Preconditioned space-time boundary element methods for the heat equation

Size: px
Start display at page:

Download "Preconditioned space-time boundary element methods for the heat equation"

Transcription

1 W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods for PDEs. RICAM.

2 Outline 1. Anisotropic Sobolev spaces 2. Boundary integral operators and equations 3. Boundary element methods 4. Preconditioning 5. FEM-BEM coupling 2

3 Model problem Dirichlet boundary value problem (Ω R n bounded Lipschitz-domain, Γ := Ω) α t u(x, t) x u(x, t) = 0 for (x, t) Q := Ω (0, T ), u(x, t) = g(x, t) for (x, t) Σ := Γ (0, T ), u(x, 0) = u 0 (x) for x Ω. Initial condition u 0 and boundary datum g given. Heat capacity α > 0. 3

4 Representation formula Representation formula for (x, t) Ω (0, T ) u(x, t) = Ω 1 α U (x y, t)u(y, 0)dy + 1 α T 0 Γ T n y U (x y, t s)u(y, s)ds yds. 0 Γ U (x y, t s) n y u(y, s)ds yds Fundamental solution ( ) n/2 ( ) α α x y 2 U exp, t > s, (x y, t s) := 4π(t s) 4(t s) 0, t s. 4

5 Outline 1. Anisotropic Sobolev spaces 2. Boundary integral operators and equations 3. Boundary element methods 4. Preconditioning 5. FEM-BEM coupling 5

6 Anisotropic Sobolev spaces For r, s 0 H r,s (R n R) := L 2 (R; H r (R n )) H s (R; L 2 (R n )) where u H s (R, L 2 (R n )) ( 1 + τ 2) s/2 û L 2 (R, L 2 (R n )). For Q = Ω (0, T ) H r,s (Q) := { u Q : u H r,s (R n R) }. 6

7 Anisotropic Sobolev spaces on Σ For r, s 0 H r,s (Σ) := L 2 (0, T ; H r (Γ)) H s (0, T ; L 2 (Γ)). Equivalent norm for 0 < r, s < 1 T u 2 H r,s (Σ) = u 2 L 2 (Σ) + Subspace and 0 Γ Γ u(x, t) u(y, t) 2 x y n 1+2r ds y ds x dt T T u(, t) u(, τ) 2 L + 2 (Γ) 0 0 t τ 1+2s dτdt. H r,s,0 (Σ) := L2 (0, T ; H r (Γ)) H s 0 (0, T ; L2 (Γ)) H r, s (Σ) := [ H r,s,0 (Σ) ]. 7

8 Dirichlet trace operator Theorem (Lions, Magenes 1972) Let r > 1 2 and s 0. Then there exists a linear and bounded operator γ0 int : H r,s (Q) H µ,ν (Σ) with γ int 0 u H µ,ν (Σ) c T u H r,s (Q) for all u H r,s (Q) where µ = r 1 2, ν = s s 2r and γ int 0 is an extension of γ int 0 u = u Σ for u C(Q). For r = 1 and s = 1 2 we have γint 0 : H 1, 1 2 (Q) H 1 2, 1 4 (Σ). 8

9 Neumann trace operator Theorem (Costabel 1990) The mapping γ int 1 : H 1, 1 2 (Q, α t x ) H 1 2, 1 4 (Σ) is linear and continuous. If u C 1 (Q) then γ 1 u = n u Σ. Subspace H 1, 1 2 (Q, α t x ) := { } u H 1, 1 2 (Q) : (α t x )u L 2 (Q). 9

10 An existence theorem Let u 0 L 2 (Ω), g H 1 2, 1 4 (Σ). The initial boundary value problem α t u x u = 0 in Q, u = g on Σ, u = u 0 on Ω {0} has a unique solution u H 1, 1 2 (Q, α t x ). Dirichlet trace γ int 0 u H 1 2, 1 4 (Σ) and Neumann trace γ int 1 u H 1 2, 1 4 (Σ) well defined. 10

11 Outline 1. Anisotropic Sobolev spaces 2. Boundary integral operators and equations 3. Boundary element methods 4. Preconditioning 5. FEM-BEM coupling 11

12 Initial potential Let u 0 L 2 (Ω). The function ( M 0 u 0 )(x, t) := U (x y, t)u 0 (y)dy is a solution of the homogeneous heat equation for (x, t) Q. Ω The operator M 0 : L 2 (Ω) H 1, 1 2 (Q, α t x ) is linear and bounded. boundedness of M 0 := γ0 int M 0 : L 2 (Ω) H 1 2, 1 4 (Σ) M 1 := γ1 int M 0 : L 2 (Ω) H 1 2, 1 4 (Σ). 12

13 Single layer potential Single layer potential with density w (Ṽ w)(x, t) := 1 t U (x y, t s)w(y, s)ds y ds α 0 Γ is a solution of the homogeneous heat equation for (x, t) Q. The operator Ṽ : H 1 2, 1 4 (Σ) H 1, 1 2 (Q, α t x ) is linear and bounded. boundedness of the single layer boundary integral operator Jump relation V := γ0 int Ṽ : H 1 2, (Σ) H 2, 1 4 (Σ). [γ 0 Ṽ w] = γ0 ext (Ṽ w) γint 0 (Ṽ w) = 0. 13

14 Adjoint double layer potential Adjoint double layer potential with density w and (x, t) Σ (K w)(x, t) := 1 α t 0 Γ n x U (x y, t s)w(y, s)ds y ds. The operator K : H 1 2, 1 4 (Σ) H 1 2, 1 4 (Σ) is linear and bounded and γ int 1 (Ṽ w) = 1 2 w + K w. Jump relation [γ 1 Ṽ w] = γ1 ext (Ṽ w) γint 1 (Ṽ w) = w. 14

15 Double layer potential Double layer potential with density v (Wv)(x, t) := 1 α t 0 Γ n y U (x y, t s)v(y, s)ds y ds is a solution of the homogeneous heat equation for (x, t) Q The operator W : H 1 2, 1 4 (Σ) H 1, 1 2 (Q, α t x ) is linear and bounded. boundedness of γ int 0 W : H 1 2, 1 4 (Σ) H 1 2, 1 4 (Σ). 15

16 Double layer boundary integral operator with density v and (x, t) Σ (Kv)(x, t) := 1 α t 0 Γ n y U (x y, t s)v(y, s)ds y ds. The operator K : H 1 2, 1 4 (Σ) H 1 2, 1 4 (Σ) is linear and bounded and Jump relation γ int 0 (Wv) = 1 2 v + Kv. [γ 0 Wv] = γ ext 0 (Wv) γ int 0 (Wv) = v. 16

17 Hypersingular boundary integral operator Hypersingular boundary integral operator with density v and (x, t) Σ (Dv)(x, t) := γ int 1 (Wv)(x, t). The operator D : H 1 2, 1 4 (Σ) H 1 2, 1 4 (Σ) is linear and bounded. Jump relation [γ 1 Wv] = γ ext 1 (Wv) γ int 1 (Wv) = 0. 17

18 Boundary integral equations Representation formula for ( x, t) Q u( x, t) = (Ṽ γint 1 u)( x, t) (W γ int 0 u)( x, t) + ( M 0 u 0 )( x, t). Apply Dirichlet- and Neumann trace operators ( γ int 0 u ) ( 1 γ1 intu = 2 I K V ) ( γ int 1 D 2 I + K 0 u ) γ1 int }{{} u =: C Calderón-operator: C = C 2. ( M0 u + 0 M 1 u 0 ). 18

19 Theorem (Costabel 1990) There exists a constant c 1 > 0, such that ( ( ) ( ψ V K ψ ( ), ϕ) K c D ϕ) 1 ψ 2 + H 1 2, 4 1 (Σ) ϕ 2 H 1 2, 4 1 (Σ) for all (ψ, ϕ) H 1 2, 1 4 (Σ) H 1 2, 1 4 (Σ). Ellipticity of V and D, i.e. and Vw, w c V 1 w 2 H 1 2, 1 4 (Σ) Dv, v c D 1 v 2 H 1 2, 1 4 (Σ) for all w H 1 2, 1 4 (Σ) for all v H 1 2, 1 4 (Σ). 19

20 Outline 1. Anisotropic Sobolev spaces 2. Boundary integral operators and equations 3. Boundary element methods 4. Preconditioning 5. FEM-BEM coupling 20

21 Boundary element methods First boundary integral equation for (x, t) Σ γ int 0 u(x, t) = (V γ int 1 u)(x, t)+ 1 2 γint 0 u(x, t) (K γ int 0 u)(x, t)+(m 0 u 0 )(x, t). Direct approach: Find γ1 intu H 1 2, 1 4 (Σ), such that ( ) 1 V γ1 int u = 2 I + K g M 0 u 0 on Σ. Variational formulation is to find γ1 intu H 1 2, 1 4 (Σ), such that ( ) 1 V γ1 int u, τ Σ = 2 I + K g, τ Σ M 0 u 0, τ Σ for all τ H 1 2, 1 4 (Σ). Uniquely solvable due to ellipticity and boundedness of V. 21

22 Indirect approach: u( x, t) := (Ṽ w)( x, t) + ( M 0 u 0 )( x, t) for ( x, t) Q. Apply Dirichlet trace operator g(x, t) = (Vw)(x, t) + (M 0 u 0 )(x, t) for (x, t) Σ. Variational formulation is to find w H 1 2, 1 4 (Σ), such that Vw, τ Σ = g M 0 u 0, τ Σ for all τ H 1 2, 1 4 (Σ). Uniquely solvable due to ellipticity and boundedness of V. 22

23 Triangulation of Σ for n = 1, 2 Boundary Γ piecewise smooth with Γ = J j=1 Γ j. Σ = J j=1 Σ j with Σ j := Γ j (0, T ). Σ N = N l=1 σ l admissible decomposition of Σ. For each σ l exists j: σ l Σ j. σ l = χ l (σ) with reference element σ R n. Ω (0, T ) Assumptions: No curved elements. Boundary elements are shape regular. 23

24 Trial spaces Space of piecewise constant basis functions S 0 h (Σ) := span { ϕ 0 l } N l=1 with ϕ 0 l (x, t) := { 1 for (x, t) σ l, 0 else. Approximate w := γ int 1 u H 1 2, 1 4 (Σ) by w h (x, t) := N w l ϕ 0 l (x, t) S0 h (Σ). l=1 24

25 Galerkin-Bubnov variational formulation: Find w h Sh 0 (Σ), such that ( ) 1 Vw h, τ h Σ = 2 I + K g, τ h Σ M 0 u 0, τ h Σ for all τ h Sh 0 (Σ). Equivalent to with and for l, k = 1,..., N. V h w = f V h [l, k] = V ϕ 0 k, ϕ0 l Σ ( ) 1 f [l] = 2 I + K g, ϕ 0 l Σ M 0 u 0, ϕ 0 l Σ 25

26 Approximation properties For u H r,s (Σ) with r, s [0, 1] and for σ, µ [ 1, 0) u Q h u L2 (Σ) c (hr + h s t ) u H r,s (Σ) u Q h u H σ,µ (Σ) c ( h σ + h µ t ) (h r + h s t ) u H r,s (Σ). For n = 1: Terms with h vanish. For n = 2: h t denotes the size of an element in temporal direction, h the size in spatial direction. 26

27 Space of piecewise smooth functions For Σ j = Γ j (0, T ) and r, s 0 H r,s (Σ j ) := { v = ṽ Σj : ṽ H r,s (Σ) }. Space of piecewise smooth functions on Σ H r,s pw (Σ) := { v L 2 (Σ) : v Σj H r,s (Σ j ) for j = 1,..., J } with norm v H r,s pw (Σ) := J v Σj 2 j=1 H r,s (Σ j ) 1/2. 27

28 For r, s < 0 H r,s (Σ j ) := [ H r, s (Σ j ) ] and with norm H r,s pw (Σ) := w H r,s pw (Σ) := J H r,s (Σ j ) j=1 J Hr,s w Σj. (Σ j ) j=1 For w H r,s pw (Σ) with r, s < 0 we have w H r,s (Σ) w H r,s pw (Σ). 28

29 Error estimates Quasi-optimality of the solution w h S 0 h (Σ) w w h H 1 2, 1 4 (Σ) c J inf j=1 τ j h S0 h (Σ j ) w Σj τ j h H 1 2, 1 4 (Σ j ) For w Hpw r,s (Σ) with r, s [0, 1] ( ) w w h c H h 1/2 + h 1/4 1 2, 1 4 (Σ) t (h r + ht s ) w H r,s pw (Σ).. For n = 1 w w h L 2 (Σ) chs t w H s pw (Σ). 29

30 Outline 1. Anisotropic Sobolev spaces 2. Boundary integral operators and equations 3. Boundary element methods 4. Preconditioning 5. FEM-BEM coupling 30

31 Preconditioning V and D elliptic inf-sup condition. Find subspaces X h = span {ϕ k } N k=1 H 1 2, 1 4 (Σ) and Y h = span {ψ l } M l=1 H 1 2, 1 4 (Σ), such that (τ h, v h ) sup c1 M τ h 0 v h Y h v h 1 H, H 1 1 2, 1 4 (Σ) 2 4 (Σ) for all τ h X h and dimx h = dimy h. ( κ M 1 h ) D hm T h V h c where M h [l, k] = (ϕ k, ψ l ) for l, k = 1,..., N. 31

32 Different approaches for n = 1: Sh 0 (I) for V and D. Sh 1 (I) for V and D. Use dual mesh: Sh 1(I) for D and S0 h (Ĩ) corresponding to dual mesh for V (figure: Sample dual mesh for n = 1). 1 ϕ 0 1 ϕ 0 2 ϕ 0 3 ϕ 0 4 ϕ 0 5 ϕ 1 1 ϕ 1 2 ϕ 1 3 ϕ 1 4 ϕ t 1 t 2 t 3 t 4 t t 32

33 Numerical examples Uniform refinement. Ω = (0, 1), T = 1. Initial condition u 0 (x) = sin (2πx). Boundary condition g = 0. Sh 0 (I) for the discretization of V and D. L N w w h L2 (Σ) eoc κ(v h ) It. κ(c 1 V V h) It , , , ,311 0,778 2, , ,658 0,996 4, , ,324 1,021 7, , ,16 1,017 11, , ,079 1,01 16, , ,04 1,006 13, , ,02 1,003 22, , ,01 1,001 32, , ,005 1,001 60, , ,002 1,000 88, , ,001 1, , ,

34 Adaptive refinement. Ω = (0, 1), T = 1. Initial condition u 0 (x) = 5 exp ( 10t) sin (πx). Boundary condition g = 0. Sh 0 (I) for the discretization of V and D x = 0 x = 1 wh(, t) t 34

35 C V = diagv h C V = M h D 1 h M h L N w w h L2 (Σ) κ(v h ) It. κ(c 1 V V h) It. κ(c 1 V V h) It ,886 1, , , ,637 3, , , ,272 12, , , ,914 34, , , ,615 92, , , , , , , , , , , , , , , , , , , , ,9 47 5, , , , , , , , , , , , , , , , , ,

36 Outline 1. Anisotropic Sobolev spaces 2. Boundary integral operators and equations 3. Boundary element methods 4. Preconditioning 5. FEM-BEM coupling 36

37 FEM-BEM coupling Transmission problem α t u i (x, t) div x [A(x, t) x u i (x, t)] = f (x, t) for (x, t) Ω (0, T ), α t u e (x, t) u e (x, t) = 0 for (x, t) Ω ext (0, T ), u i (x, 0) = u 0 (x) for x Ω, u e (x, 0) = 0 where f L 2 (0, T ; H 1 (Ω)), u 0 H 1 0 (Ω). Transmission conditions for (x, t) Σ for x Ω ext u i (x, t) = u e (x, t), n x [A(x, t) x u i (x, t)] = n x u e (x, t) =: w e (x, t). Radiation condition for x. 37

38 Representation formula for ( x, t) Ω ext (0, T ) u e ( x, t) = 1 α + 1 α T 0 Γ T 0 Γ n y u e (y, s)u ( x y, t s)ds y ds u e (y, s) n y U ( x y, t s)ds y ds. Apply Dirichlet-trace operator γ ext 0 u e = V γ ext 1 u e + ( ) 1 2 I + K γ0 ext u e on Σ. 38

39 Variational formulation Consider decomposition u i (x, t) = u i (x, t) + u 0 (x, t) for (x, t) Q where u 0 L 2 (0, T ; H 1 0 (Ω)) H1 (0, T ; H 1 (Ω)) is an extension of u 0. Find u i L 2 (0, T ; H 1 (Ω)) H 1 (0, T ; H 1 (Ω)) with u i (x, 0) = 0 for x Ω, such that for all v L 2 (0, T ; H 1 (Ω)). Bilinear form a(u, v) := α Q a(u i, v) w i, v Σ = f, v Q a(u 0, v) t u(x, t)v(x, t)dxdt+ [A(x, t) x u(x, t)] x v(x, t)dxdt. Q 39

40 Variational formulation BIE: Find w e X, such that ( ) 1 Vw e, τ Σ + 2 I K u e, τ Σ = 0 for all τ X. Transmission conditions u i Σ = u i Σ = u e Σ and w i = w e Find u i L 2 (0, T ; H 1 (Ω)) H 1 (0, T ; H 1 (Ω)) with u i (x, 0) = 0 for x Ω and w e X, such that a(u i, v) w e, v Σ = f, v Q a(u 0, v), ( ) 1 Vw e, τ Σ + 2 I K u i, τ Σ = 0 for all v L 2 (0, T ; H 1 (Ω)) and τ X. 40

41 Triangulation Admissible triangulation T h = {T k } N Q k=1 of Q. M Q... Number of nodes I 0... Index set of nodes not belonging to Ω {0} M 0 := I 0 I I... Index set of nodes not belonging to Σ (Ω {0}) M I := I I Node sorting: I I {1,..., M I }, I 0 {1,..., M 0 }. Boundary elements E h = {σ k } N Σ k=1 given by E h := { σ Σ : T T h : σ = T Σ }. 41

42 Sample triangulation 1D T h E h Nodes I 0 Nodes I I t x 42

43 Trial spaces Sh 0(Σ) = span { ϕ 0 k functions. Sh 1(Q) = span { ϕ 1 i basis functions. } NΣ k=1 } MQ i=1 space of piecewise constant basis space of piecewise linear and continuous Sh,0 1 (Q) functions in S1 h (Q) vanishing on Ω {0}, i.e. Sh,0 1 (Q) = span { } ϕ 1 M0 i i=1. Approximate w e and u i by N Σ w e,h = w k ϕ 0 k S0 h (Σ), u M 0 i,h = u j ϕ 1 j k=1 j=1 S 1 h,0 (Q). 43

44 Galerkin variational formulation Let u 0,h be the interpolation of u 0 in S 1 h (Q). Find u i,h Sh,0 1 (Q) and w e,h Sh 0 (Σ), such that a(u i,h, v h ) w e,h, v h Σ = f, v h Q a(u 0,h, v h ), ( ) 1 Vw e,h, τ h Σ + 2 I K u i,h, τ h Σ = 0 for all v h S 1 h,0 (Q) and τ h S 0 h (Σ). 44

45 Equivalent system of linear equations with A QQ A QΣ A ΣQ A ΣΣ M T h 1 2 M h K h V h uq u Σ w = f Q f Σ 0 A[j, i] = a(ϕ 1 i, ϕ1 j ), M Q f [j] = f, ϕ1 j Q u0 r a(ϕ 1 r, ϕ 1 j ) r=1 for i, j = 1,..., M 0 and M h [l, i] = ϕ 1 M I +i, ϕ0 l Σ, K h [l, i] = K ϕ 1 M I +i, ϕ0 l Σ, V h [l, k] = V ϕ 0 k, ϕ0 l Σ for i = 1,..., M 0 M I and k, l = 1,..., N Σ. 45

46 Numerical example Ω = (0, 1), T = 1, A 1, f 0, initial condition ( ) 1 exp u 0 (x) = (2x 1) 2 sin (πx) for x (0, 1), 1 0 else. L N Q N Σ u i u L i,h 2 (Q) eoc

47 Outlook Space-time error estimator for anisotropic BEM Ω R 3 Implementation... 47

Space time finite and boundary element methods

Space time finite and boundary element methods Space time finite and boundary element methods Olaf Steinbach Institut für Numerische Mathematik, TU Graz http://www.numerik.math.tu-graz.ac.at based on joint work with M. Neumüller, H. Yang, M. Fleischhacker,

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Stability of the Laplace single layer boundary integral operator in Sobolev spaces O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2016/2 Technische

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz A note on the stable coupling of finite and boundary elements O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2009/4 Technische Universität Graz A

More information

Domain decomposition methods via boundary integral equations

Domain decomposition methods via boundary integral equations Domain decomposition methods via boundary integral equations G. C. Hsiao a O. Steinbach b W. L. Wendland b a Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716, USA. E

More information

An Adaptive Space-Time Boundary Element Method for the Wave Equation

An Adaptive Space-Time Boundary Element Method for the Wave Equation W I S S E N T E C H N I K L E I D E N S C H A F T An Adaptive Space-Time Boundary Element Method for the Wave Equation Marco Zank and Olaf Steinbach Institut für Numerische Mathematik AANMPDE(JS)-9-16,

More information

A Space-Time Boundary Element Method for the Wave Equation

A Space-Time Boundary Element Method for the Wave Equation W I S S E N T E C H N I K L E I D E N S C H A F T A Space-Time Boundary Element Method for the Wave Equation Marco Zank and Olaf Steinbach Institut für Numerische Mathematik Space-Time Methods for PDEs,

More information

Space-time Finite Element Methods for Parabolic Evolution Problems

Space-time Finite Element Methods for Parabolic Evolution Problems Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients Ulrich Langer, Martin Neumüller, Andreas Schafelner Johannes Kepler University, Linz Doctoral Program Computational

More information

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes Dylan Copeland 1, Ulrich Langer 2, and David Pusch 3 1 Institute of Computational Mathematics,

More information

Integral Representation Formula, Boundary Integral Operators and Calderón projection

Integral Representation Formula, Boundary Integral Operators and Calderón projection Integral Representation Formula, Boundary Integral Operators and Calderón projection Seminar BEM on Wave Scattering Franziska Weber ETH Zürich October 22, 2010 Outline Integral Representation Formula Newton

More information

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Ernst P. Stephan 1, Matthias Maischak 2, and Thanh Tran 3 1 Institut für Angewandte Mathematik, Leibniz

More information

Solution of Non-Homogeneous Dirichlet Problems with FEM

Solution of Non-Homogeneous Dirichlet Problems with FEM Master Thesis Solution of Non-Homogeneous Dirichlet Problems with FEM Francesco Züger Institut für Mathematik Written under the supervision of Prof. Dr. Stefan Sauter and Dr. Alexander Veit August 27,

More information

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

The Mortar Boundary Element Method

The Mortar Boundary Element Method The Mortar Boundary Element Method A Thesis submitted for the degree of Doctor of Philosophy by Martin Healey School of Information Systems, Computing and Mathematics Brunel University March 2010 Abstract

More information

The Helmholtz Equation

The Helmholtz Equation The Helmholtz Equation Seminar BEM on Wave Scattering Rene Rühr ETH Zürich October 28, 2010 Outline Steklov-Poincare Operator Helmholtz Equation: From the Wave equation to Radiation condition Uniqueness

More information

Past, present and space-time

Past, present and space-time Past, present and space-time Arnold Reusken Chair for Numerical Mathematics RWTH Aachen Utrecht, 12.11.2015 Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 1 / 20 Outline Past. Past

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Robust boundary element domain decomposition solvers in acoustics O. Steinbach, M. Windisch Berichte aus dem Institut für Numerische Mathematik Bericht 2009/9 Technische Universität

More information

Regularity Theory a Fourth Order PDE with Delta Right Hand Side

Regularity Theory a Fourth Order PDE with Delta Right Hand Side Regularity Theory a Fourth Order PDE with Delta Right Hand Side Graham Hobbs Applied PDEs Seminar, 29th October 2013 Contents Problem and Weak Formulation Example - The Biharmonic Problem Regularity Theory

More information

Space-time sparse discretization of linear parabolic equations

Space-time sparse discretization of linear parabolic equations Space-time sparse discretization of linear parabolic equations Roman Andreev August 2, 200 Seminar for Applied Mathematics, ETH Zürich, Switzerland Support by SNF Grant No. PDFMP2-27034/ Part of PhD thesis

More information

Projection Methods for Rotating Flow

Projection Methods for Rotating Flow Projection Methods for Rotating Flow Daniel Arndt Gert Lube Georg-August-Universität Göttingen Institute for Numerical and Applied Mathematics IACM - ECCOMAS 2014 Computational Modeling of Turbulent and

More information

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs Lecture Notes: African Institute of Mathematics Senegal, January 26 opic itle: A short introduction to numerical methods for elliptic PDEs Authors and Lecturers: Gerard Awanou (University of Illinois-Chicago)

More information

Trefftz-DG solution to the Helmholtz equation involving integral equations

Trefftz-DG solution to the Helmholtz equation involving integral equations Trefftz-DG solution to the Helmholtz equation involving integral equations H. Barucq, A. Bendali, M. Fares, V. Mattesi, S. Tordeux Magique 3D Inria Bordeaux Sud Ouest LMA UMR CNRS 5142 INSA of Toulouse

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

A non-standard Finite Element Method based on boundary integral operators

A non-standard Finite Element Method based on boundary integral operators A non-standard Finite Element Method based on boundary integral operators Clemens Hofreither Ulrich Langer Clemens Pechstein June 30, 2010 supported by Outline 1 Method description Motivation Variational

More information

Hamburger Beiträge zur Angewandten Mathematik

Hamburger Beiträge zur Angewandten Mathematik Hamburger Beiträge zur Angewandten Mathematik Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations Klaus Deckelnick and Michael

More information

Space time finite element methods in biomedical applications

Space time finite element methods in biomedical applications Space time finite element methods in biomedical applications Olaf Steinbach Institut für Angewandte Mathematik, TU Graz http://www.applied.math.tugraz.at SFB Mathematical Optimization and Applications

More information

Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains

Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains Sergey E. Mikhailov Brunel University West London, Department of Mathematics, Uxbridge, UB8 3PH, UK J. Math. Analysis

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz A non-symmetric coupling of the finite volume method and the boundary element method C. Erath, G. Of, F. J. Sayas Berichte aus dem Institut für Numerische Mathematik Bericht

More information

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition Sukjung Hwang CMAC, Yonsei University Collaboration with M. Dindos and M. Mitrea The 1st Meeting of

More information

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Contents Chapter I. Introduction 7 I.1. Motivation 7 I.2. Sobolev and finite

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of,

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of, 269 C, Vese Practice problems [1] Write the differential equation u + u = f(x, y), (x, y) Ω u = 1 (x, y) Ω 1 n + u = x (x, y) Ω 2, Ω = {(x, y) x 2 + y 2 < 1}, Ω 1 = {(x, y) x 2 + y 2 = 1, x 0}, Ω 2 = {(x,

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Error Estimates for Neumann Boundary Control Problems with Energy Regularization T. Apel, O. Steinbach, M. Winkler Berichte aus dem Institut für Numerische Mathematik Bericht

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

Multiscale methods for time-harmonic acoustic and elastic wave propagation

Multiscale methods for time-harmonic acoustic and elastic wave propagation Multiscale methods for time-harmonic acoustic and elastic wave propagation Dietmar Gallistl (joint work with D. Brown and D. Peterseim) Institut für Angewandte und Numerische Mathematik Karlsruher Institut

More information

for compression of Boundary Integral Operators. Steven Paul Nixon B.Sc.

for compression of Boundary Integral Operators. Steven Paul Nixon B.Sc. Theory and Applications of the Multiwavelets for compression of Boundary Integral Operators. Steven Paul Nixon B.Sc. Institute for Materials Research School of Computing, Science & Engineering, University

More information

Simple Examples on Rectangular Domains

Simple Examples on Rectangular Domains 84 Chapter 5 Simple Examples on Rectangular Domains In this chapter we consider simple elliptic boundary value problems in rectangular domains in R 2 or R 3 ; our prototype example is the Poisson equation

More information

Approximation of fluid-structure interaction problems with Lagrange multiplier

Approximation of fluid-structure interaction problems with Lagrange multiplier Approximation of fluid-structure interaction problems with Lagrange multiplier Daniele Boffi Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/boffi May 30, 2016 Outline

More information

A posteriori error estimates for Maxwell Equations

A posteriori error estimates for Maxwell Equations www.oeaw.ac.at A posteriori error estimates for Maxwell Equations J. Schöberl RICAM-Report 2005-10 www.ricam.oeaw.ac.at A POSTERIORI ERROR ESTIMATES FOR MAXWELL EQUATIONS JOACHIM SCHÖBERL Abstract. Maxwell

More information

Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives

Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives Etienne Emmrich Technische Universität Berlin, Institut für Mathematik, Straße

More information

Boundary Integral Equations on the Sphere with Radial Basis Functions: Error Analysis

Boundary Integral Equations on the Sphere with Radial Basis Functions: Error Analysis Boundary Integral Equations on the Sphere with Radial Basis Functions: Error Analysis T. Tran Q. T. Le Gia I. H. Sloan E. P. Stephan Abstract Radial basis functions are used to define approximate solutions

More information

A Finite Element Method for the Surface Stokes Problem

A Finite Element Method for the Surface Stokes Problem J A N U A R Y 2 0 1 8 P R E P R I N T 4 7 5 A Finite Element Method for the Surface Stokes Problem Maxim A. Olshanskii *, Annalisa Quaini, Arnold Reusken and Vladimir Yushutin Institut für Geometrie und

More information

Finite Element Method for Ordinary Differential Equations

Finite Element Method for Ordinary Differential Equations 52 Chapter 4 Finite Element Method for Ordinary Differential Equations In this chapter we consider some simple examples of the finite element method for the approximate solution of ordinary differential

More information

Convergence of a finite element approximation to a state constrained elliptic control problem

Convergence of a finite element approximation to a state constrained elliptic control problem Als Manuskript gedruckt Technische Universität Dresden Herausgeber: Der Rektor Convergence of a finite element approximation to a state constrained elliptic control problem Klaus Deckelnick & Michael Hinze

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT HUOYUAN DUAN, SHA LI, ROGER C. E. TAN, AND WEIYING ZHENG Abstract. To deal with the divergence-free

More information

Time domain boundary elements for dynamic contact problems

Time domain boundary elements for dynamic contact problems Time domain boundary elements for dynamic contact problems Heiko Gimperlein (joint with F. Meyer 3, C. Özdemir 4, D. Stark, E. P. Stephan 4 ) : Heriot Watt University, Edinburgh, UK 2: Universität Paderborn,

More information

Projected Surface Finite Elements for Elliptic Equations

Projected Surface Finite Elements for Elliptic Equations Available at http://pvamu.edu/aam Appl. Appl. Math. IN: 1932-9466 Vol. 8, Issue 1 (June 2013), pp. 16 33 Applications and Applied Mathematics: An International Journal (AAM) Projected urface Finite Elements

More information

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Department of Mathematics and Institute for Physical Science and Technology University of Maryland, USA www.math.umd.edu/ rhn 7th

More information

Solutions of Selected Problems

Solutions of Selected Problems 1 Solutions of Selected Problems October 16, 2015 Chapter I 1.9 Consider the potential equation in the disk := {(x, y) R 2 ; x 2 +y 2 < 1}, with the boundary condition u(x) = g(x) r for x on the derivative

More information

BETI for acoustic and electromagnetic scattering

BETI for acoustic and electromagnetic scattering BETI for acoustic and electromagnetic scattering O. Steinbach, M. Windisch Institut für Numerische Mathematik Technische Universität Graz Oberwolfach 18. Februar 2010 FWF-Project: Data-sparse Boundary

More information

PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED

PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED ALAN DEMLOW Abstract. Recent results of Schatz show that standard Galerkin finite element methods employing piecewise polynomial elements of degree

More information

The All-floating BETI Method: Numerical Results

The All-floating BETI Method: Numerical Results The All-floating BETI Method: Numerical Results Günther Of Institute of Computational Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria, of@tugraz.at Summary. The all-floating

More information

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements W I S S E N T E C H N I K L E I D E N S C H A F T A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements Matthias Gsell and Olaf Steinbach Institute of Computational Mathematics

More information

Chapter 12. Partial di erential equations Di erential operators in R n. The gradient and Jacobian. Divergence and rotation

Chapter 12. Partial di erential equations Di erential operators in R n. The gradient and Jacobian. Divergence and rotation Chapter 12 Partial di erential equations 12.1 Di erential operators in R n The gradient and Jacobian We recall the definition of the gradient of a scalar function f : R n! R, as @f grad f = rf =,..., @f

More information

Splitting methods with boundary corrections

Splitting methods with boundary corrections Splitting methods with boundary corrections Alexander Ostermann University of Innsbruck, Austria Joint work with Lukas Einkemmer Verona, April/May 2017 Strang s paper, SIAM J. Numer. Anal., 1968 S (5)

More information

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM Finite Elements February 22, 2019 In the previous sections, we introduced the concept of finite element spaces, which contain certain functions defined on a domain. Finite element spaces are examples of

More information

Variational Formulations

Variational Formulations Chapter 2 Variational Formulations In this chapter we will derive a variational (or weak) formulation of the elliptic boundary value problem (1.4). We will discuss all fundamental theoretical results that

More information

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition

The Dirichlet boundary problems for second order parabolic operators satisfying a Carleson condition The Dirichlet boundary problems for second order parabolic operators satisfying a Martin Dindos Sukjung Hwang University of Edinburgh Satellite Conference in Harmonic Analysis Chosun University, Gwangju,

More information

Fast Multipole BEM for Structural Acoustics Simulation

Fast Multipole BEM for Structural Acoustics Simulation Fast Boundary Element Methods in Industrial Applications Fast Multipole BEM for Structural Acoustics Simulation Matthias Fischer and Lothar Gaul Institut A für Mechanik, Universität Stuttgart, Germany

More information

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS A. RÖSCH AND R. SIMON Abstract. An optimal control problem for an elliptic equation

More information

Subdiffusion in a nonconvex polygon

Subdiffusion in a nonconvex polygon Subdiffusion in a nonconvex polygon Kim Ngan Le and William McLean The University of New South Wales Bishnu Lamichhane University of Newcastle Monash Workshop on Numerical PDEs, February 2016 Outline Time-fractional

More information

Applied/Numerical Analysis Qualifying Exam

Applied/Numerical Analysis Qualifying Exam Applied/Numerical Analysis Qualifying Exam August 9, 212 Cover Sheet Applied Analysis Part Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless,

More information

Trefftz-discontinuous Galerkin methods for time-harmonic wave problems

Trefftz-discontinuous Galerkin methods for time-harmonic wave problems Trefftz-discontinuous Galerkin methods for time-harmonic wave problems Ilaria Perugia Dipartimento di Matematica - Università di Pavia (Italy) http://www-dimat.unipv.it/perugia Joint work with Ralf Hiptmair,

More information

Inexact Data-Sparse BETI Methods by Ulrich Langer. (joint talk with G. Of, O. Steinbach and W. Zulehner)

Inexact Data-Sparse BETI Methods by Ulrich Langer. (joint talk with G. Of, O. Steinbach and W. Zulehner) Inexact Data-Sparse BETI Methods by Ulrich Langer (joint talk with G. Of, O. Steinbach and W. Zulehner) Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences http://www.ricam.oeaw.ac.at

More information

A space-time Trefftz method for the second order wave equation

A space-time Trefftz method for the second order wave equation A space-time Trefftz method for the second order wave equation Lehel Banjai The Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh & Department of Mathematics, University of

More information

Boundary element methods

Boundary element methods Dr. L. Banjai Institut für Mathematik Universität Zürich Contents Boundary element methods L. Banjai Herbstsemester 2007 Version: October 26, 2007 1 Introduction 4 1.1 Integration by parts.................................

More information

A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES

A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES P. HANSBO Department of Applied Mechanics, Chalmers University of Technology, S-4 96 Göteborg, Sweden E-mail: hansbo@solid.chalmers.se

More information

A very short introduction to the Finite Element Method

A very short introduction to the Finite Element Method A very short introduction to the Finite Element Method Till Mathis Wagner Technical University of Munich JASS 2004, St Petersburg May 4, 2004 1 Introduction This is a short introduction to the finite element

More information

c 2008 Society for Industrial and Applied Mathematics

c 2008 Society for Industrial and Applied Mathematics SIAM J. CONTROL OPTIM. Vol. 47, No. 3, pp. 1301 1329 c 2008 Society for Industrial and Applied Mathematics A PRIORI ERROR ESTIMATES FOR SPACE-TIME FINITE ELEMENT DISCRETIZATION OF PARABOLIC OPTIMAL CONTROL

More information

Multigrid Methods for Maxwell s Equations

Multigrid Methods for Maxwell s Equations Multigrid Methods for Maxwell s Equations Jintao Cui Institute for Mathematics and Its Applications University of Minnesota Outline Nonconforming Finite Element Methods for a Two Dimensional Curl-Curl

More information

Sparse Tensor Galerkin Discretizations for First Order Transport Problems

Sparse Tensor Galerkin Discretizations for First Order Transport Problems Sparse Tensor Galerkin Discretizations for First Order Transport Problems Ch. Schwab R. Hiptmair, E. Fonn, K. Grella, G. Widmer ETH Zürich, Seminar for Applied Mathematics IMA WS Novel Discretization Methods

More information

i=1 α i. Given an m-times continuously

i=1 α i. Given an m-times continuously 1 Fundamentals 1.1 Classification and characteristics Let Ω R d, d N, d 2, be an open set and α = (α 1,, α d ) T N d 0, N 0 := N {0}, a multiindex with α := d i=1 α i. Given an m-times continuously differentiable

More information

GALERKIN TIME STEPPING METHODS FOR NONLINEAR PARABOLIC EQUATIONS

GALERKIN TIME STEPPING METHODS FOR NONLINEAR PARABOLIC EQUATIONS GALERKIN TIME STEPPING METHODS FOR NONLINEAR PARABOLIC EQUATIONS GEORGIOS AKRIVIS AND CHARALAMBOS MAKRIDAKIS Abstract. We consider discontinuous as well as continuous Galerkin methods for the time discretization

More information

Numerical Approximation Methods for Elliptic Boundary Value Problems

Numerical Approximation Methods for Elliptic Boundary Value Problems Numerical Approximation Methods for Elliptic Boundary Value Problems Olaf Steinbach Numerical Approximation Methods for Elliptic Boundary Value Problems Finite and Boundary Elements Olaf Steinbach Institute

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

NONLOCAL DIFFUSION EQUATIONS

NONLOCAL DIFFUSION EQUATIONS NONLOCAL DIFFUSION EQUATIONS JULIO D. ROSSI (ALICANTE, SPAIN AND BUENOS AIRES, ARGENTINA) jrossi@dm.uba.ar http://mate.dm.uba.ar/ jrossi 2011 Non-local diffusion. The function J. Let J : R N R, nonnegative,

More information

1 Discretizing BVP with Finite Element Methods.

1 Discretizing BVP with Finite Element Methods. 1 Discretizing BVP with Finite Element Methods In this section, we will discuss a process for solving boundary value problems numerically, the Finite Element Method (FEM) We note that such method is a

More information

AM:BM. Graz University of Technology Institute of Applied Mechanics

AM:BM. Graz University of Technology Institute of Applied Mechanics AM:BM Graz University of Technology Preprint No 0/014 An Efficient Galerkin Boundary Element Method for the Transient Heat Equation Michael Messner, Martin Schanz, Graz University of Technology Johannes

More information

Scalable Total BETI for 2D and 3D Contact Problems

Scalable Total BETI for 2D and 3D Contact Problems VŠB Technical University of Ostrava Faculty of Electrical Engineering and Computer Science Department of Applied Mathematics Scalable Total BETI for 2D and 3D Contact Problems Ing. Marie Sadowská Field

More information

SOME NONOVERLAPPING DOMAIN DECOMPOSITION METHODS

SOME NONOVERLAPPING DOMAIN DECOMPOSITION METHODS SIAM REV. c 1998 Society for Industrial and Applied Mathematics Vol. 40, No. 4, pp. 857 914, December 1998 004 SOME NONOVERLAPPING DOMAIN DECOMPOSITION METHODS JINCHAO XU AND JUN ZOU Abstract. The purpose

More information

WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES

WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES INERNAIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 12, Number 1, Pages 31 53 c 2015 Institute for Scientific Computing and Information WEAK GALERKIN FINIE ELEMEN MEHODS ON POLYOPAL MESHES LIN

More information

Adaptive Boundary Element Methods Part 2: ABEM. Dirk Praetorius

Adaptive Boundary Element Methods Part 2: ABEM. Dirk Praetorius CENTRAL School on Analysis and Numerics for PDEs November 09-12, 2015 Adaptive Boundary Element Methods Part 2: ABEM Dirk Praetorius TU Wien Institute for Analysis and Scientific Computing Outline 1 Boundary

More information

The Plane Stress Problem

The Plane Stress Problem The Plane Stress Problem Martin Kronbichler Applied Scientific Computing (Tillämpad beräkningsvetenskap) February 2, 2010 Martin Kronbichler (TDB) The Plane Stress Problem February 2, 2010 1 / 24 Outline

More information

A Multigrid Method for Two Dimensional Maxwell Interface Problems

A Multigrid Method for Two Dimensional Maxwell Interface Problems A Multigrid Method for Two Dimensional Maxwell Interface Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University USA JSA 2013 Outline A

More information

Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media

Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Raytcho Lazarov & Aziz Takhirov Texas A&M May 3-4, 2016 R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 1 / 30 Outline

More information

Second Order Elliptic PDE

Second Order Elliptic PDE Second Order Elliptic PDE T. Muthukumar tmk@iitk.ac.in December 16, 2014 Contents 1 A Quick Introduction to PDE 1 2 Classification of Second Order PDE 3 3 Linear Second Order Elliptic Operators 4 4 Periodic

More information

PDEs, Homework #3 Solutions. 1. Use Hölder s inequality to show that the solution of the heat equation

PDEs, Homework #3 Solutions. 1. Use Hölder s inequality to show that the solution of the heat equation PDEs, Homework #3 Solutions. Use Hölder s inequality to show that the solution of the heat equation u t = ku xx, u(x, = φ(x (HE goes to zero as t, if φ is continuous and bounded with φ L p for some p.

More information

Theory of PDE Homework 2

Theory of PDE Homework 2 Theory of PDE Homework 2 Adrienne Sands April 18, 2017 In the following exercises we assume the coefficients of the various PDE are smooth and satisfy the uniform ellipticity condition. R n is always an

More information

On a Discontinuous Galerkin Method for Surface PDEs

On a Discontinuous Galerkin Method for Surface PDEs On a Discontinuous Galerkin Method for Surface PDEs Pravin Madhavan (joint work with Andreas Dedner and Bjo rn Stinner) Mathematics and Statistics Centre for Doctoral Training University of Warwick Applied

More information

CONVERGENCE ANALYSIS OF A BALANCING DOMAIN DECOMPOSITION METHOD FOR SOLVING A CLASS OF INDEFINITE LINEAR SYSTEMS

CONVERGENCE ANALYSIS OF A BALANCING DOMAIN DECOMPOSITION METHOD FOR SOLVING A CLASS OF INDEFINITE LINEAR SYSTEMS CONVERGENCE ANALYSIS OF A BALANCING DOMAIN DECOMPOSITION METHOD FOR SOLVING A CLASS OF INDEFINITE LINEAR SYSTEMS JING LI AND XUEMIN TU Abstract A variant of balancing domain decomposition method by constraints

More information

A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions

A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions Zhiqiang Cai Seokchan Kim Sangdong Kim Sooryun Kong Abstract In [7], we proposed a new finite element method

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

A space-time Trefftz method for the second order wave equation

A space-time Trefftz method for the second order wave equation A space-time Trefftz method for the second order wave equation Lehel Banjai The Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh Rome, 10th Apr 2017 Joint work with: Emmanuil

More information

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems Finite Element Clifford Algebra: A New Toolkit for Evolution Problems Andrew Gillette joint work with Michael Holst Department of Mathematics University of California, San Diego http://ccom.ucsd.edu/ agillette/

More information

Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems

Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems Christoph Lehrenfeld and Arnold Reusken Bericht Nr. 340 April 2012 Key words: transport problem, Nitsche method, XFEM,

More information

Introduction to finite element exterior calculus

Introduction to finite element exterior calculus Introduction to finite element exterior calculus Ragnar Winther CMA, University of Oslo Norway Why finite element exterior calculus? Recall the de Rham complex on the form: R H 1 (Ω) grad H(curl, Ω) curl

More information

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems Atle Loneland 1, Leszek Marcinkowski 2, and Talal Rahman 3 1 Introduction In this paper

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

A MHD problem on unbounded domains - Coupling of FEM and BEM

A MHD problem on unbounded domains - Coupling of FEM and BEM A MHD problem on unbounded domains - Coupling of FEM and BEM Wiebke Lemster and Gert Lube Abstract We consider the MHD problem on R 3 = Ω Ω E, where Ω is a bounded, conducting Lipschitz domain and Ω E

More information