Convex Sets and Functions

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Convex Sets and Functions"

Transcription

1 B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line segment connecting x nd y belongs to C Exmple B2 The convex subsets of R, +, ) re the intervls of R Regulr polygons re convex subsets of R 2 Definition B3 Let U be subset of rel liner spce L, +, ) A convex combintion of U is n element of L of the form 1 x k x k, where x 1,,x k U, i for 1 i k, nd k = 1 If the conditions i re dropped, we hve n ffine combintion of U In other words, x is n ffine combintion of U if there exist 1,, k R such tht x = 1 x k x k, for x 1,,x k U, nd k i = 1 Definition B4 Let U be subset of rel liner spce L, +, ) A subset {x 1,,x n } is ffinely dependent if = 1 x n x n such tht t lest one of the numbers 1,, n is nonzero nd i = If no such ffine combintion exists, then x 1,,x n re ffinely independent Theorem B5 The set U = {x 1,,x n } is ffinely independent if nd only if the set V = {x 1 x n,x n 1 x n } is linerly independent Proof Suppose tht U is ffinely independent but V is linerly dependent; tht is, = b 1 x 1 x n ) + + b n 1 x n 1 x n ) such tht not ll numbers b i re This implies b 1 x b n 1 x n 1 n 1 b i )x n =, which contrdicts the ffine independence of U

2 574 B Convex Sets nd Functions Conversely, suppose tht V is linerly independent but U is not ffinely independent In this cse, = 1 x n x n such tht t lest one of the numbers 1,, n is nonzero nd i = This implies n = 1 i, so = 1 x 1 x n ) + + n 1 x n 1 x n ) Observe tht t lest one of the numbers 1,, n 1 must be distinct from becuse otherwise we would hve 1 = = n 1 = n = This contrdicts the liner independence of V, so U is ffinely independent Exmple B6 Let x 1 nd x 2 be two elements of the liner spce R 2, +, ) The line tht psses through x 1 nd x 2 consists of ll x such tht x x 1 nd x x 2 re colliner; tht is, x x 1 ) + bx x 2 ) = for some, b R such tht + b Thus, we hve x = 1 x x 2, where = + b + b + b = 1, so x is n ffine combintion of x 1 nd x 2 It is esy to see tht the segment of line contined between x 1 nd x 2 is given by convex combintion of x 1 nd x 2 ; tht is, by n ffine combintion 1 x x 2 such tht 1, 2 Theorem B7 If C is convex subset of rel liner spce L, +, ), then C contins ll convex liner combintions of C Proof The proof is by induction on k 2 nd is left to the reder Theorem B8 The intersection of ny collection of convex sets of liner spce L, +, ) is convex set Proof Let C = {C i i I} be collection of convex sets nd let C = C Suppose tht x 1,,x k C, i for 1 i k, nd k = 1 Since x 1,,x k C i, it follows tht 1 x k x k C i for every i I Thus, 1 x k x k C, which proves the convexity of C Corollry B9 The fmily of convex sets of liner spce L, +, ) is closure system on PL) Proof This sttement follows immeditely from Theorem B8 by observing tht the set L is convex Corollry B9 llows us to define the convex hull of subset U of L s the closure K conv U) of U reltive to the closure system of the convex subsets of L If U R n consists of n+1 points such tht no point is n ffine combintion of the other n points, then K conv U) is n n-dimensionl simplex in L Exmple B1 A two-dimensionl simplex is defined strting from three points x 1,x 2,x 3 in R 2 such tht none of these points is n ffine combintion of

3 B Convex Sets nd Functions 575 the other two no point is colliner with the others two) Thus, the twodimensionl symplex generted by x 1,x 2,x 3 is the full tringle determined by x 1,x 2,x 3 In generl, n n-dimensionl simplex is the convex hull of set of n + 1 points x 1,,x n+1 in R n such tht no point is n ffine combintion of the remining n points Let S be the n-dimensionl simplex generted by the points x 1,,x n+1 in R n nd let x S If x S, then x is convex combintion of x 1,,x n,x n+1 In other words, there exist 1,, n, n+1 such tht 1,, n, n+1, 1), +1 i = 1, nd x = 1 x n x n + n+1 x n+1 The numbers 1,, n, n+1 re the bricentric coordintes of x reltive to the simplex S nd re uniquely determined by x Indeed, if we hve x = 1 x n x n + n+1 x n+1 = b 1 x b n x n + b n+1 x n+1, nd i b i for some i, this implies 1 b 1 )x n b n )x n + n+1 b n+1 )x n+1 =, which contrdicts the ffine independence of x 1,,x n+1 The next sttement plys centrl role in the study of convexity We reproduce the proof given in [59] Theorem B11 Crthéodory s Theorem) If U is subset of R n, then for every x K conv U) we hve x = +1 ix i, where x i U, i for 1 i n + 1, nd +1 i = 1 Proof Consider x K conv U) We cn write x = p+1 ix i, where x i U, i for 1 i p + 1, nd p+1 i = 1 Let p be the smllest number which llows this kind of expression for x We prove the theorem by showing tht p n Suppose tht p n+1 Then, the set {x 1,,x p+1 } is ffinely dependent, so there exist b 1,, b p+1 not ll zero such tht = p+1 b ix i nd p+1 b i = Without loss of generlity, we cn ssume b p+1 > nd p+1 b p+1 i b i for ll i such tht 1 i p nd b i > Define i c i = b i ) p+1 b i b p+1 for 1 i p We hve c i = i p+1 b p+1 b i = 1 Furthermore, c i for 1 i p Indeed, if b i, then c i i ; if b i >, then c i becuse p+1 b p+1 i b i for ll i such tht 1 i p nd b i > Thus, we hve

4 576 B Convex Sets nd Functions c i x i = i ) p b i x i = b p i x i = x, which contrdicts the choice of p A finite set of points P in R 2 is convex polygon if no member p of P lies in the convex hull of P {p} Theorem B12 A finite set of points P in R 2 is convex polygon if nd only if no member p of P lies in two-dimensionl simplex formed by three other members of P Proof The rgument is strightforwrd nd is left to the reder s n exercise Theorem B13 Rdon s Theorem) Let P = {x i R n 1 i n + 2} be set of n + 2 points in R n Then, there re two disjoint subsets R nd Q of P such tht K conv R) K conv Q) Proof Since n+2 points in R n re ffinely dependent, there exist 1,, n+2 not ll equl to such tht n+2 i x i = B1) nd +2 i = Without loss of generlity, we cn ssume tht the first k numbers re positive nd the lst n + 2 k re not Let = k i > nd let b j = j for 1 j k Similrly, let c l = l for k + 1 l n + 2 Equlity B1) cn now be written s k b j x j = j=1 n+2 l=k+1 c l x l Since the numbers b j nd c l re nonnegtive nd k j=1 b j = +2 l=k+1 c l = 1, it follows tht K conv {x 1,,x k }) K conv {x k+1,,x n+2 }) Theorem B14 Klein s Theorem) If P R 2 is set of five points such tht no three of them re colliner, then P contins four points tht form convex qudrilterl Proof Let P = {x i 1 i } If these five points form convex polygon, then ny four of them form convex qudrilterl If exctly one point is in the interior of convex qudrilterl formed by the remining four points, then the desired conclusion is reched Suppose tht none of the previous cses occur Then, two of the points, sy x p,x q, re locted inside the tringle formed by the remining points x i,x j,x k Note tht the line x p x q intersects two sides of the tringle x i x j x k,

5 B Convex Sets nd Functions 577 x i x q x p x k x j Fig B1 A five-point configurtion in R 2 sy x i x j nd x i x k see Figure B1) Then x p x q x k x j is convex qudrilterl A function f : R R is convex if its grph on n intervl is locted below the chord determined by the endpoints of the intervl More formlly, we hve the following definition Definition B15 A function f : R R is convex if ftx + 1 t)y) tfx) + 1 t)fy) for every x, y Domf) nd t [, 1] The function g : R R is concve if g is convex Theorem B16 If f : R R is convex function nd < b c, then fb) f) b fc) f) c Proof Since < b c, we cn write b = t + 1 t)c, where t = c b c, 1] The convexity of f yields the inequlity fb) c b c f) + b c fc), which is esily seen to be equivlent with the desired inequlity A similr result follows Theorem B17 If f : R R is convex function nd b < c, then fc) f) c fc) fb) c b

6 578 B Convex Sets nd Functions Proof The rgument is similr to the proof of Theorem B16 Corollry B18 Let f : R R be convex function nd let p, q, p, q be four numbers such tht p p < q q We hve the inequlity fq) fp) q p fq ) fp ) q p B2) Proof By Theorem B16 pplied to the numbers p, q, q, we hve fq) fp ) q p fq ) fp ) q p Similrly, by pplying Theorem B17 to p, p, q, we obtin fq) fp) q p fq) fp ) q p The inequlity of the corollry cn be obtined by combining the lst two inequlities From Corollry B18, it follows tht if f : R R is convex nd differentible everywhere, then its derivtive is n incresing function The converse is lso true; nmely, if f is differentible everywhere nd its derivtive is n incresing function, then f is convex Indeed, let, b, c be three numbers such tht < b < c By the men vlue theorem, there is p, b) nd q b, c) such tht f p) = fb) f) b Since f p) f q), we obtin nd f q) = fc) fb) c b fb) f) b fc) fb), c b which implies fb) c b c f) + b c fc); tht is, the convexity of f Thus, if f is twice differentible everywhere nd its second derivtive is nonnegtive everywhere, then it follows tht f is convex Clerly, under the sme conditions of differentibility s bove, if the second derivtive is nonpositive everywhere, then f is concve The functions listed in the Tble B1, defined on the set R, provide exmples of convex or concve) functions Theorem B19 Jensen s Theorem) Let f be function tht is convex on n intervl I If t 1,,t n [, 1] re n numbers such tht t i = 1, then

7 B Convex Sets nd Functions 579 n ) f t i x i t i fx i ) for every x 1,, x n I Proof The rgument is by induction on n, where n 2 The bsis step, n = 2, follows immeditely from Definition B15 Suppose tht the sttement holds for n, nd let u 1,, u n, u n+1 be n + 1 numbers such tht +1 u i = 1 We hve fu 1 x u n 1 x n 1 + u n x n + u n+1 x n+1 ) = f u 1 x u n 1 x n 1 + u n + u n+1 ) u ) nx n + u n+1 x n+1 u n + u n+1 By the inductive hypothesis, we cn write fu 1 x u n 1 x n 1 + u n x n + u n+1 x n+1 ) ) un x n + u n+1 x n+1 u 1 fx 1 ) + + u n 1 fx n 1 ) + u n + u n+1 )f u n + u n+1 Next, by the convexity of f, we hve ) un x n + u n+1 x n+1 u n f fx n ) + u n+1 fx n+1 ) u n + u n+1 u n + u n+1 u n + u n+1 Combining this inequlity with the previous inequlity gives the desired conclusion Of course, if f is concve function nd t 1,,t n [, 1] re n numbers such tht t i = 1, then n ) f t i x i t i fx i ) B3) Tble B1 Exmples of convex or concve functions Function Second Convexity Derivtive Property x r for rr 1)x r 2 concve for r < 1 r > convex for r 1 ln x 1 x 2 concve xln x 1 x convex e x e x convex

8 58 B Convex Sets nd Functions Exmple B2 We sw tht the function fx) = ln x is concve Therefore, if t 1,, t n [, 1] re n numbers such tht t i = 1, then n ) ln t i x i t i lnx i This inequlity cn be written s n ) n ln t i x i ln x ti i, or equivlently n t i x i n x ti i, for x 1,,x n, ) In the specil cse where t 1 = = t n = 1 n, we hve the inequlity tht reltes the rithmetic to the geometric verge on n positive numbers: x x n n n x i ) 1 n B4) Let w = w 1,,w n ) R n be such tht w i = 1 For r, the w-weighted men of order r of sequence of n positive numbers x = x 1,, x n ) R n > is the number n ) 1 r µ r w x) = w i x r i Of course, µ r w x) is not defined for r = ; we will give s specil definition µ wx) = lim r µ r wx) We hve lim r lnµr w x) = lim r = lim r n = = ln ln w ix r i r w ix r i lnx i w ix r i w i lnx i n x wi i

9 B Convex Sets nd Functions 581 Thus, if we define µ w x) = n xwi i, the weighted men of order r becomes function continuous everywhere with respect to r For w 1 = = w n = 1 n, we hve µ 1 nx 1 x n w x) = x 2 x n + + x 1 x n 1 the hrmonic verge of x), µ wx) = x 1 x n ) 1 n the geometric verge of x), µ 1 wx) = x x n n the rithmetic verge of x) Theorem B21 If p < r, we hve µ p wx) µ r wx) Proof There re three cses depending on the position of reltive to p nd r In the first cse, suppose tht r > p > The function fx) = x r p is convex, so by Jensen s inequlity pplied to x p 1,, xp n, we hve which implies ) r p w i x p i n w i x r i, ) 1 p w i x p i w i x r i ) 1 r, which is the inequlity of the theorem If r > > p, the function fx) = x r p is gin convex becuse f x) = r r p p )x 1 r p 2 Thus, the sme rgument works s in the previous cse Finlly, suppose tht > r > p Since < r p < 1, the function fx) = x r p is concve Thus, by Jensen s inequlity, ) r p w i x p i n w i x r i Since 1 r <, we obtin gin ) 1 p w i x p i w i x r i ) 1 r

10

11 C Useful Integrls nd Formuls C1 Euler s Integrls The integrls B, b) = Γ) = x 1 1 x) b 1 dx, x 1 e x dx, re known s Euler s integrl of the first type nd Euler s integrl of the second type, respectively We ssume here tht nd b re positive numbers to ensure tht the integrls re convergent Replcing x by 1 x yields the equlity B, b) = which shows tht B is symmetric Integrting B, b) by prts, we obtin B, b) = = 1 x 1 1 x) b 1 dx 1 x) b 1 d x 1 = x 1 x) 1 b) = b 1 = b 1 1 x) 1 x) b 1 dx = Bb, ), + b 1 x 1 x) b 2 dx x 1 1 x) b 2 dx b 1 b 1 B, b 1) B, b), x 1 1 x) b 1 dx

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.) MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

More information

8 Laplace s Method and Local Limit Theorems

8 Laplace s Method and Local Limit Theorems 8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

Lecture 3. Limits of Functions and Continuity

Lecture 3. Limits of Functions and Continuity Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence

More information

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1 Int. Journl of Mth. Anlysis, Vol. 7, 2013, no. 41, 2039-2048 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2013.3499 On the Generlized Weighted Qusi-Arithmetic Integrl Men 1 Hui Sun School

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

UniversitaireWiskundeCompetitie. Problem 2005/4-A We have k=1. Show that for every q Q satisfying 0 < q < 1, there exists a finite subset K N so that

UniversitaireWiskundeCompetitie. Problem 2005/4-A We have k=1. Show that for every q Q satisfying 0 < q < 1, there exists a finite subset K N so that Problemen/UWC NAW 5/7 nr juni 006 47 Problemen/UWC UniversitireWiskundeCompetitie Edition 005/4 For Session 005/4 we received submissions from Peter Vndendriessche, Vldislv Frnk, Arne Smeets, Jn vn de

More information

We know that if f is a continuous nonnegative function on the interval [a, b], then b

We know that if f is a continuous nonnegative function on the interval [a, b], then b 1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

More information

Orthogonal Polynomials and Least-Squares Approximations to Functions

Orthogonal Polynomials and Least-Squares Approximations to Functions Chpter Orthogonl Polynomils nd Lest-Squres Approximtions to Functions **4/5/3 ET. Discrete Lest-Squres Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny

More information

Math 360: A primitive integral and elementary functions

Math 360: A primitive integral and elementary functions Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

More information

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals. MATH 409 Advnced Clculus I Lecture 19: Riemnn sums. Properties of integrls. Drboux sums Let P = {x 0,x 1,...,x n } be prtition of n intervl [,b], where x 0 = < x 1 < < x n = b. Let f : [,b] R be bounded

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

MA Handout 2: Notation and Background Concepts from Analysis

MA Handout 2: Notation and Background Concepts from Analysis MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,

More information

Sections 5.2: The Definite Integral

Sections 5.2: The Definite Integral Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)

More information

1 i n x i x i 1. Note that kqk kp k. In addition, if P and Q are partition of [a, b], P Q is finer than both P and Q.

1 i n x i x i 1. Note that kqk kp k. In addition, if P and Q are partition of [a, b], P Q is finer than both P and Q. Chpter 6 Integrtion In this chpter we define the integrl. Intuitively, it should be the re under curve. Not surprisingly, fter mny exmples, counter exmples, exceptions, generliztions, the concept of the

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

x 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx

x 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx . Compute the following indefinite integrls: ) sin(5 + )d b) c) d e d d) + d Solutions: ) After substituting u 5 +, we get: sin(5 + )d sin(u)du cos(u) + C cos(5 + ) + C b) We hve: d d ln() + + C c) Substitute

More information

Anonymous Math 361: Homework 5. x i = 1 (1 u i )

Anonymous Math 361: Homework 5. x i = 1 (1 u i ) Anonymous Mth 36: Homewor 5 Rudin. Let I be the set of ll u (u,..., u ) R with u i for ll i; let Q be the set of ll x (x,..., x ) R with x i, x i. (I is the unit cube; Q is the stndrd simplex in R ). Define

More information

A basic logarithmic inequality, and the logarithmic mean

A basic logarithmic inequality, and the logarithmic mean Notes on Number Theory nd Discrete Mthemtics ISSN 30 532 Vol. 2, 205, No., 3 35 A bsic logrithmic inequlity, nd the logrithmic men József Sándor Deprtment of Mthemtics, Bbeş-Bolyi University Str. Koglnicenu

More information

440-2 Geometry/Topology: Differentiable Manifolds Northwestern University Solutions of Practice Problems for Final Exam

440-2 Geometry/Topology: Differentiable Manifolds Northwestern University Solutions of Practice Problems for Final Exam 440-2 Geometry/Topology: Differentible Mnifolds Northwestern University Solutions of Prctice Problems for Finl Exm 1) Using the cnonicl covering of RP n by {U α } 0 α n, where U α = {[x 0 : : x n ] RP

More information

For a continuous function f : [a; b]! R we wish to define the Riemann integral

For a continuous function f : [a; b]! R we wish to define the Riemann integral Supplementry Notes for MM509 Topology II 2. The Riemnn Integrl Andrew Swnn For continuous function f : [; b]! R we wish to define the Riemnn integrl R b f (x) dx nd estblish some of its properties. This

More information

Variational Techniques for Sturm-Liouville Eigenvalue Problems

Variational Techniques for Sturm-Liouville Eigenvalue Problems Vritionl Techniques for Sturm-Liouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment

More information

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60. Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

More information

Discrete Least-squares Approximations

Discrete Least-squares Approximations Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve

More information

Numerical integration

Numerical integration 2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

More information

Chapter 4. Lebesgue Integration

Chapter 4. Lebesgue Integration 4.2. Lebesgue Integrtion 1 Chpter 4. Lebesgue Integrtion Section 4.2. Lebesgue Integrtion Note. Simple functions ply the sme role to Lebesgue integrls s step functions ply to Riemnn integrtion. Definition.

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics GENERALIZATIONS OF THE TRAPEZOID INEQUALITIES BASED ON A NEW MEAN VALUE THEOREM FOR THE REMAINDER IN TAYLOR S FORMULA volume 7, issue 3, rticle 90, 006.

More information

Euler-Maclaurin Summation Formula 1

Euler-Maclaurin Summation Formula 1 Jnury 9, Euler-Mclurin Summtion Formul Suppose tht f nd its derivtive re continuous functions on the closed intervl [, b]. Let ψ(x) {x}, where {x} x [x] is the frctionl prt of x. Lemm : If < b nd, b Z,

More information

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014 SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 014 Mrk Scheme: Ech prt of Question 1 is worth four mrks which re wrded solely for the correct nswer.

More information

NOTES AND PROBLEMS: INTEGRATION THEORY

NOTES AND PROBLEMS: INTEGRATION THEORY NOTES AND PROBLEMS: INTEGRATION THEORY SAMEER CHAVAN Abstrct. These re the lecture notes prepred for prticipnts of AFS-I to be conducted t Kumun University, Almor from 1st to 27th December, 2014. Contents

More information

Lecture 19: Continuous Least Squares Approximation

Lecture 19: Continuous Least Squares Approximation Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

Chapter 6. Riemann Integral

Chapter 6. Riemann Integral Introduction to Riemnn integrl Chpter 6. Riemnn Integrl Won-Kwng Prk Deprtment of Mthemtics, The College of Nturl Sciences Kookmin University Second semester, 2015 1 / 41 Introduction to Riemnn integrl

More information

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the

More information

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS Throughout, we let [, b] be bounded intervl in R. C 2 ([, b]) denotes the spce of functions with derivtives of second order continuous up to the endpoints. Cc 2

More information

Mapping the delta function and other Radon measures

Mapping the delta function and other Radon measures Mpping the delt function nd other Rdon mesures Notes for Mth583A, Fll 2008 November 25, 2008 Rdon mesures Consider continuous function f on the rel line with sclr vlues. It is sid to hve bounded support

More information

Problem Set 3

Problem Set 3 14.102 Problem Set 3 Due Tuesdy, October 18, in clss 1. Lecture Notes Exercise 208: Find R b log(t)dt,where0

More information

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a). The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

More information

Math 324 Course Notes: Brief description

Math 324 Course Notes: Brief description Brief description These re notes for Mth 324, n introductory course in Mesure nd Integrtion. Students re dvised to go through ll sections in detil nd ttempt ll problems. These notes will be modified nd

More information

a n+2 a n+1 M n a 2 a 1. (2)

a n+2 a n+1 M n a 2 a 1. (2) Rel Anlysis Fll 004 Tke Home Finl Key 1. Suppose tht f is uniformly continuous on set S R nd {x n } is Cuchy sequence in S. Prove tht {f(x n )} is Cuchy sequence. (f is not ssumed to be continuous outside

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

1.3 Regular Expressions

1.3 Regular Expressions 56 1.3 Regulr xpressions These hve n importnt role in describing ptterns in serching for strings in mny pplictions (e.g. wk, grep, Perl,...) All regulr expressions of lphbet re 1.Ønd re regulr expressions,

More information

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C. Lecture 4 Complex Integrtion MATH-GA 2451.001 Complex Vriles 1 Construction 1.1 Integrting complex function over curve in C A nturl wy to construct the integrl of complex function over curve in the complex

More information

Inner-product spaces

Inner-product spaces Inner-product spces Definition: Let V be rel or complex liner spce over F (here R or C). An inner product is n opertion between two elements of V which results in sclr. It is denoted by u, v nd stisfies:

More information

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018 CS 301 Lecture 04 Regulr Expressions Stephen Checkowy Jnury 29, 2018 1 / 35 Review from lst time NFA N = (Q, Σ, δ, q 0, F ) where δ Q Σ P (Q) mps stte nd n lphet symol (or ) to set of sttes We run n NFA

More information

Continuous Random Variables

Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

More information

Parallel Projection Theorem (Midpoint Connector Theorem):

Parallel Projection Theorem (Midpoint Connector Theorem): rllel rojection Theorem (Midpoint onnector Theorem): The segment joining the midpoints of two sides of tringle is prllel to the third side nd hs length one-hlf the third side. onversely, If line isects

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

MATH 423 Linear Algebra II Lecture 28: Inner product spaces.

MATH 423 Linear Algebra II Lecture 28: Inner product spaces. MATH 423 Liner Algebr II Lecture 28: Inner product spces. Norm The notion of norm generlizes the notion of length of vector in R 3. Definition. Let V be vector spce over F, where F = R or C. A function

More information

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year 1/1/21. Fill in the circles in the picture t right with the digits 1-8, one digit in ech circle with no digit repeted, so tht no two circles tht re connected by line segment contin consecutive digits.

More information

Week 7 Riemann Stieltjes Integration: Lectures 19-21

Week 7 Riemann Stieltjes Integration: Lectures 19-21 Week 7 Riemnn Stieltjes Integrtion: Lectures 19-21 Lecture 19 Throughout this section α will denote monotoniclly incresing function on n intervl [, b]. Let f be bounded function on [, b]. Let P = { = 0

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs Applied Mthemticl Sciences, Vol. 2, 2008, no. 8, 353-362 New Integrl Inequlities for n-time Differentible Functions with Applictions for pdfs Aristides I. Kechriniotis Technologicl Eductionl Institute

More information

Integrals along Curves.

Integrals along Curves. Integrls long Curves. 1. Pth integrls. Let : [, b] R n be continuous function nd let be the imge ([, b]) of. We refer to both nd s curve. If we need to distinguish between the two we cll the function the

More information

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9 III Lecture on Numericl Integrtion File fclib/dttb/lecture-notes/numerical-inter03.tex /by EC, 3/14/008 t 15:11, version 9 1 Sttement of the Numericl Integrtion Problem In this lecture we consider the

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

ENGI 3424 Engineering Mathematics Five Tutorial Examples of Partial Fractions

ENGI 3424 Engineering Mathematics Five Tutorial Examples of Partial Fractions ENGI 44 Engineering Mthemtics Five Tutoril Exmples o Prtil Frctions 1. Express x in prtil rctions: x 4 x 4 x 4 b x x x x Both denomintors re liner non-repeted ctors. The cover-up rule my be used: 4 4 4

More information

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

More information

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals. MATH 409 Advned Clulus I Leture 22: Improper Riemnn integrls. Improper Riemnn integrl If funtion f : [,b] R is integrble on [,b], then the funtion F(x) = x f(t)dt is well defined nd ontinuous on [,b].

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs A.I. KECHRINIOTIS AND N.D. ASSIMAKIS Deprtment of Eletronis Tehnologil Edutionl Institute of Lmi, Greee EMil: {kehrin,

More information

A new algorithm for generating Pythagorean triples 1

A new algorithm for generating Pythagorean triples 1 A new lgorithm for generting Pythgoren triples 1 RH Dye 2 nd RWD Nicklls 3 The Mthemticl Gzette (1998; 82 (Mrch, No. 493, pp. 86 91 http://www.nicklls.org/dick/ppers/mths/pythgtriples1998.pdf 1 Introduction

More information

Math 4200: Homework Problems

Math 4200: Homework Problems Mth 4200: Homework Problems Gregor Kovčič 1. Prove the following properties of the binomil coefficients ( n ) ( n ) (i) 1 + + + + 1 2 ( n ) (ii) 1 ( n ) ( n ) + 2 + 3 + + n 2 3 ( ) n ( n + = 2 n 1 n) n,

More information

Math 100 Review Sheet

Math 100 Review Sheet Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s

More information

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35 MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35 9. Modules over PID This week we re proving the fundmentl theorem for finitely generted modules over PID, nmely tht they re ll direct sums of cyclic modules.

More information

Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrals. Partitioning the Curve. Estimating the Mass Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

More information

3.4 Numerical integration

3.4 Numerical integration 3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

More information

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are:

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are: (x + y ) = y + (x + y ) = x + Problem Set 9 Discussion: Nov., Nov. 8, Nov. (on probbility nd binomil coefficients) The nme fter the problem is the designted writer of the solution of tht problem. (No one

More information

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions. Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

More information

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS 33 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS As simple ppliction of the results we hve obtined on lgebric extensions, nd in prticulr on the multiplictivity of extension degrees, we cn nswer (in

More information

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL DR. RITU AGARWAL MALVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR, INDIA-302017 Tble of Contents Contents Tble of Contents 1 1. Introduction 1 2. Prtition

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

5.2 Volumes: Disks and Washers

5.2 Volumes: Disks and Washers 4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of cross-section or slice. In this section, we restrict

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

38 Riemann sums and existence of the definite integral.

38 Riemann sums and existence of the definite integral. 38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the x-xis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

MATH 573 FINAL EXAM. May 30, 2007

MATH 573 FINAL EXAM. May 30, 2007 MATH 573 FINAL EXAM My 30, 007 NAME: Solutions 1. This exm is due Wednesdy, June 6 efore the 1:30 pm. After 1:30 pm I will NOT ccept the exm.. This exm hs 1 pges including this cover. There re 10 prolems.

More information

MATH 409 Advanced Calculus I Lecture 18: Darboux sums. The Riemann integral.

MATH 409 Advanced Calculus I Lecture 18: Darboux sums. The Riemann integral. MATH 409 Advnced Clculus I Lecture 18: Drboux sums. The Riemnn integrl. Prtitions of n intervl Definition. A prtition of closed bounded intervl [, b] is finite subset P [,b] tht includes the endpoints

More information

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations AMATH 731: Applied Functionl Anlysis Fll 2009 1 Introduction Some bsics of integrl equtions An integrl eqution is n eqution in which the unknown function u(t) ppers under n integrl sign, e.g., K(t, s)u(s)

More information

Practice final exam solutions

Practice final exam solutions University of Pennsylvni Deprtment of Mthemtics Mth 26 Honors Clculus II Spring Semester 29 Prof. Grssi, T.A. Asher Auel Prctice finl exm solutions 1. Let F : 2 2 be defined by F (x, y (x + y, x y. If

More information

MTH 505: Number Theory Spring 2017

MTH 505: Number Theory Spring 2017 MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of $ nd $ s two denomintions of coins nd $c

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer. Homework 4 (1) If f R[, b], show tht f 3 R[, b]. If f + (x) = mx{f(x), 0}, is f + R[, b]? Justify your nswer. (2) Let f be continuous function on [, b] tht is strictly positive except finitely mny points

More information

Thin-Plate Splines. Contents

Thin-Plate Splines. Contents Thin-Plte Splines Dvid Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Cretive Commons Attribution 4.0 Interntionl License. To view copy of this

More information

Conducting Ellipsoid and Circular Disk

Conducting Ellipsoid and Circular Disk 1 Problem Conducting Ellipsoid nd Circulr Disk Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 (September 1, 00) Show tht the surfce chrge density σ on conducting ellipsoid,

More information

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40 Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since

More information

Big idea in Calculus: approximation

Big idea in Calculus: approximation Big ide in Clculus: pproximtion Derivtive: f (x) = df dx f f(x +h) f(x) =, x h rte of chnge is pproximtely the rtio of chnges in the function vlue nd in the vrible in very short time Liner pproximtion:

More information

Necessary and Sufficient Conditions for Differentiating Under the Integral Sign

Necessary and Sufficient Conditions for Differentiating Under the Integral Sign Necessry nd Sufficient Conditions for Differentiting Under the Integrl Sign Erik Tlvil 1. INTRODUCTION. When we hve n integrl tht depends on prmeter, sy F(x f (x, y dy, it is often importnt to know when

More information

A GENERAL INTEGRAL RICARDO ESTRADA AND JASSON VINDAS

A GENERAL INTEGRAL RICARDO ESTRADA AND JASSON VINDAS A GENERAL INTEGRAL RICARDO ESTRADA AND JASSON VINDAS Abstrct. We define n integrl, the distributionl integrl of functions of one rel vrible, tht is more generl thn the Lebesgue nd the Denjoy-Perron-Henstock

More information

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula. Generliztions of the Ostrowski s inequlity K. S. Anstsiou Aristides I. Kechriniotis B. A. Kotsos Technologicl Eductionl Institute T.E.I.) of Lmi 3rd Km. O.N.R. Lmi-Athens Lmi 3500 Greece Abstrct Using

More information

set is not closed under matrix [ multiplication, ] and does not form a group.

set is not closed under matrix [ multiplication, ] and does not form a group. Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed

More information

Chapter 5 1. = on [ 1, 2] 1. Let gx ( ) e x. . The derivative of g is g ( x) e 1

Chapter 5 1. = on [ 1, 2] 1. Let gx ( ) e x. . The derivative of g is g ( x) e 1 Chpter 5. Let g ( e. on [, ]. The derivtive of g is g ( e ( Write the slope intercept form of the eqution of the tngent line to the grph of g t. (b Determine the -coordinte of ech criticl vlue of g. Show

More information

Chapter 4. Additional Variational Concepts

Chapter 4. Additional Variational Concepts Chpter 4 Additionl Vritionl Concepts 137 In the previous chpter we considered clculus o vrition problems which hd ixed boundry conditions. Tht is, in one dimension the end point conditions were speciied.

More information

MATH 174A: PROBLEM SET 5. Suggested Solution

MATH 174A: PROBLEM SET 5. Suggested Solution MATH 174A: PROBLEM SET 5 Suggested Solution Problem 1. Suppose tht I [, b] is n intervl. Let f 1 b f() d for f C(I; R) (i.e. f is continuous rel-vlued function on I), nd let L 1 (I) denote the completion

More information