic Recirocity nd Legendre Symol In the eginning of this lecture, we recll some sic knowledge out modulr rithmetic: Definition

More information

REVIEW Chapter 1 The Real Number System

REVIEW Chapter 1 The Real Number System Mth 7 REVIEW Chpter The Rel Number System In clss work: Solve ll exercises. (Sections. &. Definition A set is collection of objects (elements. The Set of Nturl Numbers N N = {,,,, 5, } The Set of Whole

More information

Section 3.1: Exponent Properties

Section 3.1: Exponent Properties Section.1: Exponent Properties Ojective: Simplify expressions using the properties of exponents. Prolems with exponents cn often e simplied using few sic exponent properties. Exponents represent repeted

More information

Homework 1/Solutions. Graded Exercises

Homework 1/Solutions. Graded Exercises MTH 310-3 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both

More information

More Properties of the Riemann Integral

More Properties of the Riemann Integral More Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologil Sienes nd Deprtment of Mthemtil Sienes Clemson University Februry 15, 2018 Outline More Riemnn Integrl Properties The Fundmentl

More information

MATH 423 Linear Algebra II Lecture 28: Inner product spaces.

MATH 423 Linear Algebra II Lecture 28: Inner product spaces. MATH 423 Liner Algebr II Lecture 28: Inner product spces. Norm The notion of norm generlizes the notion of length of vector in R 3. Definition. Let V be vector spce over F, where F = R or C. A function

More information

Factorising FACTORISING.

Factorising FACTORISING. Ftorising FACTORISING www.mthletis.om.u Ftorising FACTORISING Ftorising is the opposite of expning. It is the proess of putting expressions into rkets rther thn expning them out. In this setion you will

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MT TRIGONOMETRIC FUNCTIONS AND TRIGONOMETRIC EQUATIONS C Trigonometric Functions : Bsic Trigonometric Identities : + cos = ; ; cos R sec tn = ; sec R (n ),n cosec cot = ; cosec R {n, n I} Circulr Definition

More information

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP QUADRATIC EQUATION EXERCISE - 0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Bridging the gap: GCSE AS Level

Bridging the gap: GCSE AS Level Bridging the gp: GCSE AS Level CONTENTS Chpter Removing rckets pge Chpter Liner equtions Chpter Simultneous equtions 8 Chpter Fctors 0 Chpter Chnge the suject of the formul Chpter 6 Solving qudrtic equtions

More information

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations)

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations) KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS 6-7 CLASS - XII MATHEMATICS (Reltions nd Funtions & Binry Opertions) For Slow Lerners: - A Reltion is sid to e Reflexive if.. every A

More information

set is not closed under matrix [ multiplication, ] and does not form a group.

set is not closed under matrix [ multiplication, ] and does not form a group. Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

Problem Set 3

Problem Set 3 14.102 Problem Set 3 Due Tuesdy, October 18, in clss 1. Lecture Notes Exercise 208: Find R b log(t)dt,where0

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

Relativistic Electrodynamics

Relativistic Electrodynamics Relativistic Electrodynamics Notes (I will try to update if typos are found) June 1, 2009 1 Dot products The Pythagorean theorem says that distances are given by With time as a fourth direction, we find

More information

Can one hear the shape of a drum?

Can one hear the shape of a drum? Cn one her the shpe of drum? After M. K, C. Gordon, D. We, nd S. Wolpert Corentin Lén Università Degli Studi di Torino Diprtimento di Mtemti Giuseppe Peno UNITO Mthemtis Ph.D Seminrs Mondy 23 My 2016 Motivtion:

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

Computing data with spreadsheets. Enter the following into the corresponding cells: A1: n B1: triangle C1: sqrt

Computing data with spreadsheets. Enter the following into the corresponding cells: A1: n B1: triangle C1: sqrt Computing dt with spredsheets Exmple: Computing tringulr numers nd their squre roots. Rell, we showed 1 ` 2 ` `n npn ` 1q{2. Enter the following into the orresponding ells: A1: n B1: tringle C1: sqrt A2:

More information

Surface maps into free groups

Surface maps into free groups Surfce mps into free groups lden Wlker Novemer 10, 2014 Free groups wedge X of two circles: Set F = π 1 (X ) =,. We write cpitl letters for inverse, so = 1. e.g. () 1 = Commuttors Let x nd y e loops. The

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission M 30 Coimisiún n Scrúduithe Stáit Stte Exmintions Commission LEAVING CERTIFICATE EXAMINATION, 005 MATHEMATICS HIGHER LEVEL PAPER ( 300 mrks ) MONDAY, 3 JUNE MORNING, 9:30 to :00 Attempt FIVE questions

More information

AT100 - Introductory Algebra. Section 2.7: Inequalities. x a. x a. x < a

AT100 - Introductory Algebra. Section 2.7: Inequalities. x a. x a. x < a Section 2.7: Inequlities In this section, we will Determine if given vlue is solution to n inequlity Solve given inequlity or compound inequlity; give the solution in intervl nottion nd the solution 2.7

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths Intermedite Mth Cirles Wednesdy 17 Otoer 01 Geometry II: Side Lengths Lst week we disussed vrious ngle properties. As we progressed through the evening, we proved mny results. This week, we will look t

More information

(4.1) D r v(t) ω(t, v(t))

(4.1) D r v(t) ω(t, v(t)) 1.4. Differentil inequlities. Let D r denote the right hnd derivtive of function. If ω(t, u) is sclr function of the sclrs t, u in some open connected set Ω, we sy tht function v(t), t < b, is solution

More information

Class 8 Factorisation

Class 8 Factorisation ID : in-8-factorisation [1] Class 8 Factorisation For more such worksheets visit www.edugain.com Answer the questions (1) Find factors of following polynomial A) xy - 7y + 9x - 63 B) xy - 5y + 6x - 30

More information

The Intouch Triangle and the OI-line

The Intouch Triangle and the OI-line Forum Geometriorum Volume 4 004 15 134. FORUM GEOM ISSN 1534-1178 The Intouh Tringle nd the OI-line Eri Dnneel Abtrt. We prove ome intereting reult relting the intouh tringle nd the OI line of tringle.

More information

Contents. Preface 3. Chapter 1. Problems 7. Chapter 2. Solutions 25. Glossary 121. Further reading 127

Contents. Preface 3. Chapter 1. Problems 7. Chapter 2. Solutions 25. Glossary 121. Further reading 127 b Prefce This work bleds together clssic iequlity results with brd ew problems, some of which devised oly few dys go. Wht could be specil bout it whe so my iequlity problem books hve lredy bee writte?

More information

A Note on Feng Qi Type Integral Inequalities

A Note on Feng Qi Type Integral Inequalities Int Journl of Mth Anlysis, Vol 1, 2007, no 25, 1243-1247 A Note on Feng Qi Type Integrl Inequlities Hong Yong Deprtment of Mthemtics Gungdong Business College Gungzhou City, Gungdong 510320, P R Chin hongyong59@sohucom

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

Algebraic Inequalities in Mathematical Olympiads: Problems and Solutions

Algebraic Inequalities in Mathematical Olympiads: Problems and Solutions Algebraic Inequalities in Mathematical Olympiads: Problems and Solutions Mohammad Mahdi Taheri July 0, 05 Abstract This is a collection of recent algebraic inequalities proposed in math Olympiads from

More information

378 Relations Solutions for Chapter 16. Section 16.1 Exercises. 3. Let A = {0,1,2,3,4,5}. Write out the relation R that expresses on A.

378 Relations Solutions for Chapter 16. Section 16.1 Exercises. 3. Let A = {0,1,2,3,4,5}. Write out the relation R that expresses on A. 378 Reltions 16.7 Solutions for Chpter 16 Section 16.1 Exercises 1. Let A = {0,1,2,3,4,5}. Write out the reltion R tht expresses > on A. Then illustrte it with digrm. 2 1 R = { (5,4),(5,3),(5,2),(5,1),(5,0),(4,3),(4,2),(4,1),

More information

1. A polynomial p(x) in one variable x is an algebraic expression in x of the form

1. A polynomial p(x) in one variable x is an algebraic expression in x of the form POLYNOMIALS Important Points 1. A polynomial p(x) in one variable x is an algebraic expression in x of the form p(x) = a nx n +a n-1x n-1 + a 2x 2 +a 1x 1 +a 0x 0 where a 0, a 1, a 2 a n are constants

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

HW3, Math 307. CSUF. Spring 2007.

HW3, Math 307. CSUF. Spring 2007. HW, Mth 7. CSUF. Spring 7. Nsser M. Abbsi Spring 7 Compiled on November 5, 8 t 8:8m public Contents Section.6, problem Section.6, problem Section.6, problem 5 Section.6, problem 7 6 5 Section.6, problem

More information

440-2 Geometry/Topology: Differentiable Manifolds Northwestern University Solutions of Practice Problems for Final Exam

440-2 Geometry/Topology: Differentiable Manifolds Northwestern University Solutions of Practice Problems for Final Exam 440-2 Geometry/Topology: Differentible Mnifolds Northwestern University Solutions of Prctice Problems for Finl Exm 1) Using the cnonicl covering of RP n by {U α } 0 α n, where U α = {[x 0 : : x n ] RP

More information

Absolute values of real numbers. Rational Numbers vs Real Numbers. 1. Definition. Absolute value α of a real

Absolute values of real numbers. Rational Numbers vs Real Numbers. 1. Definition. Absolute value α of a real Rtionl Numbers vs Rel Numbers 1. Wht is? Answer. is rel number such tht ( ) =. R [ ( ) = ].. Prove tht (i) 1; (ii). Proof. (i) For ny rel numbers x, y, we hve x = y. This is necessry condition, but not

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logi Synthesis nd Verifition SOPs nd Inompletely Speified Funtions Jie-Hong Rolnd Jing 江介宏 Deprtment of Eletril Engineering Ntionl Tiwn University Fll 2010 Reding: Logi Synthesis in Nutshell Setion 2 most

More information

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in

More information

PARABOLA EXERCISE 3(B)

PARABOLA EXERCISE 3(B) PARABOLA EXERCISE (B). Find eqution of the tngent nd norml to the prbol y = 6x t the positive end of the ltus rectum. Eqution of prbol y = 6x 4 = 6 = / Positive end of the Ltus rectum is(, ) =, Eqution

More information

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES Mthemtics SKE: STRN J STRN J: TRNSFORMTIONS, VETORS nd MTRIES J3 Vectors Text ontents Section J3.1 Vectors nd Sclrs * J3. Vectors nd Geometry Mthemtics SKE: STRN J J3 Vectors J3.1 Vectors nd Sclrs Vectors

More information

A METHOD FOR SOLVING SYMMETRIC INEQUALITIES.

A METHOD FOR SOLVING SYMMETRIC INEQUALITIES. METHOD FOR SOLVING SYMMETRIC INEQULITIES. Prof. Chiriță Marcel,Bucharest,Romania The method is applicable to certain broad categories of symmetric inecuații. We have chosen as an example a few inecuații

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship 5.4, 6.1, 6.2 Hnout As we ve iscusse, the integrl is in some wy the opposite of tking erivtive. The exct reltionship is given by the Funmentl Theorem of Clculus: The Funmentl Theorem of Clculus: If f is

More information

4 VECTORS. 4.0 Introduction. Objectives. Activity 1

4 VECTORS. 4.0 Introduction. Objectives. Activity 1 4 VECTRS Chpter 4 Vectors jectives fter studying this chpter you should understnd the difference etween vectors nd sclrs; e le to find the mgnitude nd direction of vector; e le to dd vectors, nd multiply

More information

Probability. b a b. a b 32.

Probability. b a b. a b 32. Proility If n event n hppen in '' wys nd fil in '' wys, nd eh of these wys is eqully likely, then proility or the hne, or its hppening is, nd tht of its filing is eg, If in lottery there re prizes nd lnks,

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

Deriving (9.21) in Walsh (1998)

Deriving (9.21) in Walsh (1998) Deriving (9.21) in Wlsh (1998) Henrik Jensen April8,2003 Abstrt This note shows how to derive the nominl interest rte seuring tht the tul money supply lwys is equl to the vlue seuring the verge infltion

More information

#A29 INTEGERS 17 (2017) EQUALITY OF DEDEKIND SUMS MODULO 24Z

#A29 INTEGERS 17 (2017) EQUALITY OF DEDEKIND SUMS MODULO 24Z #A29 INTEGERS 17 (2017) EQUALITY OF DEDEKIND SUMS MODULO 24Z Kurt Girstmir Institut für Mthemtik, Universität Innsruck, Innsruck, Austri kurt.girstmir@uik.c.t Received: 10/4/16, Accepted: 7/3/17, Pulished:

More information

Question: 1. Use suitable identities to find the following products:

Question: 1. Use suitable identities to find the following products: CH-2 Polynomial Question: 1. Use suitable identities to find the following products: (i) (x + 4) (x + 10) Solution:- (x+4)(x+10) = x 2 +10x+4x+4 x 10 = x 2 +14x+40 (ii) (x + 8) (x 10) Solution: x 2-10x+8x-80

More information

CHENG Chun Chor Litwin The Hong Kong Institute of Education

CHENG Chun Chor Litwin The Hong Kong Institute of Education PE-hing Mi terntionl onferene IV: novtion of Mthemtis Tehing nd Lerning through Lesson Study- onnetion etween ssessment nd Sujet Mtter HENG hun hor Litwin The Hong Kong stitute of Edution Report on using

More information

(6.5) Length and area in polar coordinates

(6.5) Length and area in polar coordinates 86 Chpter 6 SLICING TECHNIQUES FURTHER APPLICATIONS Totl mss 6 x ρ(x)dx + x 6 x dx + 9 kg dx + 6 x dx oment bout origin 6 xρ(x)dx x x dx + x + x + ln x ( ) + ln 6 kg m x dx + 6 6 x x dx Centre of mss +

More information

Happy New Year 2008 Chuc Mung Nam Moi 2008

Happy New Year 2008 Chuc Mung Nam Moi 2008 www.batdangthuc.net Happy New Year 008 Chuc Mung Nam Moi 008 Vietnam Inequality Forum - VIF - www.batdangthuc.net Ebook Written by: VIF Community User Group: All This product is created for educational

More information

Section 3.2 Maximum Principle and Uniqueness

Section 3.2 Maximum Principle and Uniqueness Section 3. Mximum Principle nd Uniqueness Let u (x; y) e smooth solution in. Then the mximum vlue exists nd is nite. (x ; y ) ; i.e., M mx fu (x; y) j (x; y) in g Furthermore, this vlue cn e otined y point

More information

Algebraic Expressions and Identities

Algebraic Expressions and Identities ALGEBRAIC EXPRESSIONS AND IDENTITIES 137 Algebraic Expressions and Identities CHAPTER 9 9.1 What are Expressions? In earlier classes, we have already become familiar with what algebraic expressions (or

More information

AMC Lecture Notes. Justin Stevens. Cybermath Academy

AMC Lecture Notes. Justin Stevens. Cybermath Academy AMC Lecture Notes Justin Stevens Cybermath Academy Contents 1 Systems of Equations 1 1 Systems of Equations 1.1 Substitution Example 1.1. Solve the system below for x and y: x y = 4, 2x + y = 29. Solution.

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE RGMIA Reserch Report Collection, Vol., No., 998 http://sci.vut.edu.u/ rgmi SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE S.S. DRAGOMIR Astrct. Some clssicl nd new integrl inequlities of Grüss type re presented.

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

PYTHAGORAS THEOREM,TRIGONOMETRY,BEARINGS AND THREE DIMENSIONAL PROBLEMS

PYTHAGORAS THEOREM,TRIGONOMETRY,BEARINGS AND THREE DIMENSIONAL PROBLEMS PYTHGORS THEOREM,TRIGONOMETRY,ERINGS ND THREE DIMENSIONL PROLEMS 1.1 PYTHGORS THEOREM: 1. The Pythgors Theorem sttes tht the squre of the hypotenuse is equl to the sum of the squres of the other two sides

More information

Some Basic Logic. Henry Liu, 25 October 2010

Some Basic Logic. Henry Liu, 25 October 2010 Some Basic Logic Henry Liu, 25 October 2010 In the solution to almost every olympiad style mathematical problem, a very important part is existence of accurate proofs. Therefore, the student should be

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 utomt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Prolem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) nton Setzer (Bsed on ook drft y J. V. Tucker nd K. Stephenson)

More information

For the percentage of full time students at RCC the symbols would be:

For the percentage of full time students at RCC the symbols would be: Mth 17/171 Chpter 7- ypothesis Testing with One Smple This chpter is s simple s the previous one, except it is more interesting In this chpter we will test clims concerning the sme prmeters tht we worked

More information

Convex Sets and Functions

Convex Sets and Functions B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

MATH 409 Advanced Calculus I Lecture 18: Darboux sums. The Riemann integral.

MATH 409 Advanced Calculus I Lecture 18: Darboux sums. The Riemann integral. MATH 409 Advnced Clculus I Lecture 18: Drboux sums. The Riemnn integrl. Prtitions of n intervl Definition. A prtition of closed bounded intervl [, b] is finite subset P [,b] tht includes the endpoints

More information

1.) King invests $11000 in an account that pays 3.5% interest compounded continuously.

1.) King invests $11000 in an account that pays 3.5% interest compounded continuously. DAY 1 Chpter 4 Exponentil nd Logrithmic Functions 4.3 Grphs of Logrithmic Functions Converting between exponentil nd logrithmic functions Common nd nturl logs The number e Chnging bses 4.4 Properties of

More information

CHM Physical Chemistry I Chapter 1 - Supplementary Material

CHM Physical Chemistry I Chapter 1 - Supplementary Material CHM 3410 - Physicl Chemistry I Chpter 1 - Supplementry Mteril For review of some bsic concepts in mth, see Atkins "Mthemticl Bckground 1 (pp 59-6), nd "Mthemticl Bckground " (pp 109-111). 1. Derivtion

More information

Orthogonal Polynomials and Least-Squares Approximations to Functions

Orthogonal Polynomials and Least-Squares Approximations to Functions Chpter Orthogonl Polynomils nd Lest-Squres Approximtions to Functions **4/5/3 ET. Discrete Lest-Squres Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny

More information

Discrete Least-squares Approximations

Discrete Least-squares Approximations Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve

More information

Answers and Solutions to (Some Even Numbered) Suggested Exercises in Chapter 11 of Grimaldi s Discrete and Combinatorial Mathematics

Answers and Solutions to (Some Even Numbered) Suggested Exercises in Chapter 11 of Grimaldi s Discrete and Combinatorial Mathematics Answers n Solutions to (Some Even Numere) Suggeste Exercises in Chpter 11 o Grimli s Discrete n Comintoril Mthemtics Section 11.1 11.1.4. κ(g) = 2. Let V e = {v : v hs even numer o 1 s} n V o = {v : v

More information

Math 42 Chapter 7 Practice Problems Set B

Math 42 Chapter 7 Practice Problems Set B Mth 42 Chpter 7 Prctice Problems Set B 1. Which of the following functions is solution of the differentil eqution dy dx = 4xy? () y = e 4x (c) y = e 2x2 (e) y = e 2x (g) y = 4e2x2 (b) y = 4x (d) y = 4x

More information

(Chapter 10) (Practical Geometry) (Class VII) Question 1: Exercise 10.1 Draw a line, say AB, take a point C outside it. Through C, draw a line parallel to AB using ruler and compasses only. Answer 1: To

More information

IOAN ŞERDEAN, DANIEL SITARU

IOAN ŞERDEAN, DANIEL SITARU Romanian Mathematical Magazine Web: http://www.ssmrmh.ro The Author: This article is published with open access. TRIGONOMETRIC SUBSTITUTIONS IN PROBLEM SOLVING PART IOAN ŞERDEAN, DANIEL SITARU Abstract.

More information

Polynomials. Polynomials. Curriculum Ready ACMNA:

Polynomials. Polynomials. Curriculum Ready ACMNA: Polynomils Polynomils Curriulum Redy ACMNA: 66 www.mthletis.om Polynomils POLYNOMIALS A polynomil is mthemtil expression with one vrile whose powers re neither negtive nor frtions. The power in eh expression

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

Lecture 3. Limits of Functions and Continuity

Lecture 3. Limits of Functions and Continuity Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live

More information

Math 4310 Solutions to homework 1 Due 9/1/16

Math 4310 Solutions to homework 1 Due 9/1/16 Mth 4310 Solutions to homework 1 Due 9/1/16 1. Use the Eucliden lgorithm to find the following gretest common divisors. () gcd(252, 180) = 36 (b) gcd(513, 187) = 1 (c) gcd(7684, 4148) = 68 252 = 180 1

More information