Sotubi.'. SzRuc {- bl+r. !:'z: (Fall 2016) ELEC 341 Quiz #l. ?), Ztz- SA{: Name: Uv.

Size: px
Start display at page:

Download "Sotubi.'. SzRuc {- bl+r. !:'z: (Fall 2016) ELEC 341 Quiz #l. ?), Ztz- SA{: Name: Uv."

Transcription

1 nstructions:. You have 45 minuirs lo complete this quiz. o You MAY use a formula sheet and calculator o You MUST show your work in your bookl t.. You MUST write your answer on this paper (Fall 2016) #l Name: SA{: Sotubi.'. 1 - (5 marks) Use circuit analysis techniques to compute the trarsfer function. l. l^ TT _,, u - vl R C L + Y :,2 2-(l 0 m a r k s)!:'z: Uv. SL SzRuc {- bl+r Convert the circuit into an equivalent Signal Flow Graph markg Use Mason's Gain Formula the Signal Flow Graph to verifu your answer in euestion #1. {Don"- see work in booklet 4 - (10 marks) Redraw the Signal Flow Graph as a Block Diagram. Label ir and ir.?), Ztz- \J' 5 - (10 marks) Use Block Diagram Manipulation to veriff your answers in Questions #1 and #3. Q/Done - see work in booklet

2 nstructions: o You have 45 minutes to complete this quiz.. You MAY use a formula sheet and calculator.. You MUSTsho\a your work in your booklet.. You MUST wnte your answer on this paper. (Fall 2016) #2 Name: S/NT. Solut i""t frl tglnecrlng 1 - (5 marks) For the following SSO (V is input, v is output) mechanical system, draw the equivalent electrical circuit. Label it using electrical symbols s/, v, R, L, C).,v -_> V - K : N 2 - (4 marks) Compute the transfer function T=v/V of the ELECTRCAL system and represent it in NORMALZED form. rg): ffi: W t/r. 3 - (2 marks) Compute the transfer function T=v/V of the MECHANCAL system (V, v, B, K, M) and redresent it in NORMALZED form.,g)=ffi= bz* Y^q sb/,t+t7m 4 - (5 marks) Compute the following values from the MECHANCAL system transfer function. Reduce the terms as much as possible. Compute final value for the NATURAL response. a?jea U - a J -.\ ^/t 6t-\ Koc = FV= t O 5 - (9 marks) Plot the poles and zeros assuming that the system is as labeled on each set ofaxes. Label all real and imaginary values and indicate both o and on on each pole/zero plot. LJ^ t J --,^Jrt JYn +J Y^ z 1 u.jl Critically Damped

3 nstructions :. You have 45 minutes to complete lhis quiz. Namg:. You MAY use a folm. a sheet and calculator. You MUST show your work in your bookjet. e/nt. a You VUST wrile )ou answer on lhis paper. (Fall2016) #3 *j glnc0fns A deranged ghoul wishes to discretely transport an evil pumpkin, for sinister reasons that are best left un-said. He uses a delapitated baby carriage to conceal his wicked cargo. The basket of the baby carriage is supported on a suspension comprised ofa squeeky spring. After placing the evil pumpkin into the baby carriage, the suspension compresses by 4 cm. Provide all answers to 2 significant figures. Mass x2.5(kg) g =9.8(m/s2) Mass x 500(9) Mass x 125(Kg) V Al = 4.9(cm),f Spring riction * 7.8(Ns /m) 6 - (10 marks) Draw the equivalent mechanical system model ofthe baby carriage carrying the evil pumpkin. Compute the values ofall associated masses, springs, dampers and applied forces. F= l'j, faj Mt\ - 3Kl K: fcs> tj/rn R: -7.8 N':,l.

4 7 - (10 marks) Compute the normalized transfer function. r(r): F6: t t - t3t Sc:o $z*2,6g + 13' 8 - (10 marks) After the evil pumpkin is placed in the baby carriage, how long does it take before the baby carriage stops bouncing around? At what frequency does it bowrce? rime: 3,1 E Freq: 13 S 9 - (10 marks) The baby carriage is old and wom out and the suspension bottoms out if a 4.5 Kg mass is placed inside it. Does it ever bottom-out, even just for a moment, after the evil pumpkin is olaced inside it? Prove it. Bottom out?,", 1n) " \-_/ See booklet forproof 10 - (10 marks) How much is the motion affected by changes to the size of the evil pumpkin placed inside it? s it affected more at high frequencies or at low frequencies? sensitivity is higher high freq See booklet for proof

5 nstructions:. You have 45 minut s to camplete this quiz. Name :. You MAY use a formula sheet and calculator. You Mf ST show your work in your bookler. C/f\T.. You Mt ST write your answer on this papen (Fall 2016) #4 t$r [!lrccrlm 1 - (3 marks) For the following system, compute and plot the closedjoop poles & zeros when K:0. s2 +2s+2 "'*4"*8 2 - (1 marks) dentifr the parts of the rea.l axis for which the root locus exists. Realparts: S ( Cl 3 - (1 marks) Compute the assymptole angles and assymptote centre. A = lqrho (r'' '\!r- \ \)(:= ) 4 - (2 marks) The root locus has two breakpoints at (s = - 1.2, -3.2). Are there any others? f so how many? Do not compute the breakpoints. Just show how you figured out how many there should be. *. J+q*- er(**?r*z)-r 8.*zX*+'{**8s) :@ \ s t- GH 3*+ gs+8 str2s* L (s"+zs*z)z ( st*2: *a{:f*8s"8)- (2s.")(51+{** f,s) = (D H*l oj", Total number ofbp : 5 - (2 marks) Compute the departure angles and sketch them on your worksheet. DeparnreAngles= f \q gt 6 - (2 marks) Compute the anival angles and sketch tlem on your worksheet. t. AnivalAngles= + lo8' 7 - (1 marks) Compute the raage ofk for stability. Hint: complete part 8 before ansering this just in case you notice a very easy way to find the answer. K(stable)=,K 8 - (3 marks) Sketch the root locus. 6y.nspe-c-fio". of R-L

6 2.^.^ s -r zs-r z s'?+4s+8- ANSWER for Parts & 8 qry=-'+. -rji bh-ffi =1*ji*. _ -lrjy 7 L -2:5 z

7 Worksheet for Part 5 2.^.^ s +zs+z "'*4"*s.l ol-7 t l q3" lil ttt il iii i ] ltl ti J3, L L - T rl 1 L 1r,*. J3u d,* {.+o{r - 3, - B, = oo llt+a(a+10-6-l ( = l1b" 08 : lscoo [* l8o -dt-^ (j) : l8o -12 : lo?

8 s2+2s+2 "t*4"*8 Worksheet for Part 6 t---t---l lll lll rti _r, rtl rtl trl t L c,' i,l o(3 --l i {,+ de + ql - f3, t5. : l3cn l3s+(-ts)* t, -tr 1o : t8o --B, +?[= BCD $,= - log

9 t3 \"- ol 3 t o J Ec E ol 1L cou { 6 G E T q Nrllr?6STury (\ (, 'l- 5prnras] ' sfv rteu;eeru; tl rq c{ q

(Fall 2016) ELEC 341 Quiz #1

(Fall 2016) ELEC 341 Quiz #1 Instructions: ou have 45 minutes to complete this quiz. ou MA use a formula sheet and calculator. ou MST show your work in your booklet. ou MST write your answer on this paper. (Fall 2016) #1 Name: S/N:

More information

2otl. Ar\' F^\ A.t*l. (1+ne)(l +er-.b) D.rirJ. AStecFas)(-cu)(\rcn) ol( lf co/,lbtn > EECE 360 Quiz #l. Inglnecflns. J /-0marks) Kct bely

2otl. Ar\' F^\ A.t*l. (1+ne)(l +er-.b) D.rirJ. AStecFas)(-cu)(\rcn) ol( lf co/,lbtn > EECE 360 Quiz #l. Inglnecflns. J /-0marks) Kct bely Instrucdons:. You have 45 minutes to complete this quiz. Namg :. You MAY use your formula sheet.. You MUST show your work in your bookl"t SA.,l: I #l 2otl F^\ Inglnecflns 1 - (2 marks) The following two

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 13: Root Locus Continued Overview In this Lecture, you will learn: Review Definition of Root Locus Points on the Real Axis

More information

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No xhibit 2-9/3/15 Invie Filing Pge 1841 f Pge 366 Dket. 44498 F u v 7? u ' 1 L ffi s xs L. s 91 S'.e q ; t w W yn S. s t = p '1 F? 5! 4 ` p V -', {} f6 3 j v > ; gl. li -. " F LL tfi = g us J 3 y 4 @" V)

More information

Mathematics Extension 1

Mathematics Extension 1 BAULKHAM HILLS HIGH SCHOOL TRIAL 04 YEAR TASK 4 Mathematics Etension General Instructions Reading time 5 minutes Working time 0 minutes Write using black or blue pen Board-approved calculators may be used

More information

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of hand-written notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers

More information

Chapter 8. Model of the Accelerometer. 8.1 The static model 8.2 The dynamic model 8.3 Sensor System simulation

Chapter 8. Model of the Accelerometer. 8.1 The static model 8.2 The dynamic model 8.3 Sensor System simulation Chapter 8. Model of the Accelerometer 8.1 The static model 8.2 The dynamic model 8.3 Sensor System simulation 8.3 Sensor System Simulation In order to predict the behavior of the mechanical sensor in combination

More information

If you need more room, use the backs of the pages and indicate that you have done so.

If you need more room, use the backs of the pages and indicate that you have done so. EE 343 Exam II Ahmad F. Taha Spring 206 Your Name: Your Signature: Exam duration: hour and 30 minutes. This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty

More information

Dynamic circuits: Frequency domain analysis

Dynamic circuits: Frequency domain analysis Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

More information

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009 Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Outline. Classical Control. Lecture 5

Outline. Classical Control. Lecture 5 Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?

More information

Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl --

Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl -- Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl -- Consider the function h(x) =IJ\ 4-8x 3-12x 2 + 24x {?\whose graph is

More information

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. ll. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S ll. \ (? >. 1! = * l >'r : ^, : - fr). ;1,!/!i ;(?= f: r*. fl J :!= J; J- >. Vf i - ) CJ ) ṯ,- ( r k : ( l i ( l 9 ) ( ;l fr i) rf,? l i =r, [l CB i.l.!.) -i l.l l.!. * (.1 (..i -.1.! r ).!,l l.r l ( i b i i '9,

More information

Control Systems. Root Locus & Pole Assignment. L. Lanari

Control Systems. Root Locus & Pole Assignment. L. Lanari Control Systems Root Locus & Pole Assignment L. Lanari Outline root-locus definition main rules for hand plotting root locus as a design tool other use of the root locus pole assignment Lanari: CS - Root

More information

I;;"" I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5" i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT

I;; I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5 i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT 5 ;; _L_ 7 9 8 A Ll(;O '{ L _ OFFCAL RETURNS GENERAL ELECTON RAmE 98 9 w ;; (k4(ap 'A ' lee S'T'lTE 5'C TU AS c ; _ l6l>'

More information

Problems -X-O («) s-plane. s-plane *~8 -X -5. id) X s-plane. s-plane. -* Xtg) FIGURE P8.1. j-plane. JO) k JO)

Problems -X-O («) s-plane. s-plane *~8 -X -5. id) X s-plane. s-plane. -* Xtg) FIGURE P8.1. j-plane. JO) k JO) Problems 1. For each of the root loci shown in Figure P8.1, tell whether or not the sketch can be a root locus. If the sketch cannot be a root locus, explain why. Give all reasons. [Section: 8.4] *~8 -X-O

More information

MAC 1147 Final Exam Review

MAC 1147 Final Exam Review MAC 1147 Final Exam Review nstructions: The final exam will consist of 15 questions plu::; a bonus problem. Some questions will have multiple parts and others will not. Some questions will be multiple

More information

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

~,. :'lr. H ~ j. l' , ...,~l. 0 ' ~ bl '!; 1'1. :<! f'~.., I,, r: t,... r':l G. t r,. 1'1 [<, . f' 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'.. ,, 'l t (.) :;,/.I I n ri' ' r l ' rt ( n :' (I : d! n t, :?rj I),.. fl.),. f!..,,., til, ID f-i... j I. 't' r' t II!:t () (l r El,, (fl lj J4 ([) f., () :. -,,.,.I :i l:'!, :I J.A.. t,.. p, - ' I I I

More information

Root Locus. Signals and Systems: 3C1 Control Systems Handout 3 Dr. David Corrigan Electronic and Electrical Engineering

Root Locus. Signals and Systems: 3C1 Control Systems Handout 3 Dr. David Corrigan Electronic and Electrical Engineering Root Locus Signals and Systems: 3C1 Control Systems Handout 3 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie Recall, the example of the PI controller car cruise control system.

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MT OpenCourseWare http://ocw.mit.edu.004 Dynamics and Control Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts nstitute of Technology

More information

University of Toronto Faculty of Applied Science and Engineering. ECE212H1F - Circuit Analysis. Final Examination December 16, :30am - noon

University of Toronto Faculty of Applied Science and Engineering. ECE212H1F - Circuit Analysis. Final Examination December 16, :30am - noon , LAST name: First name: Student ID: University of Toronto Faculty of Applied Science and Engineering ECE212H1F - Circuit Analysis Final Examination December 16, 2017 9:30am - noon Guidelines: Exam type:

More information

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there. ECE37B Final Exam There are 5 problems on this exam and you have 3 hours There are pages -9 in the exam: please make sure all are there. Do not open this exam until told to do so Show all work: Credit

More information

D G 2 H + + D 2

D G 2 H + + D 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Final Exam May 21, 2007 180 minutes Johnson Ice Rink 1. This examination consists

More information

SOLUTION SET. Chapter 9 REQUIREMENTS FOR OBTAINING POPULATION INVERSIONS "LASER FUNDAMENTALS" Second Edition. By William T.

SOLUTION SET. Chapter 9 REQUIREMENTS FOR OBTAINING POPULATION INVERSIONS LASER FUNDAMENTALS Second Edition. By William T. SOLUTION SET Chapter 9 REQUIREMENTS FOR OBTAINING POPULATION INVERSIONS "LASER FUNDAMENTALS" Second Edition By William T. Silfvast C.11 q 1. Using the equations (9.8), (9.9), and (9.10) that were developed

More information

1. Given ) inl. 61T 3^nr 13. f(x) : (2-3x)-r, lr'. i. find the binomial expansion of(x), in ascending powers ofx, up to and including the term

1. Given ) inl. 61T 3^nr 13. f(x) : (2-3x)-r, lr'. i. find the binomial expansion of(x), in ascending powers ofx, up to and including the term 61T 3^nr 13 1. Given ) f(x) : (2-3x)-r, lr'. i find the binomial expansion of(x), in ascending powers ofx, up to and including the term inl. Give each coeflicient as a simplified fraction. 2. (a) Use integration

More information

Collocated versus non-collocated control [H04Q7]

Collocated versus non-collocated control [H04Q7] Collocated versus non-collocated control [H04Q7] Jan Swevers September 2008 0-0 Contents Some concepts of structural dynamics Collocated versus non-collocated control Summary This lecture is based on parts

More information

Centre No. Candidate No. Paper Reference(s) 6665 Edexcel GCE Core Mathematics C3 Advanced Level Mock Paper

Centre No. Candidate No. Paper Reference(s) 6665 Edexcel GCE Core Mathematics C3 Advanced Level Mock Paper Paper Reference (complete below) Centre No. Surname Initial(s) 6 6 6 5 / 0 1 Candidate No. Signature Paper Reference(s) 6665 Edexcel GCE Core Mathematics C3 Advanced Level Mock Paper Time: 1 hour 30 minutes

More information

Example on Root Locus Sketching and Control Design

Example on Root Locus Sketching and Control Design Example on Root Locus Sketching and Control Design MCE44 - Spring 5 Dr. Richter April 25, 25 The following figure represents the system used for controlling the robotic manipulator of a Mars Rover. We

More information

PHYS 232 QUIZ minutes.

PHYS 232 QUIZ minutes. / PHYS 232 QUIZ 1 02-18-2005 50 minutes. This quiz has 3 questions. Please show all your work. If your final answer is not correct, you will get partial credit based on your work shown. You are allowed

More information

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ Ğ Ü Ü Ü ğ ğ ğ Öğ ş öğ ş ğ öğ ö ö ş ğ ğ ö ğ Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ l _.j l L., c :, c Ll Ll, c :r. l., }, l : ö,, Lc L.. c l Ll Lr. 0 c (} >,! l LA l l r r l rl c c.r; (Y ; c cy c r! r! \. L : Ll.,

More information

CHAPTER # 9 ROOT LOCUS ANALYSES

CHAPTER # 9 ROOT LOCUS ANALYSES F K א CHAPTER # 9 ROOT LOCUS ANALYSES 1. Introduction The basic characteristic of the transient response of a closed-loop system is closely related to the location of the closed-loop poles. If the system

More information

Pledged_----=-+ ---'l\...--m~\r----

Pledged_----=-+ ---'l\...--m~\r---- , ~.rjf) )('\.. 1,,0-- Math III Pledged_----=-+ ---'l\...--m~\r---- 1. A square piece ofcardboard with each side 24 inches long has a square cut out at each corner. The sides are then turned up to form

More information

. ~ ~~::::~m Review Sheet #1

. ~ ~~::::~m Review Sheet #1 . ~ ~~::::~m Review Sheet #1 Math lla 1. 2. Which ofthe following represents a function(s)? (1) Y... v \ J 1\ -.. - -\ V i e5 3. The solution set for 2-7 + 12 = 0 is :---:---:- --:...:-._",,, :- --;- --:---;-..!,..;-,...

More information

MAE 143B - Homework 8 Solutions

MAE 143B - Homework 8 Solutions MAE 43B - Homework 8 Solutions P6.4 b) With this system, the root locus simply starts at the pole and ends at the zero. Sketches by hand and matlab are in Figure. In matlab, use zpk to build the system

More information

Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

More information

Years. Marketing without a plan is like navigating a maze; the solution is unclear.

Years. Marketing without a plan is like navigating a maze; the solution is unclear. F Q 2018 E Mk l lk z; l l Mk El M C C 1995 O Y O S P R j lk q D C Dl Off P W H S P W Sl M Y Pl Cl El M Cl FIRST QUARTER 2018 E El M & D I C/O Jff P RGD S C D M Sl 57 G S Alx ON K0C 1A0 C Tl: 6134821159

More information

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010 Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the

More information

Control Systems. University Questions

Control Systems. University Questions University Questions UNIT-1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write

More information

REVIEW FOR MT3 ANSWER KEY MATH 2373, SPRING 2015

REVIEW FOR MT3 ANSWER KEY MATH 2373, SPRING 2015 REVIEW FOR MT3 ANSWER KEY MATH 373 SPRING 15 PROF. YOICHIRO MORI This list of problems is not guaranteed to be an absolutel complete review. For completeness ou must also make sure that ou know how to

More information

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

More information

STABILITY ANALYSIS TECHNIQUES

STABILITY ANALYSIS TECHNIQUES ECE4540/5540: Digital Control Systems 4 1 STABILITY ANALYSIS TECHNIQUES 41: Bilinear transformation Three main aspects to control-system design: 1 Stability, 2 Steady-state response, 3 Transient response

More information

5 Root Locus Analysis

5 Root Locus Analysis 5 Root Locus Analysis 5.1 Introduction A control system is designed in tenns of the perfonnance measures discussed in chapter 3. Therefore, transient response of a system plays an important role in the

More information

EE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models

EE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models EE/ME/AE324: Dynamical Systems Chapter 7: Transform Solutions of Linear Models The Laplace Transform Converts systems or signals from the real time domain, e.g., functions of the real variable t, to the

More information

-74- Chapter 6 Simulation Results. 6.1 Simulation Results by Applying UGV theories for USV

-74- Chapter 6 Simulation Results. 6.1 Simulation Results by Applying UGV theories for USV Chapter 6 Simulation Results 6.1 Simulation Results by Applying UGV theories for USV The path planning with two obstacles by utilizing algorithms which are developed and tested for UGV is given below.

More information

Graded and supplementary homework, Math 2584, Section 4, Fall 2017

Graded and supplementary homework, Math 2584, Section 4, Fall 2017 Graded and supplementary homework, Math 2584, Section 4, Fall 2017 (AB 1) (a) Is y = cos(2x) a solution to the differential equation d2 y + 4y = 0? dx2 (b) Is y = e 2x a solution to the differential equation

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 12, 2015 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

8 sin 3 V. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0.

8 sin 3 V. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0. Spring 2015, Exam #5, Problem #1 4t Answer: e tut 8 sin 3 V 1 For the circuit

More information

International General Certificate of Secondary Education CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education CAMBRIDGE INTERNATIONAL EXAMINATIONS PHYSICS 0625/5 PAPER 5 Practical Test OCTOBER/NOVEMBER SESSION 2002 1 hour 15 minutes Candidates answer on

More information

EE C128 / ME C134 Midterm Fall 2014

EE C128 / ME C134 Midterm Fall 2014 EE C128 / ME C134 Midterm Fall 2014 October 16, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket calculator

More information

AP Calculus AB. Sample Student Responses and Scoring Commentary. Inside: Free Response Question 4. Scoring Guideline.

AP Calculus AB. Sample Student Responses and Scoring Commentary. Inside: Free Response Question 4. Scoring Guideline. 018 AP Calculus AB Sample Student Responses and Scoring Commentary Inside: Free Response Question 4 RR Scoring Guideline RR Student Samples RR Scoring Commentary College Board, Advanced Placement Program,

More information

A/P Warrants. June 15, To Approve. To Ratify. Authorize the City Manager to approve such expenditures as are legally due and

A/P Warrants. June 15, To Approve. To Ratify. Authorize the City Manager to approve such expenditures as are legally due and T. 7 TY LS ALATS A/P rrnts June 5, 5 Pges: To Approve - 5 89, 54.3 A/P rrnts 6/ 5/ 5 Subtotl $ 89, 54. 3 To Rtify Pges: 6-, 34. 98 Advnce rrnts 5/ 6/ 5-4 3, 659. 94 Advnce rrnts 6/ / 5 4, 7. 69 June Retirees

More information

Introduction to Controls

Introduction to Controls EE 474 Review Exam 1 Name Answer each of the questions. Show your work. Note were essay-type answers are requested. Answer with complete sentences. Incomplete sentences will count heavily against the grade.

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

More information

School of Engineering Faculty of Built Environment, Engineering, Technology & Design

School of Engineering Faculty of Built Environment, Engineering, Technology & Design Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Co-ordinator/Tutor : Dr. Phang

More information

7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM

7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

9.5 The Transfer Function

9.5 The Transfer Function Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the n-th order linear, time-invariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +

More information

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone.

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone. OUL O GR SODRY DUTO, ODS,RT,SMTUR,USWR.l ntuctin f cnuct f Kbi ( y/gil)tunent f 2L-Lg t. 2.. 4.. 6. Mtche hll be lye e K ule f ene f tie t tie Dutin f ech tch hll be - +0 (Rece)+ = M The ticint f ech Te

More information

Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho Tel: Fax: Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-760-4435 Introduction In this lesson, you will learn the following : The

More information

The RLC circuits have a wide range of applications, including oscillators and frequency filters

The RLC circuits have a wide range of applications, including oscillators and frequency filters 9. The RL ircuit The RL circuits have a wide range of applications, including oscillators and frequency filters This chapter considers the responses of RL circuits The result is a second-order differential

More information

,y. ~ (Lo )-Y2 ') '---~ F( '...J ( '1, 4. \fer-\{:k. ('X -5)'1.-+ :tl\ ~\:,) ~::; fi(~ S:;')'"'--t L. X-lOX t ~5 = IJ~-~+~5.

,y. ~ (Lo )-Y2 ') '---~ F( '...J ( '1, 4. \fer-\{:k. ('X -5)'1.-+ :tl\ ~\:,) ~::; fi(~ S:;')''--t L. X-lOX t ~5 = IJ~-~+~5. Name. Date 18. Write the equation of this conic: No,y. ~ '---~ F( '...J ( '1, 4 2A. Write the equation of this conic: \fer-\{:k. (lo) -3~2 ') (Lo )-Y2 ') 28. Write the equation of this conic: - - - -...

More information

System Modeling. Lecture-2. Emam Fathy Department of Electrical and Control Engineering

System Modeling. Lecture-2. Emam Fathy Department of Electrical and Control Engineering System Modeling Lecture-2 Emam Fathy Department of Electrical and Control Engineering email: emfmz@yahoo.com 1 Types of Systems Static System: If a system does not change with time, it is called a static

More information

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

More information

Need Help? Need Help? WebAssign Math 125 HW_1C (Homework) If f(x) = ex -

Need Help? Need Help? WebAssign Math 125 HW_1C (Homework) If f(x) = ex - Math 125 HW Ie http://www.webassign.net!web/student! Assignment -Responses/JasPd... WebAssign Math 125 HW_1C (Homework) Current Score: - / 80 Due: Wednesday, April 9 2014 11:00 PM PDT Donald Marshall Math

More information

MEI STRUCTURED MATHEMATICS MECHANICS 1, M1. Practice Paper M1-B

MEI STRUCTURED MATHEMATICS MECHANICS 1, M1. Practice Paper M1-B MEI Mathematics in Education and Industry MEI STRUCTURED MATHEMATICS MECHANICS 1, Practice Paper -B Additional materials: Answer booklet/paper Graph paper MEI Examination formulae and tables (MF1) TIME

More information

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying

More information

R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1

R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1 Code No: R06 R0 SET - II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 6: Generalized and Controller Design Overview In this Lecture, you will learn: Generalized? What about changing OTHER parameters

More information

APPH 4200 Physics of Fluids

APPH 4200 Physics of Fluids APPH 42 Physics of Fluids Problem Solving and Vorticity (Ch. 5) 1.!! Quick Review 2.! Vorticity 3.! Kelvin s Theorem 4.! Examples 1 How to solve fluid problems? (Like those in textbook) Ç"Tt=l I $T1P#(

More information

ECE 4213/5213 Test 1. SHOW ALL OF YOUR WORK for maximum partial credit! GOOD LUCK!

ECE 4213/5213 Test 1. SHOW ALL OF YOUR WORK for maximum partial credit! GOOD LUCK! ECE 4213/5213 Test 1 Fall 2018 Dr. Havlicek Monday, October 15, 2018 4:30 PM - 5:45 PM Name: S_O_L_U_'T_I Q_t\l Student Num: Directions: This test is open book. You may also use a calculator, a clean copy

More information

ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8

ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8 Learning Objectives ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8 Dr. Oishi oishi@unm.edu November 2, 203 State the phase and gain properties of a root locus Sketch a root locus, by

More information

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELEC- TRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION.

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELEC- TRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION. MATH 220 NAME So\,t\\OV\ '. FINAL EXAM 18, 2007\ FORMA STUDENT NUMBER INSTRUCTOR SECTION NUMBER This examination will be machine processed by the University Testing Service. Use only a number 2 pencil

More information

Visit to meet more individuals who benefit from your time

Visit   to meet more individuals who benefit from your time NOURISHINGN G. Vlz S 2009 BR i y ii li i Cl. N i. J l l. Rl. A y l l i i ky. Vii.li.l. iiil i y i &. 71 y l Cl y, i iil k. 28 y, k My W i ily l i. Uil y, y k i i. T j il y. Ty il iy ly y - li G, y Cl.

More information

to", \~~!' LSI'r-=- 5 b H 2-l

to, \~~!' LSI'r-=- 5 b H 2-l Math 10 Name_\< Ei_' _ WORKSHEET 2.2 - Surface Area Part 1 - Find SA of different objects Usepage 3 of your data booklet to find the formulae for SAof objects! 1. Find the SA of the square pyramid below.

More information

----- ~... No. 40 in G minor, K /~ ~--.-,;;;' LW LllJ LllJ LllJ LllJ WJ LilJ L.LL.J LLLJ. Movement'

----- ~... No. 40 in G minor, K /~ ~--.-,;;;' LW LllJ LllJ LllJ LllJ WJ LilJ L.LL.J LLLJ. Movement' Area o Stdy 1 Western c'assica' msic 16001899 Wolgang Symhony Movement' ocd1 track 2 Amades Mozart No 40 in G minor K550 Flte Oboes 12 Clarinets 12 in B lat Bassoons 12 Molto Allegro Horn 1 in B lat alto';

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

Physics Assessment Unit A2 3B

Physics Assessment Unit A2 3B Centre Number 71 Candidate Number ADVANCED General Certificate of Education January 2010 Physics Assessment Unit A2 3B assessing Module 6: Experimental and Investigative Skills A2Y32 [A2Y32] FRIDAY 8 JANUARY,

More information

Physics 2211 ABC Quiz #4 Solutions Spring 2017

Physics 2211 ABC Quiz #4 Solutions Spring 2017 Physics 22 ABC Quiz #4 Solutions Spring 207 I. (6 points) Corentine is driving her car of mass m around a curve when suddenly, all systems fail! The engine quits, she can t brake, she can t steer, and

More information

Unit 7: Part 1: Sketching the Root Locus. Root Locus. Vector Representation of Complex Numbers

Unit 7: Part 1: Sketching the Root Locus. Root Locus. Vector Representation of Complex Numbers Root Locus Root Locus Unit 7: Part 1: Sketching the Root Locus Engineering 5821: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland 1 Root Locus Vector Representation

More information

School of Mechanical Engineering Purdue University. ME375 Dynamic Response - 1

School of Mechanical Engineering Purdue University. ME375 Dynamic Response - 1 Dynamic Response of Linear Systems Linear System Response Superposition Principle Responses to Specific Inputs Dynamic Response of f1 1st to Order Systems Characteristic Equation - Free Response Stable

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2012

Candidate Number. General Certificate of Education Advanced Level Examination June 2012 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday

More information

Sub: Submission of the copy of Investor presentation under regulation 30 of SEBI (Listing Obligations & Disclosure Reguirements) Regulations

Sub: Submission of the copy of Investor presentation under regulation 30 of SEBI (Listing Obligations & Disclosure Reguirements) Regulations matrimny.cm vember 1, 218 tinal Stck xchange f India Ltd xchan laza, 5th Flr Plt : C/1, Sand Krla Cmplex, Sa Mmbai - 4 51 Crpte Relatinship Department SS Ltd., Phirze Jeejheebhy Twers Dalal Street, Mmbai

More information

10ES-43 CONTROL SYSTEMS ( ECE A B&C Section) % of Portions covered Reference Cumulative Chapter. Topic to be covered. Part A

10ES-43 CONTROL SYSTEMS ( ECE A B&C Section) % of Portions covered Reference Cumulative Chapter. Topic to be covered. Part A 10ES-43 CONTROL SYSTEMS ( ECE A B&C Section) Faculty : Shreyus G & Prashanth V Chapter Title/ Class # Reference Literature Topic to be covered Part A No of Hours:52 % of Portions covered Reference Cumulative

More information

Paper Reference. Mechanics M1 Advanced/Advanced Subsidiary. Friday 15 January 2010 Afternoon Time: 1 hour 30 minutes

Paper Reference. Mechanics M1 Advanced/Advanced Subsidiary. Friday 15 January 2010 Afternoon Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference 6 6 7 7 0 1 Paper Reference(s) 6677/01 Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary Friday 15 January 2010 Afternoon Time: 1 hour 30 minutes Surname Signature

More information

Dr. Ian R. Manchester

Dr. Ian R. Manchester Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus

More information

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.

More information

PH 101 Tutorial- 6 Date: 15/09/2017

PH 101 Tutorial- 6 Date: 15/09/2017 PH 101 Tutorial 6 Date: 15/09/2017 1. A thin hoop of mass M and radius R rolls without slipping about the z axis. t is supported by an axle of length R through its center, as shown in Fig. 1. The hoop

More information

Performance of Feedback Control Systems

Performance of Feedback Control Systems Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steady-state Error and Type 0, Type

More information

I N A C O M P L E X W O R L D

I N A C O M P L E X W O R L D IS L A M I C E C O N O M I C S I N A C O M P L E X W O R L D E x p l o r a t i o n s i n A g-b eanste d S i m u l a t i o n S a m i A l-s u w a i l e m 1 4 2 9 H 2 0 0 8 I s l a m i c D e v e l o p m e

More information

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4. te SelfGi ZltAn Dbnyei Intdtin ; ) Q) 4 t? ) t _ 4 73 y S _ E _ p p 4 t t 4) 1_ ::_ J 1 `i () L VI O I4 " " 1 D 4 L e Q) 1 k) QJ 7 j ZS _Le t 1 ej!2 i1 L 77 7 G (4) 4 6 t (1 ;7 bb F) t f; n (i M Q) 7S

More information

Linear Systems Theory

Linear Systems Theory ME 3253 Linear Systems Theory Review Class Overview and Introduction 1. How to build dynamic system model for physical system? 2. How to analyze the dynamic system? -- Time domain -- Frequency domain (Laplace

More information

Helping Kids Prepare For Life (253)

Helping Kids Prepare For Life   (253) Hlpi Ki Pp F Lif.l.i. (253)-589-7489 Tilli it it L Livit iv f fiv CIS U H. Vip pt fll t Tilli Elt l tpi tff tt f vi t t CIS T Hll f i Cltt N Cli. - L ivi i CIS f Bill Milli CIS pit Dil Cili Ti l iz it

More information

An Internal Stability Example

An Internal Stability Example An Internal Stability Example Roy Smith 26 April 2015 To illustrate the concept of internal stability we will look at an example where there are several pole-zero cancellations between the controller and

More information

EE302 - Feedback Systems Spring Lecture KG(s)H(s) = KG(s)

EE302 - Feedback Systems Spring Lecture KG(s)H(s) = KG(s) EE3 - Feedback Systems Spring 19 Lecturer: Asst. Prof. M. Mert Ankarali Lecture 1.. 1.1 Root Locus In control theory, root locus analysis is a graphical analysis method for investigating the change of

More information