Space time finite and boundary element methods

Size: px
Start display at page:

Download "Space time finite and boundary element methods"

Transcription

1 Space time finite and boundary element methods Olaf Steinbach Institut für Numerische Mathematik, TU Graz based on joint work with M. Neumüller, H. Yang, M. Fleischhacker, S. Bonkhoff, S. Dohr, K. Niino, M. Zank 1 / 29

2 Heat equation for (x,t) Q := (,1) (,T) αu t (x,t) u xx (x,t) =, u(,t) = u(1,t) =, u(x,) = u (x) Solution u(x,t) = u k e (kπ)2t/α sinkπx, u k = 2 1 k=1 u (x)sinkπx dx Uniform/adaptive piecewise linear finite element interpolation in Q level nodes u I h u L 2 (Q) eoc / 29

3 Solution of the heat equation and normal derivatives at boundary nodes Solution of the wave equation and normal derivatives at boundary nodes. 3 / 29

4 Dirichlet boundary value problem α t u(x,t) x u(x,t) = f(x,t) for (x,t) Q := (,T), u(x,t) = g(x,t) for (x,t) Σ := Γ (,T), u(x,) = u (x) for x. Compatibility condition: g(x,) = u (x) for x Γ. Variational formulation Find u L 2 (,T;H 1 ()) H 1 (,T,H 1 ()), u(x,t) = g(x,t) for x Γ, t (,T), u(x,) = u (x) for x, such that T [ ] α t u(x,t)v(x,t)+ x u(x,t) x v(x,t) dx dt is satisfied for all v L 2 (,T;H 1 ()). = T f(x,t)v(x,t)dx dt 4 / 29

5 Bilinear form a (u,v) := T [ ] α t u(x,t)v(x,t)+ x u(x,t) x v(x,t) dx dt Consider u p L 2 (,T;H 1 ()) H 1 (,T;H 1 ()) satisfying u p (x,t) = g(x,t) for (x,t) Σ, u p (x,) = u (x) for x Primal Formulation: Find u L 2 (,T;H 1 ()) H1, (,T;H 1 ()) such that is satisfied for all v L 2 (,T;H 1 ()). a (u +u p,v) = f,v Q Galerkin Petrov variational formulation; unique solvability based on inf sup stability condition [Schwab, Stevenson 29; Urban, Patera 214; Andreev 213; Mollet 214;...] 5 / 29

6 Find u L 2 (,T;H 1()) H1, (,T;H 1 ()) such that a (u,v) = f,v Q a (u p,v) is satisfied for all v L 2 (,T;H 1()). Operator equation to find u L 2 (,T;H 1()) H1, (,T;H 1 ()) such that Au = f in L 2 (,T;H 1 ()) i.e. u L 2 (,T;H()) H 1,(,T;H 1 1 ()) : Au f L 2 (,T;H 1 ()) = 6 / 29

7 For u L 2 (,T;H 1 ()) H 1 (,T;H 1 ()) find w L 2 (,T;H 1 ()) such that x w(x,t) = α t u(x,t) x u(x,t) in Q = (,T), w(x,t) = Find w L 2 (,T;H 1 ()) such that T is satisfied for all v L 2 (,T;H 1 ()) Lemma on Σ = Γ (,T). x w(x,t) x v(x,t)dx dt = a (u,v) α t u x u 2 L 2 (,T;H 1 ()) = w 2 L 2 (,T;H 1 ()) = a (u,w) 7 / 29

8 Theorem: For u L 2 (,T;H 1 ()) H1, (,T;H 1 ()) we have α t u x u L 2 (,T;H 1 ()) sup v L 2 (,T;H 1 ()) a (u,v) v L 2 (,T;H 1 ()) Lemma: Norm equivalence for u X = L 2 (,T;H 1 ()) H1, (,T;H 1 ()) u 2 X = α t u x u 2 L 2 (,T;H 1 ()) α tu 2 L 2 (,T;H 1 ()) + u 2 L 2 (,T;H 1 ()) Finite element discretization schemes space time tensor product wavelets [Schwab, Stevenson 29; Urban, Patera 214; Andreev 213; Mollet 214] Space time DG FEM [Neumüller 213] Space time FEM [OS 215] 8 / 29

9 Finite element spaces X h X = L 2 (,T;H()) H 1,(,T;H 1 1 ()), Y h Y = L 2 (,T;H()) 1 Assumption X h Y h (X h = Y h ) Galerkin Petrov variational formulation Norms Find u h X h : a (u h,v h ) = f,v h Q a (u p,v h ) for all v h Y h u 2 X = α t u x u 2 L 2 (,T;H 1 ()) α t u 2 L 2 (,T;H 1 ()) + u 2 L 2 (,T;H 1()) = w 2 L 2 (,T;H 1()) + u 2 L 2 (,T;H 1()) where w Y solves T x w(x,t) x v(x,t)dx dt = T for all v Y. α t u(x,t)v(x,t)dx dt 9 / 29

10 Define w h Y h as unique solution of T x w h (x,t) x v h (x,t)dx dt = T for all v h Y h. Discrete norm α t u(x,t)v h (x,t)dx dt u 2 X h := w 2 L 2 (,T;H 1 ()) + u 2 L 2 (,T;H 1 ()) u 2 X Theorem Theorem (Cea s Lemma) u a(u h,v h ) h Xh sup v h Y h v h Y for all u h X h Theorem (Approximation property) u u h Xh 5 inf z h X h u z h X u u h Xh ch s 1 u Hs (Q), s p +1, u H s (Q) 1 / 29

11 Numerical example u(x,t) = cosπtsinπx for (x,t) Q = (,1) 2 p = 1 p = 2 L N dof u u h L 2 (,T;H 1()) eoc dof u u h L 2 (,T;H 1()) eoc / 29

12 Numerical example u(x,t) = (1 t) α sinπx for (x,t) Q = (,1) 2, α =.75, p = 1 p = 2 L N dof u u h L 2 (,T;H 1()) eoc dof u u h L 2 (,T;H 1()) eoc reduced regularity: u H 5/4 ε (Q),ε > eoc:.25? but optimal convergence for pw linear finite elements, eoc 1. eoc for pw quadratic finite elements: / 29

13 Lemma Let Q h R 2 be a space time finite element mesh of right angled isosceles triangles. Let u be a given function such that x u H 1 (Q) is satisfied, and let I h u be the continuous piecewise linear interpolation. Then there holds the error estimate Reduced regularity u I h u L2 (,T;H 1 ()) ch x u H1 (Q). x u H 1 (Q) instead of u H 2 (Q) Conjecture: The result remains valid for arbitrary shape regular finite elements spatial dimensions n = 2,3 Question: Interpolation error estimates for second order elements? 13 / 29

14 Institut fu r Numerische Mathematik A posteriori error indicators η2 = N P ℓ=1 kwℓ k2h 1 (qℓ ), [H. Yang; M. Fleischhacker; R. Verfu hrt] wℓ + wℓ = nx wℓ wℓ = = f α t uh + uh 1 2 [nx x uh ] in qℓ on qℓ \Σ on qℓ Σ t Example x Solution O. Steinbach Interpolation FEM RICAM 216, Linz, / 29

15 Primal Formulation Find u L 2 (,T;H 1 ()) H 1, (,T;H 1 ()), u(x,t) = g(x,t) for x Γ, t (,T), such that T [ ] α t u(x,t)v(x,t)+ x u(x,t) x v(x,t) dx dt = is satisfied for all v L 2 (,T;H 1 ()). Dual variational formulation T f(x,t)v(x,t)dx dt Find u L 2 (,T;H 1 ()), u(x,t) = g(x,t) for x Γ, t (,T), such that T [ ] u(x,t)α t v(x,t)+ x u(x,t) x v(x,t) dx dt = T is satisfied for all v L 2 (,T;H 1 ()) H1, (,T;H 1 ()). f(x,t)v(x,t)dx dt + αu (x)v(x,)dx 15 / 29

16 Dirichlet boundary value problem α t u(x,t) x u(x,t) = f(x,t) for (x,t) Q := (,T), u(x,t) = for (x,t) Σ := Γ (,T), u(x,) = for x. Primal variational formulation L : L 2 (,T;H()) H 1,(,T;H 1 1 ()) [L 2 (,T;H())] 1 Dual variational formulation L : L 2 (,T;H()) 1 [L 2 (,T;H()) H 1,(,T;H 1 1 ())] Interpolation, θ [, 1] [Lions, Magenes 1972] L : [L 2 (,T;H()) H 1,(,T;H 1 1 ()),L 2 (,T;H())] 1 θ [[L 2 (,T;H())] 1,[L 2 (,T;H()) H 1,(,T;H 1 1 ())] ] θ = [L 2 (,T;H()) H 1,(,T;H 1 1 ()),L 2 (,T;H())] 1 1 θ θ = 1 2 L : H 1,1 2 (Q) [H 1,1 2 (Q)] 16 / 29

17 Dirichlet trace operator [Lions, Magenes 1972] γ : H 1,1 2 (Q) H 1 2,1 4 (Σ) Analysis of boundary integral operators D. N. Arnold, P. J. Noon 1987, 1989; P. J. Noon 1988 G. C. Hsiao, J. Saranen 1989, 1993 M. Costabel ellipticity of single layer boundary integral operator V : H 1 2, 1 4 (Σ) H 1 2,1 4 (Σ) + standard analysis of discretization schemes? results are based on interpolation between primal and dual formulation? link to Green s formula not obvious? coupling of finite and boundary element methods 17 / 29

18 Dirichlet boundary value problem α t u(x,t) x u(x,t) = for (x,t) Q := (,T), u(x,t) = g(x,t) for (x,t) Σ := Γ (,T), u(x,) = u (x) for x. Representation formula for x and t (,T) u(x,t) = 1 T U (x y,t s) ny u(y,s)ds y ds α Γ 1 T ny U (x y,t s)g(y,s)ds y ds + U (x y,t)u (y)dy α Γ Fundamental solution ( ) n/2 ) α α x y 2 exp( for s [,t), U (x y,t s) = 4π(t s) 4(t s) for s t. 18 / 29

19 Single layer potential Duality Adjoint problem (Ṽw)(x,t) = 1 α T Γ U (x y,t s) ny u(y,s)ds y ds Ṽw,ψ Q = w,ϕ Σ α s ϕ(y,s) y ϕ(y,s) = ψ(y,s) ϕ(y,t) = for y,s (,T), for y Primal formulation: ϕ L 2 (,T;H 1 ()) H, 1 (,T;H 1 ()) T [ ] α s ϕ(y,s)φ(y,s)+ y ϕ(y,s) y φ(y,s) dy ds = T Single layer potential ψ(y,s)φ(y,s)dy ds for all φ L 2 (,T;H 1 ()) Ṽ : [γ L 2 (,T;H 1 ()) H 1,(,T;H 1 ())] L 2 (,T;H 1 ()) 19 / 29

20 Dual formulation: ϕ L 2 (,T;H 1 ()) T = [ ] ϕα s φ(y,s)+ y ϕ(y,s) y φ(y,s) dy ds T Single layer potential Corollary ψ(y,s)φ(y,s)dy ds φ L 2 (,T;H 1 ()) H 1,(,T;H 1 ()) Ṽ : L 2 (,T;H 1/2 (Γ)) L 2 (,T;H 1 ()) H 1,(,T; H 1 ()) V : L 2 (,T;H 1/2 (Γ)) V Σ := γ [L 2 (,T;H 1 ()) H 1,(,T; H 1 ())] 2 / 29

21 Single layer potential Ṽ : L 2 (,T;H 1/2 (Γ)) L 2 (,T;H 1 ()) H 1,(,T; H 1 ()) Green s formula for u = Ṽw: T n u(x,t)v(x,t)ds x dt = a (u,v) Lemma Γ n u L2 (,T;H 1/2 (Γ)) c a 2 u L2 (,T;H 1 ()) H 1 (,T; H 1 ()) 21 / 29

22 Proof of stability: [Nedelec, Planchard 1973; Hsiao, Wendland 1977; Costabel 199] T T x u x v dx dt +α t uv dx dt = T n uv ds x dt + T Γ For u = Ṽw, u Γ = Vw, n u = ( 1 2 I +K )w we obtain [α t u x u]v dx dt a (u,v) = ( 1 2 I +K )w,v Σ Correspondingly, a c(u,v) = ( 1 2 I +K )w,v Σ Hence, a (u,v)+a c(u,v) = w,v Σ In particular for v = u this finally gives T w,vw Σ = x u 2 dxdt + α [u(t)] 2 dx R 2 n R n 22 / 29

23 Alternatively, for u = Ṽw, u Γ = Vw, n u = ( 1 2 I +K )w we may define x z = c H t u in R n \Γ, z Γ = and consider Hence, v = u +z = u +N t u, v Γ = u Γ = Vw w,vw Σ = a (u,u +N t u)+a c(u,u +N t u) 1 ( u 2 L 2 2(,T;H 1 ()) + tu 2 L 2(,T; H 1 ()) c V 1 w 2 L 2 (,T;H 1/2 (Γ)) Lemma: For w L 2 (,T;H 1/2 (Γ)) + u 2 L 2(,T;H 1 ( c )) + tu 2 L 2(,T; H 1 ( c )) Vw,φ Σ c S w L2 (,T;H 1/2 (Γ)) sup φ V Σ φ V Σ ) 23 / 29

24 Boundary element mesh { N 1 for (x,t) σl, Σ = σ l, ψ l (x,t) = else Example l=1 α = 1, u (x) = sinπx for x (,1), g(,t) = g(1,t) = L N BEM Iter w w h L 2 (,T) eoc / 29

25 Representation formula (g ) u(x,t) = 1 α T Approximate representation formula ũ(x,t) = 1 α T Γ Γ U (x y,t s)w(y,s)ds y ds + U (x y,t)u (y)dy U (x y,t s)w h (y,s)ds y ds + U (x y,t)u (y)dy Define piecewise linear finite element interpolation Local error indicators ũ h = I h ũ η k = ũ I h ũ L2 (q k ) Adaptive finite element boundary element solution [OS 1999] 25 / 29

26 Representation formula (g ) u(x,t) = 1 α T Normal derivative on Σ w(x,t) = 1 2 w h(x,t)+ 1 α Γ U (x y,t s)w(y,s)ds y ds + U (x y,t)u (y)dy T Error equation Laplace: [H. Schulz, OS 2] Γ w h (y,s) nx U (x y,t s)ds y ds + nx U (x y,t)u (y)dy ( 1 2 I K )(w w h ) = w w h on Σ Error indicator ẽ h (x,t) = w(x,t) w h (x,t) 26 / 29

27 L N BEM w w h L 2 (,T) eoc N FEM M FEM ũ ũ h L 2 (Q) eoc uniform refinement adaptive refinement / 29

28 Conclusions space time finite and boundary element methods arbitrary space time meshes, no time stepping schemes adapativity in space and time simultaneously a posteriori error estimators parallel iterative solvers and preconditioners Fast BEM / 29

29 3. Chemnitz FEM Symposium Strobl, September 25 27, Söllerhaus Workshop on Fast Boundary Element Methods in Industrial Applications October 12 15, / 29

Space time finite element methods in biomedical applications

Space time finite element methods in biomedical applications Space time finite element methods in biomedical applications Olaf Steinbach Institut für Angewandte Mathematik, TU Graz http://www.applied.math.tugraz.at SFB Mathematical Optimization and Applications

More information

Preconditioned space-time boundary element methods for the heat equation

Preconditioned space-time boundary element methods for the heat equation W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Stability of the Laplace single layer boundary integral operator in Sobolev spaces O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2016/2 Technische

More information

Technische Universität Graz

Technische Universität Graz echnische Universität Graz A Stabilized Space ime Finite Element Method for the Wave Equation Olaf Steinbach and Marco Zank Berichte aus dem Institut für Angewandte Mathematik Bericht 18/5 echnische Universität

More information

Space-time sparse discretization of linear parabolic equations

Space-time sparse discretization of linear parabolic equations Space-time sparse discretization of linear parabolic equations Roman Andreev August 2, 200 Seminar for Applied Mathematics, ETH Zürich, Switzerland Support by SNF Grant No. PDFMP2-27034/ Part of PhD thesis

More information

An Adaptive Space-Time Boundary Element Method for the Wave Equation

An Adaptive Space-Time Boundary Element Method for the Wave Equation W I S S E N T E C H N I K L E I D E N S C H A F T An Adaptive Space-Time Boundary Element Method for the Wave Equation Marco Zank and Olaf Steinbach Institut für Numerische Mathematik AANMPDE(JS)-9-16,

More information

Technische Universität Graz

Technische Universität Graz echnische Universität Graz Coercive space time finite element methods for initial boundary value problems O. Steinbach, M. Zank Berichte aus dem Institut für Angewandte Mathematik Bericht 18/7 echnische

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz A note on the stable coupling of finite and boundary elements O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2009/4 Technische Universität Graz A

More information

Space-time Finite Element Methods for Parabolic Evolution Problems

Space-time Finite Element Methods for Parabolic Evolution Problems Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients Ulrich Langer, Martin Neumüller, Andreas Schafelner Johannes Kepler University, Linz Doctoral Program Computational

More information

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes Dylan Copeland 1, Ulrich Langer 2, and David Pusch 3 1 Institute of Computational Mathematics,

More information

Space-time isogeometric analysis of parabolic evolution equations

Space-time isogeometric analysis of parabolic evolution equations www.oeaw.ac.at Space-time isogeometric analysis of parabolic evolution equations U. Langer, S.E. Moore, M. Neumüller RICAM-Report 2015-19 www.ricam.oeaw.ac.at SPACE-TIME ISOGEOMETRIC ANALYSIS OF PARABOLIC

More information

A Space-Time Boundary Element Method for the Wave Equation

A Space-Time Boundary Element Method for the Wave Equation W I S S E N T E C H N I K L E I D E N S C H A F T A Space-Time Boundary Element Method for the Wave Equation Marco Zank and Olaf Steinbach Institut für Numerische Mathematik Space-Time Methods for PDEs,

More information

The Mortar Boundary Element Method

The Mortar Boundary Element Method The Mortar Boundary Element Method A Thesis submitted for the degree of Doctor of Philosophy by Martin Healey School of Information Systems, Computing and Mathematics Brunel University March 2010 Abstract

More information

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Robust boundary element domain decomposition solvers in acoustics O. Steinbach, M. Windisch Berichte aus dem Institut für Numerische Mathematik Bericht 2009/9 Technische Universität

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems. Ulrich Langer, Martin Neumüller, Ioannis Toulopoulos. G+S Report No.

Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems. Ulrich Langer, Martin Neumüller, Ioannis Toulopoulos. G+S Report No. Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems Ulrich Langer, Martin Neumüller, Ioannis Toulopoulos G+S Report No. 56 May 017 Multipatch Space-Time Isogeometric Analysis of

More information

Multiscale methods for time-harmonic acoustic and elastic wave propagation

Multiscale methods for time-harmonic acoustic and elastic wave propagation Multiscale methods for time-harmonic acoustic and elastic wave propagation Dietmar Gallistl (joint work with D. Brown and D. Peterseim) Institut für Angewandte und Numerische Mathematik Karlsruher Institut

More information

Projected Surface Finite Elements for Elliptic Equations

Projected Surface Finite Elements for Elliptic Equations Available at http://pvamu.edu/aam Appl. Appl. Math. IN: 1932-9466 Vol. 8, Issue 1 (June 2013), pp. 16 33 Applications and Applied Mathematics: An International Journal (AAM) Projected urface Finite Elements

More information

A non-standard Finite Element Method based on boundary integral operators

A non-standard Finite Element Method based on boundary integral operators A non-standard Finite Element Method based on boundary integral operators Clemens Hofreither Ulrich Langer Clemens Pechstein June 30, 2010 supported by Outline 1 Method description Motivation Variational

More information

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS A. RÖSCH AND R. SIMON Abstract. An optimal control problem for an elliptic equation

More information

Domain decomposition methods via boundary integral equations

Domain decomposition methods via boundary integral equations Domain decomposition methods via boundary integral equations G. C. Hsiao a O. Steinbach b W. L. Wendland b a Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716, USA. E

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Error Estimates for Neumann Boundary Control Problems with Energy Regularization T. Apel, O. Steinbach, M. Winkler Berichte aus dem Institut für Numerische Mathematik Bericht

More information

Convergence of a finite element approximation to a state constrained elliptic control problem

Convergence of a finite element approximation to a state constrained elliptic control problem Als Manuskript gedruckt Technische Universität Dresden Herausgeber: Der Rektor Convergence of a finite element approximation to a state constrained elliptic control problem Klaus Deckelnick & Michael Hinze

More information

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM Finite Elements February 22, 2019 In the previous sections, we introduced the concept of finite element spaces, which contain certain functions defined on a domain. Finite element spaces are examples of

More information

From Completing the Squares and Orthogonal Projection to Finite Element Methods

From Completing the Squares and Orthogonal Projection to Finite Element Methods From Completing the Squares and Orthogonal Projection to Finite Element Methods Mo MU Background In scientific computing, it is important to start with an appropriate model in order to design effective

More information

Parallel Multipatch Space-Time IGA Solvers for Parabloic Initial-Boundary Value Problems

Parallel Multipatch Space-Time IGA Solvers for Parabloic Initial-Boundary Value Problems Parallel Multipatch Space-Time IGA Solvers for Parabloic Initial-Boundary Value Problems Ulrich Langer Institute of Computational Mathematics (NuMa) Johannes Kepler University Linz (RICAM) Austrian Academy

More information

AM:BM. Graz University of Technology Institute of Applied Mechanics

AM:BM. Graz University of Technology Institute of Applied Mechanics AM:BM Graz University of Technology Preprint No 0/014 An Efficient Galerkin Boundary Element Method for the Transient Heat Equation Michael Messner, Martin Schanz, Graz University of Technology Johannes

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz A non-symmetric coupling of the finite volume method and the boundary element method C. Erath, G. Of, F. J. Sayas Berichte aus dem Institut für Numerische Mathematik Bericht

More information

A MHD problem on unbounded domains - Coupling of FEM and BEM

A MHD problem on unbounded domains - Coupling of FEM and BEM A MHD problem on unbounded domains - Coupling of FEM and BEM Wiebke Lemster and Gert Lube Abstract We consider the MHD problem on R 3 = Ω Ω E, where Ω is a bounded, conducting Lipschitz domain and Ω E

More information

Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain

Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain Stephen Edward Moore Johann Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences,

More information

A posteriori error estimation of approximate boundary fluxes

A posteriori error estimation of approximate boundary fluxes COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2008; 24:421 434 Published online 24 May 2007 in Wiley InterScience (www.interscience.wiley.com)..1014 A posteriori error estimation

More information

New DPG techniques for designing numerical schemes

New DPG techniques for designing numerical schemes New DPG techniques for designing numerical schemes Jay Gopalakrishnan University of Florida Collaborator: Leszek Demkowicz October 2009 Massachusetts Institute of Technology, Boston Thanks: NSF Jay Gopalakrishnan

More information

Approximation of fluid-structure interaction problems with Lagrange multiplier

Approximation of fluid-structure interaction problems with Lagrange multiplier Approximation of fluid-structure interaction problems with Lagrange multiplier Daniele Boffi Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/boffi May 30, 2016 Outline

More information

Integral Representation Formula, Boundary Integral Operators and Calderón projection

Integral Representation Formula, Boundary Integral Operators and Calderón projection Integral Representation Formula, Boundary Integral Operators and Calderón projection Seminar BEM on Wave Scattering Franziska Weber ETH Zürich October 22, 2010 Outline Integral Representation Formula Newton

More information

An A Posteriori Error Estimate for Discontinuous Galerkin Methods

An A Posteriori Error Estimate for Discontinuous Galerkin Methods An A Posteriori Error Estimate for Discontinuous Galerkin Methods Mats G Larson mgl@math.chalmers.se Chalmers Finite Element Center Mats G Larson Chalmers Finite Element Center p.1 Outline We present an

More information

Hamburger Beiträge zur Angewandten Mathematik

Hamburger Beiträge zur Angewandten Mathematik Hamburger Beiträge zur Angewandten Mathematik Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations Klaus Deckelnick and Michael

More information

Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods

Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods Contents Ralf Hartmann Institute of Aerodynamics and Flow Technology DLR (German Aerospace Center) Lilienthalplatz 7, 3808

More information

Time domain boundary elements for dynamic contact problems

Time domain boundary elements for dynamic contact problems Time domain boundary elements for dynamic contact problems Heiko Gimperlein (joint with F. Meyer 3, C. Özdemir 4, D. Stark, E. P. Stephan 4 ) : Heriot Watt University, Edinburgh, UK 2: Universität Paderborn,

More information

Finite element approximation of the stochastic heat equation with additive noise

Finite element approximation of the stochastic heat equation with additive noise p. 1/32 Finite element approximation of the stochastic heat equation with additive noise Stig Larsson p. 2/32 Outline Stochastic heat equation with additive noise du u dt = dw, x D, t > u =, x D, t > u()

More information

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Roman Andreev ETH ZÜRICH / 29 JAN 29 TOC of the Talk Motivation & Set-Up Model Problem Stochastic Galerkin FEM Conclusions & Outlook Motivation

More information

Trefftz-discontinuous Galerkin methods for time-harmonic wave problems

Trefftz-discontinuous Galerkin methods for time-harmonic wave problems Trefftz-discontinuous Galerkin methods for time-harmonic wave problems Ilaria Perugia Dipartimento di Matematica - Università di Pavia (Italy) http://www-dimat.unipv.it/perugia Joint work with Ralf Hiptmair,

More information

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov,

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov, LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES Sergey Korotov, Institute of Mathematics Helsinki University of Technology, Finland Academy of Finland 1 Main Problem in Mathematical

More information

Adaptive Boundary Element Methods Part 2: ABEM. Dirk Praetorius

Adaptive Boundary Element Methods Part 2: ABEM. Dirk Praetorius CENTRAL School on Analysis and Numerics for PDEs November 09-12, 2015 Adaptive Boundary Element Methods Part 2: ABEM Dirk Praetorius TU Wien Institute for Analysis and Scientific Computing Outline 1 Boundary

More information

Mean-field SDE driven by a fractional BM. A related stochastic control problem

Mean-field SDE driven by a fractional BM. A related stochastic control problem Mean-field SDE driven by a fractional BM. A related stochastic control problem Rainer Buckdahn, Université de Bretagne Occidentale, Brest Durham Symposium on Stochastic Analysis, July 1th to July 2th,

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

A posteriori analysis of a discontinuous Galerkin scheme for a diffuse interface model

A posteriori analysis of a discontinuous Galerkin scheme for a diffuse interface model A posteriori analysis of a discontinuous Galerkin scheme for a diffuse interface model Jan Giesselmann joint work with Ch. Makridakis (Univ. of Sussex), T. Pryer (Univ. of Reading) 9th DFG-CNRS WORKSHOP

More information

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition The Dirichlet boundary problems for second order parabolic operators satisfying a Martin Dindos Sukjung Hwang University of Edinburgh Satellite Conference in Harmonic Analysis Chosun University, Gwangju,

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

1 Discretizing BVP with Finite Element Methods.

1 Discretizing BVP with Finite Element Methods. 1 Discretizing BVP with Finite Element Methods In this section, we will discuss a process for solving boundary value problems numerically, the Finite Element Method (FEM) We note that such method is a

More information

Solution of Non-Homogeneous Dirichlet Problems with FEM

Solution of Non-Homogeneous Dirichlet Problems with FEM Master Thesis Solution of Non-Homogeneous Dirichlet Problems with FEM Francesco Züger Institut für Mathematik Written under the supervision of Prof. Dr. Stefan Sauter and Dr. Alexander Veit August 27,

More information

On a Discontinuous Galerkin Method for Surface PDEs

On a Discontinuous Galerkin Method for Surface PDEs On a Discontinuous Galerkin Method for Surface PDEs Pravin Madhavan (joint work with Andreas Dedner and Bjo rn Stinner) Mathematics and Statistics Centre for Doctoral Training University of Warwick Applied

More information

Simple Examples on Rectangular Domains

Simple Examples on Rectangular Domains 84 Chapter 5 Simple Examples on Rectangular Domains In this chapter we consider simple elliptic boundary value problems in rectangular domains in R 2 or R 3 ; our prototype example is the Poisson equation

More information

A Multigrid Method for Two Dimensional Maxwell Interface Problems

A Multigrid Method for Two Dimensional Maxwell Interface Problems A Multigrid Method for Two Dimensional Maxwell Interface Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University USA JSA 2013 Outline A

More information

Numerical Approximation Methods for Elliptic Boundary Value Problems

Numerical Approximation Methods for Elliptic Boundary Value Problems Numerical Approximation Methods for Elliptic Boundary Value Problems Olaf Steinbach Numerical Approximation Methods for Elliptic Boundary Value Problems Finite and Boundary Elements Olaf Steinbach Institute

More information

An Equal-order DG Method for the Incompressible Navier-Stokes Equations

An Equal-order DG Method for the Incompressible Navier-Stokes Equations An Equal-order DG Method for the Incompressible Navier-Stokes Equations Bernardo Cockburn Guido anschat Dominik Schötzau Journal of Scientific Computing, vol. 40, pp. 188 10, 009 Abstract We introduce

More information

Lecture Notes on PDEs

Lecture Notes on PDEs Lecture Notes on PDEs Alberto Bressan February 26, 2012 1 Elliptic equations Let IR n be a bounded open set Given measurable functions a ij, b i, c : IR, consider the linear, second order differential

More information

Multigrid Methods for Maxwell s Equations

Multigrid Methods for Maxwell s Equations Multigrid Methods for Maxwell s Equations Jintao Cui Institute for Mathematics and Its Applications University of Minnesota Outline Nonconforming Finite Element Methods for a Two Dimensional Curl-Curl

More information

ON THE COUPLING OF BEM AND FEM FOR EXTERIOR PROBLEMS FOR THE HELMHOLTZ EQUATION

ON THE COUPLING OF BEM AND FEM FOR EXTERIOR PROBLEMS FOR THE HELMHOLTZ EQUATION MATHEMATICS OF COMPUTATION Volume 68, Number 227, Pages 945 953 S 0025-5718(99)01064-9 Article electronically published on February 15, 1999 ON THE COUPLING OF BEM AND FEM FOR EXTERIOR PROBLEMS FOR THE

More information

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Motivation Numerical methods Numerical tests Conclusions A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Xiaofeng Cai Department of Mathematics

More information

Weak Formulation of Elliptic BVP s

Weak Formulation of Elliptic BVP s Weak Formulation of Elliptic BVP s There are a large number of problems of physical interest that can be formulated in the abstract setting in which the Lax-Milgram lemma is applied to an equation expressed

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Applied/Numerical Analysis Qualifying Exam

Applied/Numerical Analysis Qualifying Exam Applied/Numerical Analysis Qualifying Exam August 9, 212 Cover Sheet Applied Analysis Part Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless,

More information

Maximum-norm a posteriori estimates for discontinuous Galerkin methods

Maximum-norm a posteriori estimates for discontinuous Galerkin methods Maximum-norm a posteriori estimates for discontinuous Galerkin methods Emmanuil Georgoulis Department of Mathematics, University of Leicester, UK Based on joint work with Alan Demlow (Kentucky, USA) DG

More information

BETI for acoustic and electromagnetic scattering

BETI for acoustic and electromagnetic scattering BETI for acoustic and electromagnetic scattering O. Steinbach, M. Windisch Institut für Numerische Mathematik Technische Universität Graz Oberwolfach 18. Februar 2010 FWF-Project: Data-sparse Boundary

More information

MATH 819 FALL We considered solutions of this equation on the domain Ū, where

MATH 819 FALL We considered solutions of this equation on the domain Ū, where MATH 89 FALL. The D linear wave equation weak solutions We have considered the initial value problem for the wave equation in one space dimension: (a) (b) (c) u tt u xx = f(x, t) u(x, ) = g(x), u t (x,

More information

The CG1-DG2 method for conservation laws

The CG1-DG2 method for conservation laws for conservation laws Melanie Bittl 1, Dmitri Kuzmin 1, Roland Becker 2 MoST 2014, Germany 1 Dortmund University of Technology, Germany, 2 University of Pau, France CG1-DG2 Method - Motivation hp-adaptivity

More information

Error analysis of a space-time finite element method for solving PDEs on evolving surfaces

Error analysis of a space-time finite element method for solving PDEs on evolving surfaces Numerical Analysis and Scientific Computing Preprint Seria Error analysis of a space-time finite element method for solving PDEs on evolving surfaces M.A. Olshanskii A. Reusken Preprint #9 Department of

More information

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS Proceedings of ALGORITMY 2009 pp. 1 10 SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS MILOSLAV VLASÁK Abstract. We deal with a numerical solution of a scalar

More information

On some weighted fractional porous media equations

On some weighted fractional porous media equations On some weighted fractional porous media equations Gabriele Grillo Politecnico di Milano September 16 th, 2015 Anacapri Joint works with M. Muratori and F. Punzo Gabriele Grillo Weighted Fractional PME

More information

Adaptive methods for control problems with finite-dimensional control space

Adaptive methods for control problems with finite-dimensional control space Adaptive methods for control problems with finite-dimensional control space Saheed Akindeinde and Daniel Wachsmuth Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy

More information

Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem

Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem Journal manuscript No. (will be inserted by the editor Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem Constantin Christof Christof Haubner Received:

More information

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Contents Chapter I. Introduction 7 I.1. Motivation 7 I.2. Sobolev and finite

More information

Semismooth Newton Methods for an Optimal Boundary Control Problem of Wave Equations

Semismooth Newton Methods for an Optimal Boundary Control Problem of Wave Equations Semismooth Newton Methods for an Optimal Boundary Control Problem of Wave Equations Axel Kröner 1 Karl Kunisch 2 and Boris Vexler 3 1 Lehrstuhl für Mathematische Optimierung Technische Universität München

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR PARABOLIC AND ELLIPTIC PROBLEMS

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR PARABOLIC AND ELLIPTIC PROBLEMS BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR PARABOLIC AND ELLIPTIC PROBLEMS ERIK BURMAN AND BENJAMIN STAMM Abstract. In this paper we give an analysis of a bubble stabilized discontinuous Galerkin

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Analysis of a kinematic dynamo model with FEM BEM coupling W. Lemster, G. Lube, G. Of, O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 0/3 Technische

More information

The All-floating BETI Method: Numerical Results

The All-floating BETI Method: Numerical Results The All-floating BETI Method: Numerical Results Günther Of Institute of Computational Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria, of@tugraz.at Summary. The all-floating

More information

1. Let a(x) > 0, and assume that u and u h are the solutions of the Dirichlet problem:

1. Let a(x) > 0, and assume that u and u h are the solutions of the Dirichlet problem: Mathematics Chalmers & GU TMA37/MMG800: Partial Differential Equations, 011 08 4; kl 8.30-13.30. Telephone: Ida Säfström: 0703-088304 Calculators, formula notes and other subject related material are not

More information

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Ernst P. Stephan 1, Matthias Maischak 2, and Thanh Tran 3 1 Institut für Angewandte Mathematik, Leibniz

More information

Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media

Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Raytcho Lazarov & Aziz Takhirov Texas A&M May 3-4, 2016 R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 1 / 30 Outline

More information

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements W I S S E N T E C H N I K L E I D E N S C H A F T A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements Matthias Gsell and Olaf Steinbach Institute of Computational Mathematics

More information

Trefftz-DG solution to the Helmholtz equation involving integral equations

Trefftz-DG solution to the Helmholtz equation involving integral equations Trefftz-DG solution to the Helmholtz equation involving integral equations H. Barucq, A. Bendali, M. Fares, V. Mattesi, S. Tordeux Magique 3D Inria Bordeaux Sud Ouest LMA UMR CNRS 5142 INSA of Toulouse

More information

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment Alastair J. Radcliffe Andreas Dedner Timo Betcke Warwick University, Coventry University College of London (UCL) U.K. Radcliffe

More information

THE STOKES SYSTEM R.E. SHOWALTER

THE STOKES SYSTEM R.E. SHOWALTER THE STOKES SYSTEM R.E. SHOWALTER Contents 1. Stokes System 1 Stokes System 2 2. The Weak Solution of the Stokes System 3 3. The Strong Solution 4 4. The Normal Trace 6 5. The Mixed Problem 7 6. The Navier-Stokes

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2012) 122:61 99 DOI 10.1007/s00211-012-0456-x Numerische Mathematik C 0 elements for generalized indefinite Maxwell equations Huoyuan Duan Ping Lin Roger C. E. Tan Received: 31 July 2010

More information

Weak Convergence of Numerical Methods for Dynamical Systems and Optimal Control, and a relation with Large Deviations for Stochastic Equations

Weak Convergence of Numerical Methods for Dynamical Systems and Optimal Control, and a relation with Large Deviations for Stochastic Equations Weak Convergence of Numerical Methods for Dynamical Systems and, and a relation with Large Deviations for Stochastic Equations Mattias Sandberg KTH CSC 2010-10-21 Outline The error representation for weak

More information

A DECOMPOSITION RESULT FOR BIHARMONIC PROBLEMS AND THE HELLAN-HERRMANN-JOHNSON METHOD

A DECOMPOSITION RESULT FOR BIHARMONIC PROBLEMS AND THE HELLAN-HERRMANN-JOHNSON METHOD Electronic ransactions on Numerical Analysis. Volume 45, pp. 257 282, 2016. Copyright c 2016,. ISSN 1068 9613. ENA A DECOMPOSIION RESUL FOR BIHARMONIC PROBLEMS AND HE HELLAN-HERRMANN-JOHNSON MEHOD WOLFGANG

More information

hp-dg timestepping for time-singular parabolic PDEs and VIs

hp-dg timestepping for time-singular parabolic PDEs and VIs hp-dg timestepping for time-singular parabolic PDEs and VIs Ch. Schwab ( SAM, ETH Zürich ) (joint with O. Reichmann) ACMAC / Heraklion, Crete September 26-28, 2011 September 27, 2011 Motivation Well-posedness

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

Reflected Brownian Motion

Reflected Brownian Motion Chapter 6 Reflected Brownian Motion Often we encounter Diffusions in regions with boundary. If the process can reach the boundary from the interior in finite time with positive probability we need to decide

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

arxiv: v1 [math.na] 19 Nov 2018

arxiv: v1 [math.na] 19 Nov 2018 QUASINORMS IN SEMILINEAR ELLIPTIC PROBLEMS JAMES JACKAMAN AND TRISTAN PRYER arxiv:1811.07816v1 [math.na] 19 Nov 2018 (1.1) Abstract. In this note we examine the a priori and a posteriori analysis of discontinuous

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY 11, USA Dan Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

POD for Parametric PDEs and for Optimality Systems

POD for Parametric PDEs and for Optimality Systems POD for Parametric PDEs and for Optimality Systems M. Kahlbacher, K. Kunisch, H. Müller and S. Volkwein Institute for Mathematics and Scientific Computing University of Graz, Austria DMV-Jahrestagung 26,

More information

Université de Metz. Master 2 Recherche de Mathématiques 2ème semestre. par Ralph Chill Laboratoire de Mathématiques et Applications de Metz

Université de Metz. Master 2 Recherche de Mathématiques 2ème semestre. par Ralph Chill Laboratoire de Mathématiques et Applications de Metz Université de Metz Master 2 Recherche de Mathématiques 2ème semestre Systèmes gradients par Ralph Chill Laboratoire de Mathématiques et Applications de Metz Année 26/7 1 Contents Chapter 1. Introduction

More information

The Discontinuous Galerkin Finite Element Method

The Discontinuous Galerkin Finite Element Method The Discontinuous Galerkin Finite Element Method Michael A. Saum msaum@math.utk.edu Department of Mathematics University of Tennessee, Knoxville The Discontinuous Galerkin Finite Element Method p.1/41

More information

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems.

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems. Robust A Posteriori Error Estimates for Stabilized Finite Element s of Non-Stationary Convection-Diffusion Problems L. Tobiska and R. Verfürth Universität Magdeburg Ruhr-Universität Bochum www.ruhr-uni-bochum.de/num

More information