Unit 7: Part 1: Sketching the Root Locus. Root Locus. Vector Representation of Complex Numbers

Size: px
Start display at page:

Download "Unit 7: Part 1: Sketching the Root Locus. Root Locus. Vector Representation of Complex Numbers"

Transcription

1 Root Locus Root Locus Unit 7: Part 1: Sketching the Root Locus Engineering 5821: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland 1 Root Locus Vector Representation of Complex Numbers Defining the Root Locus Properties of the Root Locus Sketching the Root Locus March 14, 2010 ENGI 5821 Unit 7: Root Locus Techniques ENGI 5821 Unit 7: Root Locus Techniques Root Locus The Root Locus is a graphical method for depicting location of the closed-loop poles as a system parameter is varied. It is applicable for first and second-order systems, but also to higher order systems. Changes in a parameter, such as the gain K, affects the location of the equivalent closed-loop system poles. Root locus allows us to determine the movement of these poles as K is varied. Vector Representation of Complex Numbers We will need to represent complex numbers and complex functions F (s) as vectors. Typically the complex functions we are concerned with have the following form: (s + z1)(s + z2) F (s) (s + p1)(s + p2) Consider the complex number s + q, where q will stand in for either a zero or a pole. We can represent s + q as a vector in the complex plane. The magnitude and angle of this vector are given by the complex exponential representation, s + q re jθ Where r is the vector length and θ is the angle from the real-axis.

2 Normally we would draw s + q as a vector out of the origin. Normal: s s + q q Complex number drawn from its own zero: However, we can recognize s q as a zero of s + q and draw the same vector with its tail at q (see above right). s + q -q s (s + z1)(s + z2) F (s) (s + p1)(s + p2) We can replace each term s + zi or s + pi with their corresponding complex exponential forms: F (s) rz1eθz 1 rz2 eθz 2 rp1 eθp 1 rp2 eθp 2 rz1rz2 rp1 rp2 eθz 1 +θz 2 + θp 1 θp 2 The magnitude and phase of F (s) are as follows: F (s) rz1rz2 rp1 rp2 s + z1 s + z2 s + p1 s + p2 F (s) θz1 + θz2 + θp1 θp2 (s + z1) + (s + z2) + (s + p1) (s + p2) e.g. Evaluate the following complex function when s 3 + j4, (s + 1) F (s) s(s + 2) Defining the Root Locus Consider the following system, designed to track a visual target. The magnitude and phase of the zero is: o. The pole at the origin evalutes to o. The pole at -2 evaluates to o. 20 F (s) F (s) 5 17 [116.9o o o ] For a unity feedback system such as this we will refer to K1K2 s(s+10) as the open-loop transfer function (if the unity feedback signal were cut the system would be open-loop). Thus, the open-loop poles are at s 0 and s 10. However, depending upon K we will obtain different closed-loop poles, which are the roots of s s + K. We can utilize the quadratic formula to obtain these roots for values of K 0. We can then plot the positions of these poles...

3 The path of the closed-loop poles as K varies is the root locus. Observations: for K < 25 the system is overdamped for K 25 the system is critically damped for K > 25 the system is underdamped Properties of the Root Locus The transfer function for a general closed-loop system is, KG(s) T (s) 1 + KG(s)H(s) We are concerned with the poles of T (s). We will have a pole whenever KG(s)H(s) 1. The root locus is the locus of points in the s-plane for which this is true. We can express this equality as follows, More Observations: In the underdamped portion the real-part of the pole, σd is constant. Therefore so is Ts 4/σd. The root locus never crosses the jω axis. Therefore the system is stable. KG(s)H(s) KG(s)H(s) 1 (2k+1)180 o k 0, ±1, ±2, ±3,... A particular s is on the root locus if its magnitude is unity and its angle is an odd multiple of 180. Satisfying both of these requirements means that s is a closed-loop pole of the system.

4 e.g. Consider the following system, We will test a couple of points to see if they are closed-loop poles. We evaluate KG(s)H(s) graphically for s 2 + j3, If we test a point and find it is on the RL (e.g. s 2 + j 2/2) we may then want to determine the corresponding value of K. Since KG(s)H(s) 1 on the RL, 1 pole lengths K G(s)H(s) zero lengths θ1 + θ2 θ3 θ Therefore s s + j3 is not on the root locus. Sketching the Root Locus One possibility is to sweep through a sampling of points in the s-plane and test each one for inclusion in the RL. It is much more preferable to utilize some insights about the RL to identify its major characteristics and therefore obtain a rough sketch. The following rules will help achieve this Number of branches: Consider a branch to be the path that one pole traverses. There will be one branch for every closed-loop pole. e.g. Two branches for the previous quadratic example. 2. Symmetry: The poles for real physical systems either lie on the real-axis or come in conjugate pairs. Hence... The root locus is symmetrical about the real axis. 3. Real-axis segments: Consider evaluating the anglular contribution of the open-loop poles and zeros at points P1, P2, P3, and P4 below: The angular contribution of a pair of complex open-loop poles (or zeros) is zero The contribution of poles or zeros to the left of the point is zero Using only the real-axis poles or zeros to the right of the point, we find that the angle sum alternates between 0 o and 180 o. On the real axis, for K > 0 the root locus exists to the left of an odd number of real-axis, finite open-loop poles and/or finite open-loop zeros.

5 4. Starting and ending points: Where does the RL begin and end? It begins at K 0 and ends at K. Consider the closed-loop transfer function: e.g. G(s) K(s+3)(s+4) (s+1)(s+2), H(s) 1 T (s) KG(s)H(s) 1 + KG(s)H(s) NG (s) NH(s) K DG (s) DH(s) NG (s) NH(s) 1 + K DG (s) DH(s) KNG (s)nh(s) DG (s)dh(s) + KNG (s)nh(s) If we let K 0 the poles of T (s) approach the combined poles of G(s) and H(s). If K the poles of T (s) approach the combined zeros of G(s) and H(s). Thus, the RL begins at the open-loop poles of G(s)H(s) and ends at the zeros of G(s)H(s). e.g. G(s) K(s+3)(s+4) (s+1)(s+2), H(s) 1 Note that we don t know yet what the exact trajectory of the root locus will be. What if the number of open-loop poles and zeros is mismatched? e.g. K F (s) s(s + 1)(s + 2) A function can have both poles and zeros at infinity. For example, as s. F (s) K s s s We therefore consider F (s) to have three zeros at infinity. If we include both finite and infinite poles and zeros every function has an equal number of poles and zeros. The root locus for F (s) (i.e. KG(s)H(s) F (s)) would start at the three finite poles and go towards the zeros at infinity. Yet how do we get to these zeros at infinity?

6 5. Behaviour at infinity: The root locus approaches straight lines as asymptotes for zeros at infinity. These asymptotes are defined as lines with real-axis intercept σa and angle θa. finite poles finite zeros σa (2k + 1)π θa where k is an integer and θa is the angle (in radians) to the positive real-axis. We get as many asymptotes as there are branches corresponding to zeros at infinity. The derivation for these formulae can be found at under Appendix L.1. e.g. Sketch the RL for the following system: We first apply rules 1-4: The following is our complete RL sketch. We now compute the real-axis intercept and the angles of all asymptotes: finite poles finite zeros σa ( ) ( 3) 4 1 4/3 (2k + 1)π θa π/3 for k 0 π for k 1 5π/3 for k 2 Notice that we have one real-axis intercept but multiple angles. There are three asymptotes one for each infinite zero. We obtain three unique values for θa before the angles start to repeat.

Unit 7: Part 1: Sketching the Root Locus

Unit 7: Part 1: Sketching the Root Locus Root Locus Unit 7: Part 1: Sketching the Root Locus Engineering 5821: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland March 14, 2010 ENGI 5821 Unit 7: Root

More information

Lecture 1 Root Locus

Lecture 1 Root Locus Root Locus ELEC304-Alper Erdogan 1 1 Lecture 1 Root Locus What is Root-Locus? : A graphical representation of closed loop poles as a system parameter varied. Based on Root-Locus graph we can choose the

More information

Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho Tel: Fax: Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-760-4435 Introduction In this lesson, you will learn the following : The

More information

Software Engineering 3DX3. Slides 8: Root Locus Techniques

Software Engineering 3DX3. Slides 8: Root Locus Techniques Software Engineering 3DX3 Slides 8: Root Locus Techniques Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on Control Systems Engineering by N. Nise. c 2006, 2007

More information

a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a

a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a Root Locus Simple definition Locus of points on the s- plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation

More information

Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 5 Classical Control Overview III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore A Fundamental Problem in Control Systems Poles of open

More information

Root locus Analysis. P.S. Gandhi Mechanical Engineering IIT Bombay. Acknowledgements: Mr Chaitanya, SYSCON 07

Root locus Analysis. P.S. Gandhi Mechanical Engineering IIT Bombay. Acknowledgements: Mr Chaitanya, SYSCON 07 Root locus Analysis P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: Mr Chaitanya, SYSCON 07 Recap R(t) + _ k p + k s d 1 s( s+ a) C(t) For the above system the closed loop transfer function

More information

Course Outline. Closed Loop Stability. Stability. Amme 3500 : System Dynamics & Control. Nyquist Stability. Dr. Dunant Halim

Course Outline. Closed Loop Stability. Stability. Amme 3500 : System Dynamics & Control. Nyquist Stability. Dr. Dunant Halim Amme 3 : System Dynamics & Control Nyquist Stability Dr. Dunant Halim Course Outline Week Date Content Assignment Notes 1 5 Mar Introduction 2 12 Mar Frequency Domain Modelling 3 19 Mar System Response

More information

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010 Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the

More information

Root Locus Techniques

Root Locus Techniques Root Locus Techniques 8 Chapter Learning Outcomes After completing this chapter the student will be able to: Define a root locus (Sections 8.1 8.2) State the properties of a root locus (Section 8.3) Sketch

More information

7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM

7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)

More information

I What is root locus. I System analysis via root locus. I How to plot root locus. Root locus (RL) I Uses the poles and zeros of the OL TF

I What is root locus. I System analysis via root locus. I How to plot root locus. Root locus (RL) I Uses the poles and zeros of the OL TF EE C28 / ME C34 Feedback Control Systems Lecture Chapter 8 Root Locus Techniques Lecture abstract Alexandre Bayen Department of Electrical Engineering & Computer Science University of California Berkeley

More information

Root Locus. Signals and Systems: 3C1 Control Systems Handout 3 Dr. David Corrigan Electronic and Electrical Engineering

Root Locus. Signals and Systems: 3C1 Control Systems Handout 3 Dr. David Corrigan Electronic and Electrical Engineering Root Locus Signals and Systems: 3C1 Control Systems Handout 3 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie Recall, the example of the PI controller car cruise control system.

More information

Lecture Sketching the root locus

Lecture Sketching the root locus Lecture 05.02 Sketching the root locus It is easy to get lost in the detailed rules of manual root locus construction. In the old days accurate root locus construction was critical, but now it is useful

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

Module 07 Control Systems Design & Analysis via Root-Locus Method

Module 07 Control Systems Design & Analysis via Root-Locus Method Module 07 Control Systems Design & Analysis via Root-Locus Method Ahmad F. Taha EE 3413: Analysis and Desgin of Control Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha March

More information

CHAPTER # 9 ROOT LOCUS ANALYSES

CHAPTER # 9 ROOT LOCUS ANALYSES F K א CHAPTER # 9 ROOT LOCUS ANALYSES 1. Introduction The basic characteristic of the transient response of a closed-loop system is closely related to the location of the closed-loop poles. If the system

More information

School of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by:

School of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by: Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: θ D 0.09 See

More information

Class 11 Root Locus part I

Class 11 Root Locus part I Class 11 Root Locus part I Closed loop system G(s) G(s) G(s) Closed loop system K The Root Locus the locus of the poles of the closed loop system, when we vary the value of K We shall assume here K >,

More information

Introduction to Root Locus. What is root locus?

Introduction to Root Locus. What is root locus? Introduction to Root Locus What is root locus? A graphical representation of the closed loop poles as a system parameter (Gain K) is varied Method of analysis and design for stability and transient response

More information

Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions

Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOT-LOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the root-locus

More information

"APPENDIX. Properties and Construction of the Root Loci " E-1 K ¼ 0ANDK ¼1POINTS

APPENDIX. Properties and Construction of the Root Loci  E-1 K ¼ 0ANDK ¼1POINTS Appendix-E_1 5/14/29 1 "APPENDIX E Properties and Construction of the Root Loci The following properties of the root loci are useful for constructing the root loci manually and for understanding the root

More information

Class 12 Root Locus part II

Class 12 Root Locus part II Class 12 Root Locus part II Revising (from part I): Closed loop system K The Root Locus the locus of the poles of the closed loop system, when we vary the value of K Comple plane jω ais 0 real ais Thus,

More information

ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8

ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8 Learning Objectives ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8 Dr. Oishi oishi@unm.edu November 2, 203 State the phase and gain properties of a root locus Sketch a root locus, by

More information

Laplace Transform Analysis of Signals and Systems

Laplace Transform Analysis of Signals and Systems Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.

More information

EE302 - Feedback Systems Spring Lecture KG(s)H(s) = KG(s)

EE302 - Feedback Systems Spring Lecture KG(s)H(s) = KG(s) EE3 - Feedback Systems Spring 19 Lecturer: Asst. Prof. M. Mert Ankarali Lecture 1.. 1.1 Root Locus In control theory, root locus analysis is a graphical analysis method for investigating the change of

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MT OpenCourseWare http://ocw.mit.edu.004 Dynamics and Control Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts nstitute of Technology

More information

Root Locus Methods. The root locus procedure

Root Locus Methods. The root locus procedure Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain

More information

5 Root Locus Analysis

5 Root Locus Analysis 5 Root Locus Analysis 5.1 Introduction A control system is designed in tenns of the perfonnance measures discussed in chapter 3. Therefore, transient response of a system plays an important role in the

More information

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s) C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)

More information

Chapter 7 : Root Locus Technique

Chapter 7 : Root Locus Technique Chapter 7 : Root Locus Technique By Electrical Engineering Department College of Engineering King Saud University 1431-143 7.1. Introduction 7.. Basics on the Root Loci 7.3. Characteristics of the Loci

More information

Root Locus U R K. Root Locus: Find the roots of the closed-loop system for 0 < k < infinity

Root Locus U R K. Root Locus: Find the roots of the closed-loop system for 0 < k < infinity Background: Root Locus Routh Criteria tells you the range of gains that result in a stable system. It doesn't tell you how the system will behave, however. That's a problem. For example, for the following

More information

Proportional plus Integral (PI) Controller

Proportional plus Integral (PI) Controller Proportional plus Integral (PI) Controller 1. A pole is placed at the origin 2. This causes the system type to increase by 1 and as a result the error is reduced to zero. 3. Originally a point A is on

More information

Controller Design using Root Locus

Controller Design using Root Locus Chapter 4 Controller Design using Root Locus 4. PD Control Root locus is a useful tool to design different types of controllers. Below, we will illustrate the design of proportional derivative controllers

More information

Problem Set 2: Solution Due on Wed. 25th Sept. Fall 2013

Problem Set 2: Solution Due on Wed. 25th Sept. Fall 2013 EE 561: Digital Control Systems Problem Set 2: Solution Due on Wed 25th Sept Fall 2013 Problem 1 Check the following for (internal) stability [Hint: Analyze the characteristic equation] (a) u k = 05u k

More information

Control of Manufacturing Processes

Control of Manufacturing Processes Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #19 Position Control and Root Locus Analysis" April 22, 2004 The Position Servo Problem, reference position NC Control Robots Injection

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecture 1 Root Locu Emam Fathy Department of Electrical and Control Engineering email: emfmz@aat.edu http://www.aat.edu/cv.php?dip_unit=346&er=68525 1 Introduction What i root locu?

More information

Course Summary. The course cannot be summarized in one lecture.

Course Summary. The course cannot be summarized in one lecture. Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques

More information

MAK 391 System Dynamics & Control. Presentation Topic. The Root Locus Method. Student Number: Group: I-B. Name & Surname: Göksel CANSEVEN

MAK 391 System Dynamics & Control. Presentation Topic. The Root Locus Method. Student Number: Group: I-B. Name & Surname: Göksel CANSEVEN MAK 391 System Dynamics & Control Presentation Topic The Root Locus Method Student Number: 9901.06047 Group: I-B Name & Surname: Göksel CANSEVEN Date: December 2001 The Root-Locus Method Göksel CANSEVEN

More information

1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I

1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant

More information

27. The pole diagram and the Laplace transform

27. The pole diagram and the Laplace transform 124 27. The pole diagram and the Laplace transform When working with the Laplace transform, it is best to think of the variable s in F (s) as ranging over the complex numbers. In the first section below

More information

Root Locus Techniques

Root Locus Techniques 4th Edition E I G H T Root Locus Techniques SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Transient Design via Gain a. From the Chapter 5 Case Study Challenge: 76.39K G(s) = s(s+50)(s+.32) Since

More information

SECTION 5: ROOT LOCUS ANALYSIS

SECTION 5: ROOT LOCUS ANALYSIS SECTION 5: ROOT LOCUS ANALYSIS MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed loop transfer function is 1 is the forward path

More information

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27 1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system

More information

Automatic Control Systems, 9th Edition

Automatic Control Systems, 9th Edition Chapter 7: Root Locus Analysis Appendix E: Properties and Construction of the Root Loci Automatic Control Systems, 9th Edition Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois

More information

MAE 143B - Homework 9

MAE 143B - Homework 9 MAE 43B - Homework 9 7.2 2 2 3.8.6.4.2.2 9 8 2 2 3 a) G(s) = (s+)(s+).4.6.8.2.2.4.6.8. Polar plot; red for negative ; no encirclements of, a.s. under unit feedback... 2 2 3. 4 9 2 2 3 h) G(s) = s+ s(s+)..2.4.6.8.2.4

More information

6.302 Feedback Systems Recitation 7: Root Locus Prof. Joel L. Dawson

6.302 Feedback Systems Recitation 7: Root Locus Prof. Joel L. Dawson To start with, let s mae sure we re clear on exactly what we mean by the words root locus plot. Webster can help us with this: ROOT: A number that reduces and equation to an identity when it is substituted

More information

Unit 8: Part 2: PD, PID, and Feedback Compensation

Unit 8: Part 2: PD, PID, and Feedback Compensation Ideal Derivative Compensation (PD) Lead Compensation PID Controller Design Feedback Compensation Physical Realization of Compensation Unit 8: Part 2: PD, PID, and Feedback Compensation Engineering 5821:

More information

Course roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs

Course roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs ME451: Control Systems Modeling Course roadmap Analysis Design Lecture 18 Root locus: Sketch of proofs Dr. Jongeun Choi Department of Mechanical Engineering Michigan State University Laplace transform

More information

Digital Control: Part 2. ENGI 7825: Control Systems II Andrew Vardy

Digital Control: Part 2. ENGI 7825: Control Systems II Andrew Vardy Digital Control: Part 2 ENGI 7825: Control Systems II Andrew Vardy Mapping the s-plane onto the z-plane We re almost ready to design a controller for a DT system, however we will have to consider where

More information

EXAMPLE PROBLEMS AND SOLUTIONS

EXAMPLE PROBLEMS AND SOLUTIONS Similarly, the program for the fourth-order transfer function approximation with T = 0.1 sec is [num,denl = pade(0.1, 4); printsys(num, den, 'st) numlden = sa4-2o0sa3 + 1 80O0sA2-840000~ + 16800000 sa4

More information

ECE 486 Control Systems

ECE 486 Control Systems ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following

More information

Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?

Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system? IC6501 CONTROL SYSTEM UNIT-II TIME RESPONSE PART-A 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April

More information

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D. Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 13: Root Locus Continued Overview In this Lecture, you will learn: Review Definition of Root Locus Points on the Real Axis

More information

Control Systems I. Lecture 9: The Nyquist condition

Control Systems I. Lecture 9: The Nyquist condition Control Systems I Lecture 9: The Nyquist condition Readings: Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Jacopo Tani Institute for Dynamic Systems and Control

More information

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

More information

Due Wednesday, February 6th EE/MFS 599 HW #5

Due Wednesday, February 6th EE/MFS 599 HW #5 Due Wednesday, February 6th EE/MFS 599 HW #5 You may use Matlab/Simulink wherever applicable. Consider the standard, unity-feedback closed loop control system shown below where G(s) = /[s q (s+)(s+9)]

More information

Alireza Mousavi Brunel University

Alireza Mousavi Brunel University Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 Open-Loop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched

More information

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.

More information

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:

More information

EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions

EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller

More information

K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s

K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s 321 16. Determine the range of K for which each of the following systems is stable by making a Bode plot for K = 1 and imagining the magnitude plot sliding up or down until instability results. Verify

More information

Example on Root Locus Sketching and Control Design

Example on Root Locus Sketching and Control Design Example on Root Locus Sketching and Control Design MCE44 - Spring 5 Dr. Richter April 25, 25 The following figure represents the system used for controlling the robotic manipulator of a Mars Rover. We

More information

Solution for Mechanical Measurement & Control

Solution for Mechanical Measurement & Control Solution for Mechanical Measurement & Control December-2015 Index Q.1) a). 2-3 b).3-4 c). 5 d). 6 Q.2) a). 7 b). 7 to 9 c). 10-11 Q.3) a). 11-12 b). 12-13 c). 13 Q.4) a). 14-15 b). 15 (N.A.) Q.5) a). 15

More information

Control Systems. University Questions

Control Systems. University Questions University Questions UNIT-1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control Spring 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Reading: ise: Chapter 8 Massachusetts

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : 0. LS_D_ECIN_Control Systems_30078 Delhi Noida Bhopal Hyderabad Jaipur Lucnow Indore Pune Bhubaneswar Kolata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTRONICS ENGINEERING

More information

Root Locus (2A) Young Won Lim 10/15/14

Root Locus (2A) Young Won Lim 10/15/14 Root Locus (2A Copyright (c 2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

for non-homogeneous linear differential equations L y = f y H

for non-homogeneous linear differential equations L y = f y H Tues March 13: 5.4-5.5 Finish Monday's notes on 5.4, Then begin 5.5: Finding y P for non-homogeneous linear differential equations (so that you can use the general solution y = y P y = y x in this section...

More information

The degree of a function is the highest exponent in the expression

The degree of a function is the highest exponent in the expression L1 1.1 Power Functions Lesson MHF4U Jensen Things to Remember About Functions A relation is a function if for every x-value there is only 1 corresponding y-value. The graph of a relation represents a function

More information

Frequency Response Analysis

Frequency Response Analysis Frequency Response Analysis Consider let the input be in the form Assume that the system is stable and the steady state response of the system to a sinusoidal inputdoes not depend on the initial conditions

More information

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled

More information

Signals and Systems. Lecture 11 Wednesday 22 nd November 2017 DR TANIA STATHAKI

Signals and Systems. Lecture 11 Wednesday 22 nd November 2017 DR TANIA STATHAKI Signals and Systems Lecture 11 Wednesday 22 nd November 2017 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Effect on poles and zeros on frequency response

More information

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L - L F - F jw s s jw X(jw) X*(t) F - F X*(jw) jwt e z jwt z e X(nT) Z - Z X(z)

More information

Control Systems I. Lecture 9: The Nyquist condition

Control Systems I. Lecture 9: The Nyquist condition Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute

More information

Transient Response of a Second-Order System

Transient Response of a Second-Order System Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop

More information

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Guzzella 9.1-3, Emilio Frazzoli

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Guzzella 9.1-3, Emilio Frazzoli Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Guzzella 9.1-3, 13.3 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 3, 2017 E. Frazzoli (ETH)

More information

Automatic Control Systems. Part III: Root Locus Technique

Automatic Control Systems. Part III: Root Locus Technique www.pdhcenter.com PDH Coure E40 www.pdhonline.org Automatic Control Sytem Part III: Root Locu Technique By Shih-Min Hu, Ph.D., P.E. Page of 30 www.pdhcenter.com PDH Coure E40 www.pdhonline.org VI. Root

More information

Control Systems. Frequency Method Nyquist Analysis.

Control Systems. Frequency Method Nyquist Analysis. Frequency Method Nyquist Analysis chibum@seoultech.ac.kr Outline Polar plots Nyquist plots Factors of polar plots PolarNyquist Plots Polar plot: he locus of the magnitude of ω vs. the phase of ω on polar

More information

Control of Electromechanical Systems

Control of Electromechanical Systems Control of Electromechanical Systems November 3, 27 Exercise Consider the feedback control scheme of the motor speed ω in Fig., where the torque actuation includes a time constant τ A =. s and a disturbance

More information

Positioning Servo Design Example

Positioning Servo Design Example Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually

More information

Performance of Feedback Control Systems

Performance of Feedback Control Systems Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steady-state Error and Type 0, Type

More information

Lecture 3: The Root Locus Method

Lecture 3: The Root Locus Method Lecture 3: The Root Locus Method Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 56001 This draft: March 1, 008 1 The Root Locus method The Root Locus method,

More information

EE402 - Discrete Time Systems Spring Lecture 10

EE402 - Discrete Time Systems Spring Lecture 10 EE402 - Discrete Time Systems Spring 208 Lecturer: Asst. Prof. M. Mert Ankarali Lecture 0.. Root Locus For continuous time systems the root locus diagram illustrates the location of roots/poles of a closed

More information

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems SECTION 8: ROOT-LOCUS ANALYSIS ESE 499 Feedback Control Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed-loop transfer function is KKKK ss TT ss = 1 + KKKK ss HH ss GG ss

More information

Compensator Design to Improve Transient Performance Using Root Locus

Compensator Design to Improve Transient Performance Using Root Locus 1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning

More information

MAS107 Control Theory Exam Solutions 2008

MAS107 Control Theory Exam Solutions 2008 MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve

More information

INTRODUCTION TO DIGITAL CONTROL

INTRODUCTION TO DIGITAL CONTROL ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

More information

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

More information

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions.

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions. Concepts: Horizontal Asymptotes, Vertical Asymptotes, Slant (Oblique) Asymptotes, Transforming Reciprocal Function, Sketching Rational Functions, Solving Inequalities using Sign Charts. Rational Function

More information

Analysis of SISO Control Loops

Analysis of SISO Control Loops Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities

More information

Chemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University

Chemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this

More information

CONTROL SYSTEMS. Chapter 5 : Root Locus Diagram. GATE Objective & Numerical Type Solutions. The transfer function of a closed loop system is

CONTROL SYSTEMS. Chapter 5 : Root Locus Diagram. GATE Objective & Numerical Type Solutions. The transfer function of a closed loop system is CONTROL SYSTEMS Chapter 5 : Root Locu Diagram GATE Objective & Numerical Type Solution Quetion 1 [Work Book] [GATE EC 199 IISc-Bangalore : Mark] The tranfer function of a cloed loop ytem i T () where i

More information

Chapter 1- Polynomial Functions

Chapter 1- Polynomial Functions Chapter 1- Polynomial Functions Lesson Package MHF4U Chapter 1 Outline Unit Goal: By the end of this unit, you will be able to identify and describe some key features of polynomial functions, and make

More information

Root locus 5. tw4 = 450. Root Locus S5-1 S O L U T I O N S

Root locus 5. tw4 = 450. Root Locus S5-1 S O L U T I O N S Root Locus S5-1 S O L U T I O N S Root locus 5 Note: All references to Figures and Equations whose numbers are not preceded by an "S" refer to the textbook. (a) Rule 2 is all that is required to find the

More information

Control Systems. Root Locus & Pole Assignment. L. Lanari

Control Systems. Root Locus & Pole Assignment. L. Lanari Control Systems Root Locus & Pole Assignment L. Lanari Outline root-locus definition main rules for hand plotting root locus as a design tool other use of the root locus pole assignment Lanari: CS - Root

More information

EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO

EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total

More information