51.1 Direct proportionality

Size: px
Start display at page:

Download "51.1 Direct proportionality"

Transcription

1 1 (+) Modules 49,50/Topic 51 FUNCTIONS AND SCALES This is the title of App. E of the author s book (Kurian, 2005). He would like every student of civil engineering in general, and geotechnical engineering in particular, to study the contents carefully which he is not likely to find in any other textbook sources. The author had diligently presented these topics in a few lectures whenever he had met with a fresh batch of students, over several years, in IIT Madras.(My student Sriram, who left for U.S. after his B.Tech. wrote to me in a letter that he has not come across the like of it even in the U.S.) While all students may not share Sriram s or Purnanandam s enthusiasm, the author strongly feels that all students must put in an early effort to imbibe the contents thereof to their own academic and professional advantage. These are simple facts involving basic mathematics which the author feels should form part of the knowledge base of every student, particularly of geotechnical engineering. This Section excerpts only the most important parts, which every student must first learn before going to the full Appendix mentioned above Direct proportionality When y is directly proportional to x, we have y = kx (51.1) where k is the constant of proportionality between y and x. x being in the first degree (power), the above will plot as a straight line, as seen in Fig Slope k, which is the constant of proportionality, is in other words the slope of this line which is the same at any point on the line (see Fig.51.2 in which the slope is plotted against x). The dimension of k is the dimension of y divided by the dimension of x. Slope is not the tangent of the angle θ, i.e. bc/ab, which students normally tend to assume. If it were so, it would change with the scales to which y and x are plotted, and besides, it would have been dimensionless irrespective of the dimensions of y and x. However, if by tangent what is meant is the quantity on the y-axis represented by the distance bc divided by the quantity on the x-axis represented by the distanceab, then it correctly defines the slope k. If it were a curve, for example, y = kx 2 (51.2) which is a parabola (Fig.51.3), the slope of the curve at any point is the slope of the tangent to the curve at that point, taken in the same manner as above. In this

2 2 respect, slope is the rate of change of y with respect to x which in this case is equal to 2kx., which linearly varies (directly proportional) with x(see Fig.51.4 in which the slope is plotted against x) Note that in a physical problem, if the variation were of this kind, (dy/dx) would be called the tangent modulus, and (y/x) the secant modulus (Fig.51.5) at a point (x,y) specified on the curve. A secant is the line joining the origin to a given point on a curve, and (y/x) is the slope of such a line and hence the name secant modulus. The slope of the tangent at the origin of the curve is called the initial tangent modulus. (Note that the terms tangent and secant have both geometrical and trignometrical meanings.) 51.3 Inverse proportionality When y is inversely proportional to x, it means that y is directly proportional to the inverse of x. i.e., y α 1 x y= k x xy = k (51.3) Since x and y appear in the product, the relationship between them is not linear. The variation of y with x is shown in Fig The curve following Eq.(51.3) is a rectangular hyperbola. In other words, while in direct proportion y increase linearly with x, in inverse proportion y decreases hyperbolically with x. What is however important to note in respect of inverse proportion is that the decrease in y with increase in x is very fast in the initial ranges of values of x and very slow in the final ranges of value of x. If x and y appear in the sum, as x + y = k (51.4) the variation is linear, with y decreasing as x increases, as shown in Fig It may be indicated at this stage that xy = k will plot as a straight line (like Fig.51.7) in logarithmic scales (Sec ). Fig.51.8 is plotted with three different indices of x (1,0 and -1), in which point (1,1) is seen to be common to the three plots Logarithm Logarithm of a quantity to any base is the index (or power) by which the base is to be raised to obtain the quantity.

3 3 logab = 3 This means, a 3 = b (51.5) In relation to the base and the logarithm, the quantity itself is called the antilogarithm. In the above b is the antilogarithm, 3, the logarithm and a, the base Unit of logarithm The logarithm of a quantity id always dimensionless, whatever be the dimension of the quantity. This can be simply explained by referring to Eq.(51.5). If a has the dimension [L], b will have the dimension [L 3 ]. Thus while the antilogarithm, i.e., the quantity itself, and the base have dimensions, the logarithm (3) has no dimension, it being merely the index of a. We further note that the dimensions of the antilogarithm and the base are consistent with the value of the logarithm. We use log10 p in many situations in geotechnical engineering. It is interesting to note that whereas p has the dimension [F/L 2 ] and log p has no dimension, the base 10 has dimension, and what is more, it changes with the value of the logarithm. Thus, for example, if log p10 = 2.4, say, the base 10 has the dimension[ F 1 L 2] 2.4 such that when it is raised to the power2.4, we get the dimension of p[ F L2].In this manner the dimension of the base 10 changes with the value of the logarithm, the dimension of p being constant, even though we are not concerned with the dimension of the base Logarithmic scales The first scale at the top of Fig.51.9 shows the arithmetic scale in which each succeeding quantity is obtained by adding a constant to the preceding quantity. In the next scale it is seen that each succeeding quantity is obtained by multiplying the preceding quantity by a constant (which is 10 in this case), with the zero appearing at -.It is noted in respect of this scale that the logarithm of the quantity to the base 10 is plotted to arithmetic scale. These are called logarithmic scales in which the quantity, i.e., the antilogarithm, is plotted to the logscale, which means that its logarithm to the base 10 (in this case) is plotted to arithmetic scale. As a matter of fact, only arithmetic scale exists, the picture is that, either the quantity itself, or some function of it, is plotted to the arithmetic scale, the function being logarithm in the present case. One may also note that just as the base 10, we can have log scales to any other base in the same manner. (Fig.51.9 also shows the variation of log x with x over the cycle 1-10.)

4 4 It is obvious on examining the logarithmic scale that the same distance or interval represents increasingly smaller quantities as we go to the left and increasingly larger quantities as we go to the right, from the middle. In other words, we are introducing a wilfuldistortion by magnifyingsmaller differences and shrinking larger differences in the representation of quantities on the logarithmic scale, which is necessary in situations such as plotting the particle size in the grain size distribution curve, in order to give significant representation to smaller particle sizes, even at the expense of larger sizes, which in the absence of such distortion would have received very insignificant representation, if plotted to arithmetic scale Fitting experimental results y is a function of x and we have a large number of values of y at different values of x obtained, say, from an experiment conducted in a laboratory, which are shown in Fig If the relationship is idealised as linear, we would plot the best fitting straight line passing through the points (giving the least scatter of points on either side of the line). The characteristics c (the y-intercept) and m (the slope) which fully define the straight line are obtained as shown in the figure. (Note that, theoretically, only two points are needed to plot a straight line.) 51.8 Logarithmic plots Logarithmic scales enable us to prepare logarithmic plots of data. We have two types of logarithmic plots: the log-log plots and the semi-log plots Log-log plots If the relationship between y and x were of the power form, i.e., y = x a (51.6) or y = x a (51.7) (Fig.51.11), instead of fitting a curve through the points, we can obtain the value of the power a by plotting a straight line through the points, provided both y and x are plotted to log scales (i.e., their logarithms plotted to arithmetic scales). This follows from the fact that if we take logarithm, log y = ± a log x (51.8) which means that log y will plot as a straight line against log x to the slopea (Fig.51.12). In other words, the power a is obtained as the slope of the straight line fitted on a log-log plot. (In the above, we are actually exploiting the convenience of fitting a straight line by entering the points on the distorted log-log scales.) In the case of the inverse proportion hyperbola, xy = k (51.3)

5 5 log x + log y = log k (51.9) we have a means of fitting a straight line provided the points are plotted on log-log scales (Fig.51.13), in which the antilogarithm of either of the intercepts gives us the unknown k Semi-log plots Consider the exponential function (Fig.51.14) Taking logarithm, y = a x (51.10) or y = a -x (51.11) log y = ±x log a (51.12) which means that log y will plot as astraight line against x to the slope loga (Fig.51.15). Such a plot is called a semi-log plot, in which only one quantity is plotted to logarithmic scale, the other quantity being plotted to arithmetic scale. The basea, which is the unknown in the present case, is obtained as the antilogarithm of the slope of the straight line fitted on the semi-log plot Other scales Just as we plotted the logarithm of the quantity to arithmetic scale, to get the log scale for the quantity, we can plot functions such as square, square root, inverse, etc. to arithmetic scales, to get the corresponding quantities plotted to the square, square root and inverse scales respectively. Figs , and show the above scales respectively. Among them, one observes that the inverse scale is a very fast converging scale. (Note that the cycles 1-10, etc. are fast decreasing here, compared to the log scales where they are constant.) Apart from the uses of these scales, note that, in y = kx 2 (Eq.51.2), if x is plotted to the square scale, we get a straight line whose slope is k. The same applies to y = kx ½ and y = kx -1 (xy = k rectangular hyperbola) plotted respectively to square root and inverse scales for x (see Figs ,20 and 21) Hyperbolic variation A hyperbolic variation of the type y = x a+bx (51.13) where a and b are constants, is assumed in many problems in Soil Mechanics. In the first place, the shape of this curve (Fig.51.23) follows by multiplying y =x and y

6 6 = 1 (Fig.51.22). In order to determine the constantsa and b, the ultimate value of y a+bx and the initial tangent modulus (Fig.51.23), one can manipulate the equation in the following manner. x = a + bx (51.14) y If we plot the data (x/y) against x we get the straight line shown in Fig It is seen that a is the y-interceptand b is the slope of this straight line. (Note that from Fig.51.23, y = 0 at x = 0 following which (x/y) is indeterminate at x = 0. However, from Eq.(51.14) we see that lim x 0 (x y ) a Fig is called the transformed plot.) Now, dividing Eq.(51.14) by x, 1 y = a x + b(51.15) from which Hence, 1 = lim y ult x (a + b) = b y y ult = 1 b The above shows that y ult is obtained as the inverse of the slope of the straight line. Further, reverting to Eq.(51.13), we write y = 1 x a+bx At x = 0 y x = 1 a (51.16) where (y/x) is the initial tangent modulus, which is obtained as the inverse of the y- intercept a of the straight line in Fig (Note that (y/x) is the secant modulus. It becomes the initial tangent modulus, since the secant coincides with the tangent at the origin.) Eq.(51.15) reveals another possibility of plotting a straight line using inverse scales, as in Fig where a is the slope and b, the y-intercept. However, between Figs and 25, one would prefer the former because of the greater ambiguity in plotting Fig thanks to the fast convergence of the inverse scales.

7 Stresses vs. Deformations Structural design of flexural systems are based on criteria based on either allowable stresses or allowable deflections. These may be called structural design parameters in line with geotechnical design parameters which apply both to Working Stress Design and Limit State Design in structural engineering. The latter refers to them as the limit states of collapse (strength) and serviceability (deflection). We have already noted that bearing capacity (strength) and settlement are the corresponding criteria in geotechnical design. Reverting to structural design and calling the parameters respectively as σ (bending stress) and y, (bending deflection), it directly follows that σ is not directly proportional to y, or vice versa,; since, if it were so, they would not have been independent criteria and design for one criterion would have automatically taken care of the other. It is therefore important for us to examine the relationship between the two, and we shall do that by taking the case of a simply supported beam with a central concentrated load, from which: σ = α M However,M = -EI d2 y dx 2 α d2 y dx 2 M x z I This means that M is not proportional to y, but proportional to a function of y, which is ( d2 y dx2), the second rate of change of y with respect to x. (The first rate of change is the slope.) As a result M is maximum where ( d2 y dx2) is maximum, and not where y is maximum, as beginners among students normally tend to assume. The example illustrated in Fig explains the difference in terms of design. In the above, elastic supports can take the place of springs. If σ were the criterion of design all the three systems would be equally acceptable; on the other hand, if Y were the criterion, the last two, if not all the three, might not have been acceptable. Note: App. E cited (Kurian, 2005) presents many examples from geotechnical and foundation engineering using the above concepts and scales.

Appendix A. Common Mathematical Operations in Chemistry

Appendix A. Common Mathematical Operations in Chemistry Appendix A Common Mathematical Operations in Chemistry In addition to basic arithmetic and algebra, four mathematical operations are used frequently in general chemistry: manipulating logarithms, using

More information

2 marks Questions and Answers

2 marks Questions and Answers 1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and

More information

Hyperbolic Soil Bearing Capacity

Hyperbolic Soil Bearing Capacity 1 Introduction Hyperbolic Soil Bearing Capacity This example involves analyzing the bearing capacity of a round footing. The example is useful for illustrating several SIGMA/W features and procedures,

More information

AERO 214. Lab II. Measurement of elastic moduli using bending of beams and torsion of bars

AERO 214. Lab II. Measurement of elastic moduli using bending of beams and torsion of bars AERO 214 Lab II. Measurement of elastic moduli using bending of beams and torsion of bars BENDING EXPERIMENT Introduction Flexural properties of materials are of interest to engineers in many different

More information

PILE SOIL INTERACTION MOMENT AREA METHOD

PILE SOIL INTERACTION MOMENT AREA METHOD Pile IGC Soil 2009, Interaction Moment Guntur, INDIA Area Method PILE SOIL INTERACTION MOMENT AREA METHOD D.M. Dewaikar Professor, Department of Civil Engineering, IIT Bombay, Mumbai 400 076, India. E-mail:

More information

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment 7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment à It is more difficult to obtain an exact solution to this problem since the presence of the shear force means that

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

Precalculus. Course Text. Course Description. Course Objectives. StraighterLine MAT201: Precalculus

Precalculus. Course Text. Course Description. Course Objectives. StraighterLine MAT201: Precalculus Precalculus Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. Precalculus, 6th edition, McGraw-Hill, 2008. ISBN: 9780073312637 [This text is available as an etextbook at purchase

More information

Chapter 4 Deflection and Stiffness

Chapter 4 Deflection and Stiffness Chapter 4 Deflection and Stiffness Asst. Prof. Dr. Supakit Rooppakhun Chapter Outline Deflection and Stiffness 4-1 Spring Rates 4-2 Tension, Compression, and Torsion 4-3 Deflection Due to Bending 4-4 Beam

More information

CHAPTER -6- BENDING Part -1-

CHAPTER -6- BENDING Part -1- Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and

More information

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

Math 4C Fall 2008 Final Exam Study Guide Format 12 questions, some multi-part. Questions will be similar to sample problems in this study guide,

Math 4C Fall 2008 Final Exam Study Guide Format 12 questions, some multi-part. Questions will be similar to sample problems in this study guide, Math 4C Fall 2008 Final Exam Study Guide Format 12 questions, some multi-part. Questions will be similar to sample problems in this study guide, homework problems, lecture examples or examples from the

More information

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS 3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

More information

Laboratory 4 Bending Test of Materials

Laboratory 4 Bending Test of Materials Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective

More information

276 Calculus and Structures

276 Calculus and Structures 76 Calculus and Structures CHAPTER THE CONJUGATE BEA ETHOD Calculus and Structures 77 Copyright Chapter THE CONJUGATE BEA ETHOD.1 INTRODUCTION To find the deflection of a beam you must solve the equation,

More information

NORTH ALLEGHENY SCHOOL DISTRICT MATHEMATICS DEPARTMENT HONORS PRE-CALCULUS SYLLABUS COURSE NUMBER: 3421

NORTH ALLEGHENY SCHOOL DISTRICT MATHEMATICS DEPARTMENT HONORS PRE-CALCULUS SYLLABUS COURSE NUMBER: 3421 NORTH ALLEGHENY SCHOOL DISTRICT MATHEMATICS DEPARTMENT HONORS PRE-CALCULUS SYLLABUS COURSE NUMBER: 3421 Units of Credit: 1.0 credits, honors weight Course Length: 184 days (full year) Course Overview This

More information

Numerical Methods. Exponential and Logarithmic functions. Jaesung Lee

Numerical Methods. Exponential and Logarithmic functions. Jaesung Lee Numerical Methods Exponential and Logarithmic functions Jaesung Lee Exponential Function Exponential Function Introduction We consider how the expression is defined when is a positive number and is irrational.

More information

correlated to the Virginia Standards of Learning Algebra II with Trigonometry

correlated to the Virginia Standards of Learning Algebra II with Trigonometry correlated to the Virginia Standards of Learning Algebra II with Trigonometry AII/T.1 The student will identify field properties, axioms of equality and inequality, and properties of order that are valid

More information

Learning Module 1 - Basic Algebra Review (Appendix A)

Learning Module 1 - Basic Algebra Review (Appendix A) Learning Module 1 - Basic Algebra Review (Appendix A) Element 1 Real Numbers and Operations on Polynomials (A.1, A.2) Use the properties of real numbers and work with subsets of the real numbers Determine

More information

) # ( 281). Give units with your answer.

) # ( 281). Give units with your answer. Math 120 Winter 2009 Handout 17: In-Class Review for Exam 2 The topics covered by Exam 2 in the course include the following: Implicit differentiation. Finding formulas for tangent lines using implicit

More information

Math 121 Calculus 1 Fall 2009 Outcomes List for Final Exam

Math 121 Calculus 1 Fall 2009 Outcomes List for Final Exam Math 121 Calculus 1 Fall 2009 Outcomes List for Final Exam This outcomes list summarizes what skills and knowledge you should have reviewed and/or acquired during this entire quarter in Math 121, and what

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

Strength of Materials Prof. S.K.Bhattacharya Dept. of Civil Engineering, I.I.T., Kharagpur Lecture No.26 Stresses in Beams-I

Strength of Materials Prof. S.K.Bhattacharya Dept. of Civil Engineering, I.I.T., Kharagpur Lecture No.26 Stresses in Beams-I Strength of Materials Prof. S.K.Bhattacharya Dept. of Civil Engineering, I.I.T., Kharagpur Lecture No.26 Stresses in Beams-I Welcome to the first lesson of the 6th module which is on Stresses in Beams

More information

AP CALCULUS BC 2009 SCORING GUIDELINES

AP CALCULUS BC 2009 SCORING GUIDELINES AP CALCULUS BC 2009 SCORING GUIDELINES Question 5 x 2 5 8 1 f ( x ) 1 4 2 6 Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points

More information

techie-touch.blogspot.com DEPARTMENT OF CIVIL ENGINEERING ANNA UNIVERSITY QUESTION BANK CE 2302 STRUCTURAL ANALYSIS-I TWO MARK QUESTIONS UNIT I DEFLECTION OF DETERMINATE STRUCTURES 1. Write any two important

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 11 Last class, what we did is, we looked at a method called superposition

More information

1 Static Plastic Behaviour of Beams

1 Static Plastic Behaviour of Beams 1 Static Plastic Behaviour of Beams 1.1 Introduction Many ductile materials which are used in engineering practice have a considerable reserve capacity beyond the initial yield condition. The uniaxial

More information

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case

More information

A-Level Notes CORE 1

A-Level Notes CORE 1 A-Level Notes CORE 1 Basic algebra Glossary Coefficient For example, in the expression x³ 3x² x + 4, the coefficient of x³ is, the coefficient of x² is 3, and the coefficient of x is 1. (The final 4 is

More information

Regression and Nonlinear Axes

Regression and Nonlinear Axes Introduction to Chemical Engineering Calculations Lecture 2. What is regression analysis? A technique for modeling and analyzing the relationship between 2 or more variables. Usually, 1 variable is designated

More information

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information

Strength of Materials Prof. Dr. Suraj Prakash Harsha Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee

Strength of Materials Prof. Dr. Suraj Prakash Harsha Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee Strength of Materials Prof. Dr. Suraj Prakash Harsha Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee Lecture - 28 Hi, this is Dr. S. P. Harsha from Mechanical and

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering Torsion Torsion: Torsion refers to the twisting of a structural member that is loaded by couples (torque) that produce rotation about the member s longitudinal axis. In other words, the member is loaded

More information

Spiral Review Probability, Enter Your Grade Online Quiz - Probability Pascal's Triangle, Enter Your Grade

Spiral Review Probability, Enter Your Grade Online Quiz - Probability Pascal's Triangle, Enter Your Grade Course Description This course includes an in-depth analysis of algebraic problem solving preparing for College Level Algebra. Topics include: Equations and Inequalities, Linear Relations and Functions,

More information

General elastic beam with an elastic foundation

General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information

(Refer Slide Time: 04:21 min)

(Refer Slide Time: 04:21 min) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 44 Shear Strength of Soils Lecture No.2 Dear students today we shall go through yet

More information

Bending Load & Calibration Module

Bending Load & Calibration Module Bending Load & Calibration Module Objectives After completing this module, students shall be able to: 1) Conduct laboratory work to validate beam bending stress equations. 2) Develop an understanding of

More information

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil Appendix F Notation a b B C c C k C N C s C u C wt C θ D r D 1 D 2 D 10 D 30 Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus

More information

Chapter 3 Higher Order Linear ODEs

Chapter 3 Higher Order Linear ODEs Chapter 3 Higher Order Linear ODEs Advanced Engineering Mathematics Wei-Ta Chu National Chung Cheng University wtchu@cs.ccu.edu.tw 1 2 3.1 Homogeneous Linear ODEs 3 Homogeneous Linear ODEs An ODE is of

More information

Precalculus. Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. Precalculus, 6th edition, McGraw- Hill, ISBN:

Precalculus. Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. Precalculus, 6th edition, McGraw- Hill, ISBN: Precalculus Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. Precalculus, 6th edition, McGraw- Hill, 2008. ISBN: 978-0-07-331263-7. Course Description This course provides a working

More information

STEM-Prep Pathway SLOs

STEM-Prep Pathway SLOs STEM-Prep Pathway SLOs Background: The STEM-Prep subgroup of the MMPT adopts a variation of the student learning outcomes for STEM from the courses Reasoning with Functions I and Reasoning with Functions

More information

3.9 Derivatives of Exponential and Logarithmic Functions

3.9 Derivatives of Exponential and Logarithmic Functions 322 Chapter 3 Derivatives 3.9 Derivatives of Exponential and Logarithmic Functions Learning Objectives 3.9.1 Find the derivative of exponential functions. 3.9.2 Find the derivative of logarithmic functions.

More information

Polynomials and Rational Functions. Quadratic Equations and Inequalities. Remainder and Factor Theorems. Rational Root Theorem

Polynomials and Rational Functions. Quadratic Equations and Inequalities. Remainder and Factor Theorems. Rational Root Theorem Pre-Calculus Pre-AP Scope and Sequence - Year at a Glance Pre-Calculus Pre-AP - First Semester Pre-calculus with Limits; Larson/Hostetler Three Weeks 1 st 3 weeks 2 nd 3 weeks 3 rd 3 weeks 4 th 3 weeks

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 82 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To generalize the procedure by formulating equations that can be plotted so that they describe the internal shear and moment throughout a member. To use the relations between distributed

More information

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C)

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C) SAT II - Math Level 2 Test #01 Solution 1. x + = 2, then x² + = Since x + = 2, by squaring both side of the equation, (A) - (B) 0 (C) 2 (D) 4 (E) -2 we get x² + 2x 1 + 1 = 4, or simplifying it, x² + 2

More information

Chapter 8 Supplement: Deflection in Beams Double Integration Method

Chapter 8 Supplement: Deflection in Beams Double Integration Method Chapter 8 Supplement: Deflection in Beams Double Integration Method 8.5 Beam Deflection Double Integration Method In this supplement, we describe the methods for determining the equation of the deflection

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis Experimental Uncertainty (Error) and Data Analysis Advance Study Assignment Please contact Dr. Reuven at yreuven@mhrd.org if you have any questions Read the Theory part of the experiment (pages 2-14) and

More information

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012 Lecture Slides Chapter 4 Deflection and Stiffness The McGraw-Hill Companies 2012 Chapter Outline Force vs Deflection Elasticity property of a material that enables it to regain its original configuration

More information

Application of Finite Element Method to Create Animated Simulation of Beam Analysis for the Course of Mechanics of Materials

Application of Finite Element Method to Create Animated Simulation of Beam Analysis for the Course of Mechanics of Materials International Conference on Engineering Education and Research "Progress Through Partnership" 4 VSB-TUO, Ostrava, ISSN 156-35 Application of Finite Element Method to Create Animated Simulation of Beam

More information

(Refer Slide Time: 01:00 01:01)

(Refer Slide Time: 01:00 01:01) Strength of Materials Prof: S.K.Bhattacharya Department of Civil Engineering Indian institute of Technology Kharagpur Lecture no 27 Lecture Title: Stresses in Beams- II Welcome to the second lesson of

More information

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations.

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations. POLI 7 - Mathematical and Statistical Foundations Prof S Saiegh Fall Lecture Notes - Class 4 October 4, Linear Algebra The analysis of many models in the social sciences reduces to the study of systems

More information

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are *12.4 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are very small,

More information

ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

Moment Area Method. 1) Read

Moment Area Method. 1) Read Moment Area Method Lesson Objectives: 1) Identify the formulation and sign conventions associated with the Moment Area method. 2) Derive the Moment Area method theorems using mechanics and mathematics.

More information

MATH 100 and MATH 180 Learning Objectives Session 2010W Term 1 (Sep Dec 2010)

MATH 100 and MATH 180 Learning Objectives Session 2010W Term 1 (Sep Dec 2010) Course Prerequisites MATH 100 and MATH 180 Learning Objectives Session 2010W Term 1 (Sep Dec 2010) As a prerequisite to this course, students are required to have a reasonable mastery of precalculus mathematics

More information

Optimization of Thin-Walled Beams Subjected to Bending in Respect of Local Stability and Strenght

Optimization of Thin-Walled Beams Subjected to Bending in Respect of Local Stability and Strenght Mechanics and Mechanical Engineering Vol. 11, No 1 (2007) 37 48 c Technical University of Lodz Optimization of Thin-Walled Beams Subjected to Bending in Respect of Local Stability and Strenght Tadeusz

More information

Second Order Analysis In the previous classes we looked at a method that determines the load corresponding to a state of bifurcation equilibrium of a perfect frame by eigenvalye analysis The system was

More information

(Refer Slide Time 01:27)

(Refer Slide Time 01:27) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 39 Consolidation and Settlement Lec No. 6 Students welcome again to one more lecture

More information

Flexure: Behavior and Nominal Strength of Beam Sections

Flexure: Behavior and Nominal Strength of Beam Sections 4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

More information

Unit 1 Linear Functions I CAN: A.1.a Solve single-step and multistep equations and inequalities in one variable

Unit 1 Linear Functions I CAN: A.1.a Solve single-step and multistep equations and inequalities in one variable CUMBERLAND COUNTY SCHOOL DISTRICT BENCHMARK ASSESSMENT CURRICULUM PACING GUIDE School: CCHS Subject: Precalculus Grade: 12 Benchmark Assessment 1 Instructional Timeline: Units 1, 2, 3 Term 1 Dependent

More information

Continuous Beams - Flexibility Method

Continuous Beams - Flexibility Method ontinuous eams - Flexibility Method Qu. Sketch the M diagram for the beam shown in Fig.. Take E = 200kN/mm 2. 50kN 60kN-m = = 0kN/m D I = 60 50 40 x 0 6 mm 4 Fig. 60.0 23.5 D 25.7 6.9 M diagram in kn-m

More information

The Not-Formula Book for C2 Everything you need to know for Core 2 that won t be in the formula book Examination Board: AQA

The Not-Formula Book for C2 Everything you need to know for Core 2 that won t be in the formula book Examination Board: AQA Not The Not-Formula Book for C Everything you need to know for Core that won t be in the formula book Examination Board: AQA Brief This document is intended as an aid for revision. Although it includes

More information

CHAPTER 8 ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE

CHAPTER 8 ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE CHAPTER ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE.1 INTRODUCTION An important objective of this research is to determine whether accurate analyses of the lateral load-deflection behavior

More information

Torsion Spring Oscillator with Dry Friction

Torsion Spring Oscillator with Dry Friction Torsion Spring Oscillator with Dry Friction Manual Eugene Butikov Annotation. The manual includes a description of the simulated physical system and a summary of the relevant theoretical material for students

More information

CHAPTER 2. The Derivative

CHAPTER 2. The Derivative CHAPTER The Derivative Section.1 Tangent Lines and Rates of Change Suggested Time Allocation: 1 to 1 1 lectures Slides Available on the Instructor Companion Site for this Text: Figures.1.1,.1.,.1.7,.1.11

More information

CALCULUS. Department of Mathematical Sciences Rensselaer Polytechnic Institute. May 8, 2013

CALCULUS. Department of Mathematical Sciences Rensselaer Polytechnic Institute. May 8, 2013 Department of Mathematical Sciences Ready... Set... CALCULUS 3 y 2 1 0 3 2 1 0 1 x 2 3 1 2 3 May 8, 2013 ii iii Ready... Set... Calculus This document was prepared by the faculty of the Department of Mathematical

More information

MATHEMATICS AP Calculus (BC) Standard: Number, Number Sense and Operations

MATHEMATICS AP Calculus (BC) Standard: Number, Number Sense and Operations Standard: Number, Number Sense and Operations Computation and A. Develop an understanding of limits and continuity. 1. Recognize the types of nonexistence of limits and why they Estimation are nonexistent.

More information

Volusia County Mathematics Curriculum Map. Pre-Calculus. Course Number /IOD

Volusia County Mathematics Curriculum Map. Pre-Calculus. Course Number /IOD Volusia County Mathematics Curriculum Map Pre-Calculus Course Number 1202340/IOD Mathematics Department Volusia County Schools Revised June 9, 2012 Pre- Calculus Curriculum Map 120234/IOD COMPONENTS OF

More information

Final Exam Review Part I: Unit IV Material

Final Exam Review Part I: Unit IV Material Final Exam Review Part I: Unit IV Material Math114 Department of Mathematics, University of Kentucky April 26, 2017 Math114 Lecture 37 1/ 11 Outline 1 Conic Sections Math114 Lecture 37 2/ 11 Outline 1

More information

By Dr. Mohammed Ramidh

By Dr. Mohammed Ramidh Engineering Materials Design Lecture.6 the design of beams By Dr. Mohammed Ramidh 6.1 INTRODUCTION Finding the shear forces and bending moments is an essential step in the design of any beam. we usually

More information

2. Theory of the Derivative

2. Theory of the Derivative 2. Theory of the Derivative 2.1 Tangent Lines 2.2 Definition of Derivative 2.3 Rates of Change 2.4 Derivative Rules 2.5 Higher Order Derivatives 2.6 Implicit Differentiation 2.7 L Hôpital s Rule 2.8 Some

More information

Strength of Materials Prof: S.K.Bhattacharya Dept of Civil Engineering, IIT, Kharagpur Lecture no 28 Stresses in Beams- III

Strength of Materials Prof: S.K.Bhattacharya Dept of Civil Engineering, IIT, Kharagpur Lecture no 28 Stresses in Beams- III Strength of Materials Prof: S.K.Bhattacharya Dept of Civil Engineering, IIT, Kharagpur Lecture no 28 Stresses in Beams- III Welcome to the 3 rd lesson of the 6 th module which is on Stresses in Beams part

More information

Maths Higher Prelim Content

Maths Higher Prelim Content Maths Higher Prelim Content Straight Line Gradient of a line A(x 1, y 1 ), B(x 2, y 2 ), Gradient of AB m AB = y 2 y1 x 2 x 1 m = tanθ where θ is the angle the line makes with the positive direction of

More information

Ph.D. Preliminary Examination Analysis

Ph.D. Preliminary Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2017 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.

More information

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

More information

Deep Foundations 2. Load Capacity of a Single Pile

Deep Foundations 2. Load Capacity of a Single Pile Deep Foundations 2 Load Capacity of a Single Pile All calculations of pile capacity are approximate because it is almost impossible to account for the variability of soil types and the differences in the

More information

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

More information

MODULE C: COMPRESSION MEMBERS

MODULE C: COMPRESSION MEMBERS MODULE C: COMPRESSION MEMBERS This module of CIE 428 covers the following subjects Column theory Column design per AISC Effective length Torsional and flexural-torsional buckling Built-up members READING:

More information

Final Exam Study Guide Mathematical Thinking, Fall 2003

Final Exam Study Guide Mathematical Thinking, Fall 2003 Final Exam Study Guide Mathematical Thinking, Fall 2003 Chapter R Chapter R contains a lot of basic definitions and notations that are used throughout the rest of the book. Most of you are probably comfortable

More information

Test Codes : MIA (Objective Type) and MIB (Short Answer Type) 2007

Test Codes : MIA (Objective Type) and MIB (Short Answer Type) 2007 Test Codes : MIA (Objective Type) and MIB (Short Answer Type) 007 Questions will be set on the following and related topics. Algebra: Sets, operations on sets. Prime numbers, factorisation of integers

More information

Problem 1: Calculating deflection by integration uniform load. Problem 2: Calculating deflection by integration - triangular load pattern

Problem 1: Calculating deflection by integration uniform load. Problem 2: Calculating deflection by integration - triangular load pattern Problem 1: Calculating deflection by integration uniform load Problem 2: Calculating deflection by integration - triangular load pattern Problem 3: Deflections - by differential equations, concentrated

More information

Hardened Concrete. Lecture No. 16

Hardened Concrete. Lecture No. 16 Hardened Concrete Lecture No. 16 Fatigue strength of concrete Modulus of elasticity, Creep Shrinkage of concrete Stress-Strain Plot of Concrete At stress below 30% of ultimate strength, the transition

More information

PRECALCULUS BISHOP KELLY HIGH SCHOOL BOISE, IDAHO. Prepared by Kristina L. Gazdik. March 2005

PRECALCULUS BISHOP KELLY HIGH SCHOOL BOISE, IDAHO. Prepared by Kristina L. Gazdik. March 2005 PRECALCULUS BISHOP KELLY HIGH SCHOOL BOISE, IDAHO Prepared by Kristina L. Gazdik March 2005 1 TABLE OF CONTENTS Course Description.3 Scope and Sequence 4 Content Outlines UNIT I: FUNCTIONS AND THEIR GRAPHS

More information

Unit M1.5 Statically Indeterminate Systems

Unit M1.5 Statically Indeterminate Systems Unit M1.5 Statically Indeterminate Systems Readings: CDL 2.1, 2.3, 2.4, 2.7 16.001/002 -- Unified Engineering Department of Aeronautics and Astronautics Massachusetts Institute of Technology LEARNING OBJECTIVES

More information

Graphical Analysis and Errors - MBL

Graphical Analysis and Errors - MBL I. Graphical Analysis Graphical Analysis and Errors - MBL Graphs are vital tools for analyzing and displaying data throughout the natural sciences and in a wide variety of other fields. It is imperative

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

Quantile Textbook Report

Quantile Textbook Report Quantile Textbook Report Algebra 2 Author Charles, Randall I., et al StateEdition West Virginia Grade Algebra 2 1 Expressions, Equations, and Inequalities 1.1 Patterns and Expressions 930Q 1.2 Properties

More information

Math 121: Calculus 1 - Fall 2013/2014 Review of Precalculus Concepts

Math 121: Calculus 1 - Fall 2013/2014 Review of Precalculus Concepts Introduction Math 121: Calculus 1 - Fall 201/2014 Review of Precalculus Concepts Welcome to Math 121 - Calculus 1, Fall 201/2014! This problems in this packet are designed to help you review the topics

More information

Chapter 12. Static Equilibrium and Elasticity

Chapter 12. Static Equilibrium and Elasticity Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:25) Module - 01 Lecture - 13 In the last class, we have seen how

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS The fundamental objects that we deal with in calculus are functions. FUNCTIONS AND MODELS This chapter prepares the way for calculus by discussing: The basic

More information

(Refer Slide Time: 2:14)

(Refer Slide Time: 2:14) Fluid Dynamics And Turbo Machines. Professor Dr Shamit Bakshi. Department Of Mechanical Engineering. Indian Institute Of Technology Madras. Part A. Module-1. Lecture-3. Introduction To Fluid Flow. (Refer

More information

Achievement Level Descriptors Mathematics Algebra 1

Achievement Level Descriptors Mathematics Algebra 1 Achievement Level Descriptors Mathematics Algebra 1 ALD Standard Level 2 Level 3 Level 4 Level 5 Policy Students performing at this level demonstrate a below satisfactory level of success with the challenging

More information

Mathematics 111 (Calculus II) Laboratory Manual

Mathematics 111 (Calculus II) Laboratory Manual Mathematics (Calculus II) Laboratory Manual Department of Mathematics & Statistics University of Regina nd edition prepared by Patrick Maidorn, Fotini Labropulu, and Robert Petry University of Regina Department

More information

EOC Assessment Outline

EOC Assessment Outline EOC Assessment Outline Course Name: Advanced Topics in Math Course Number: 1298310 Test 50 MAFS.912.F-BF.1.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis E X P E R I M E N T 1 Experimental Uncertainty (Error) and Data Analysis INTRODUCTION AND OBJECTIVES Laboratory investigations involve taking measurements of physical quantities, and the process of taking

More information

Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly

Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly .3 Strain Energy Consider an elastic spring as shown in the Fig..4. When the spring is slowly pulled, it deflects by a small amount u 1. When the load is removed from the spring, it goes back to the original

More information

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method 9210-203 Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method You should have the following for this examination one answer book No additional data is attached

More information