A non-standard Finite Element Method based on boundary integral operators

Size: px
Start display at page:

Download "A non-standard Finite Element Method based on boundary integral operators"

Transcription

1 A non-standard Finite Element Method based on boundary integral operators Clemens Hofreither Ulrich Langer Clemens Pechstein June 30, 2010 supported by

2 Outline 1 Method description Motivation Variational formulation Discretization 2 A Céa-type estimate Bounding the mesh-dependant constants Estimating the approximation errors 3 A 3D numerical example Outlook

3 Motivation Variational formulation Discretization Motivation Let Ω R d a domain. We want to solve the PDE div(a(x) u(x)) = f (x), x Ω plus suitable boundary conditions on Γ = Ω. Discretize the domain by a mesh consisting of N polygonal/polyhedral elements T i : Ω = N i=1 T i

4 Motivation Variational formulation Discretization Meshes We want to treat general polygonal/polyhedral meshes: arbitrary and mixed element shapes hanging nodes supported naturally

5 Motivation Variational formulation Discretization DEEP LATTERBARROW N-S LATTERBARROW FAULTED TOP M-F BVG TOP M-F BVG FAULTED BLEAWATH BVG BLEAWATH BVG FAULTED F-H BVG Motivation These kinds of meshes arise, e.g., in reservoir simulation, F-H BVG FAULTED UNDIFF BVG UNDIFF BVG FAULTED N-S BVG N-S BVG FAULTED CARB LST CARB LST FAULTED COLLYHURST COLLYHURST FAULTED BROCKRAM BROCKRAM SHALES + EVAP FAULTED BNHM BOTTOM NHM FAULTED DEEP ST BEES DEEP ST BEES FAULTED N-S ST BEES N-S ST BEES FAULTED VN-S ST BEES VN-S ST BEES FAULTED DEEP CALDER DEEP CALDER FAULTED N-S CALDER N-S CALDER FAULTED VN-S CALDER VN-S CALDER MERCIA MUDSTONE QUATERNARY Image: rock permeability α(x) at Sellafield, UK. (c) NIREX UK Ltd. adaptive mesh refinement. Another advantage: automatic mesh manipulation (join, split, manipulate elements)

6 Motivation Variational formulation Discretization Other possible approaches Mimetic finite difference method Kuznetsov, Lipnikov, Shashkov: The mimetic finite difference method on polygonal meshes for diffusion-type problems, 2004 Brezzi, Lipnikov, Shashkov: Convergence of Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes, 2004 Discontinuous Galerkin method Dolejsi, Feistauer, Sobotikova: Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems, 2005

7 Motivation Variational formulation Discretization Our approach Has its roots in symmetric BEM Domain Decomposition method. 1 Use piecewise PDE-harmonic ansatz functions in every element (local Trefftz method). 2 Reduce the variational formulation to the skeleton of the mesh. 3 Use boundary integral operators to solve local Dirichlet-to-Neumann problems.

8 Motivation Variational formulation Discretization Prior work A selection of previous work related to this approach: Hsiao, Wendland: Domain Decomposition in Boundary Element Methods, Hsiao, Steinbach, Wendland: Domain decomposition methods via boundary integral equations, Copeland, Langer, Pusch: From the boundary element method to local Trefftz finite element methods on polyhedral meshes, 2009.

9 Motivation Variational formulation Discretization Model problem Our method is designed to treat piecewise constant coefficients: a(x) a i for x T i For simplicity, we assume a(x) 1, f 0, i.e. Laplace equation: u = 0 in Ω, u = g on Γ = Ω.

10 Motivation Variational formulation Discretization Variational formulation For all v H0 1(Ω), 0 = Ω u v

11 Motivation Variational formulation Discretization Variational formulation For all v H0 1(Ω), 0 = u v Ω = u v i T i

12 Motivation Variational formulation Discretization Variational formulation For all v H0 1(Ω), 0 = = i = i Ω u v u v T i Γ i u v n i T i }{{} u v =0

13 Motivation Variational formulation Discretization Variational formulation For all v H0 1(Ω), 0 = = i = i = i Ω u v u v T i Γ i Γ i u v n i T i u n i v. }{{} u v =0 Is defined purely on the element boundaries (Γ i ) i=1,...,n.

14 Motivation Variational formulation Discretization Function spaces on the skeleton Let Γ S := i Γ i denote the skeleton of the mesh. Let H 1/2 (Γ S ) be the trace space of H 1 (Ω) onto Γ S. Let W = {v H 1/2 (Γ S ) : v Γ = 0} be the space of skeletal functions which are zero on the boundary of Ω.

15 Motivation Variational formulation Discretization Function spaces on the skeleton Let Γ S := i Γ i denote the skeleton of the mesh. Let H 1/2 (Γ S ) be the trace space of H 1 (Ω) onto Γ S. Let W = {v H 1/2 (Γ S ) : v Γ = 0} be the space of skeletal functions which are zero on the boundary of Ω.

16 Motivation Variational formulation Discretization Function spaces on the skeleton Let Γ S := i Γ i denote the skeleton of the mesh. Let H 1/2 (Γ S ) be the trace space of H 1 (Ω) onto Γ S. Let W = {v H 1/2 (Γ S ) : v Γ = 0} be the space of skeletal functions which are zero on the boundary of Ω.

17 Motivation Variational formulation Discretization Harmonic extension For any (sufficiently regular) function on the boundary of a domain, there is a unique way to extend it to a harmonic function ( u = 0) in the domain: H i : H 1/2 (Γ i ) H 1 (T i ) We also define H S : H 1/2 (Γ S ) H 1 (Ω) by piecing together the local harmonic extensions.

18 Motivation Variational formulation Discretization Skeletal variational formulation Recall: Making use of the bijection we can rewrite (1) as i Γ i u v = 0 v H0 1 (Ω). (1) n i u i = γ Ti u u = H i u i on T i, i Γ i n i (H i u i )v i = 0 v W. (2) With the Dirichlet-to-Neumann map S i u i := n i (H i u i ), we get S i u i v i = 0 v W. (3) Γ i i

19 Motivation Variational formulation Discretization Relation to standard domain VF Standard variational formulation Find u Ω H 1 (Ω) with u Ω Γ = g such that for all v Ω H0 1(Ω), u Ω v Ω dx = 0. Ω Skeletal variational formulation Find u H 1/2 (Γ S ) with u Γ = g such that for all v W, N S i u i, v i Γi = 0. i=1 The formulations are equivalent: u Ω = H i u i on T i.

20 Motivation Variational formulation Discretization Evaluating the Dirichlet-to-Neumann map Evaluating S i u i = n i (H i u i ): 1 solve a Laplace problem on T i with Dirichlet data u i, 2 obtain Neumann data of solution. More directly: S i = D i + ( 1 2 I + K i 1 )Vi ( 1 2 I + K i) with the boundary integral operators V i, single layer potential operator, K i, double layer potential operator, D i, hypersingular operator. Defined in terms of the fundamental solution of the differential operator.

21 Motivation Variational formulation Discretization Evaluating the Dirichlet-to-Neumann map Evaluating S i u i = n i (H i u i ): 1 solve a Laplace problem on T i with Dirichlet data u i, 2 obtain Neumann data of solution. More directly: S i = D i + ( 1 2 I + K i 1 )Vi ( 1 2 I + K i) with the boundary integral operators V i, single layer potential operator, K i, double layer potential operator, D i, hypersingular operator. Defined in terms of the fundamental solution of the differential operator.

22 Motivation Variational formulation Discretization Discretization A Galerkin method is obtained by choosing a finite-dimensional subspace W h W. E.g.: piecewise linear, continuous functions (on the skeleton). Degrees of freedom are chosen in the vertices of the elements.

23 Motivation Variational formulation Discretization Discretizing the Dirichlet-to-Neumann map Symmetric representation of Steklov-Poincaré operator: S i u i = D i u i + ( 1 2 I + K i )w i, where V i w i = ( 1 2 I + K i)u i Problem: We cannot compute w i H 1/2 (Γ i ) exactly. Instead, perform a local Galerkin projection w h,i w i to some finite-dimensional space and compute S i u i = D i u i + ( 1 2 I + K i )w h,i. Natural choice: space of piecewise constant boundary functions, since w i represents a normal derivative.

24 Motivation Variational formulation Discretization Discretizing the Dirichlet-to-Neumann map Symmetric representation of Steklov-Poincaré operator: S i u i = D i u i + ( 1 2 I + K i )w i, where V i w i = ( 1 2 I + K i)u i Problem: We cannot compute w i H 1/2 (Γ i ) exactly. Instead, perform a local Galerkin projection w h,i w i to some finite-dimensional space and compute S i u i = D i u i + ( 1 2 I + K i )w h,i. Natural choice: space of piecewise constant boundary functions, since w i represents a normal derivative.

25 Motivation Variational formulation Discretization Discretization of the variational problem N S i u i, v i = 0 v W i=1

26 Motivation Variational formulation Discretization Discretization of the variational problem N S i u i, v i = 0 v W i=1 Galerkin N S i u h,i, v h,i = 0 v h W h i=1

27 Motivation Variational formulation Discretization Discretization of the variational problem N S i u i, v i = 0 v W i=1 Galerkin N S i u h,i, v h,i = 0 v h W h i=1 D2N approximation N S i u h,i, v h,i = 0 v h W h i=1

28 Motivation Variational formulation Discretization Discretization of the variational problem N S i u i, v i = 0 v W i=1 Galerkin N S i u h,i, v h,i = 0 v h W h i=1 N S i u h,i, v h,i = 0 i=1 D2N approximation v h W h This creates a s.p.d. and sparse stiffness matrix. For purely tetrahedral mesh: identical to FEM.

29 A Céa-type estimate Bounding the mesh-dependant constants Estimating the approximation errors Skeletal energy norm We introduce the skeletal energy norm on H 1/2 (Γ S ), v S := ( N 1/2 S i v i, v i ) = i=1 ( N 1/2 H i v i 2 H 1 (T i )). i=1

30 A Céa-type estimate Bounding the mesh-dependant constants Estimating the approximation errors Céa-type error estimate Theorem u Ω H S u h H 1 (Ω) C S inf u v h S + N inf u Ω v h W h z h,i Z h,i n i i=1 z h,i 2 V i, where C S is a mesh-dependent constant. Proof: Using the first lemma of Strang. For a proper error estimate, we have to: bound the mesh constant C S, estimate the Dirichlet approximation error, estimate the Neumann approximation error.

31 A Céa-type estimate Bounding the mesh-dependant constants Estimating the approximation errors Céa-type error estimate Theorem u Ω H S u h H 1 (Ω) C S inf u v h S + N inf u Ω v h W h z h,i Z h,i n i i=1 z h,i 2 V i, where C S is a mesh-dependent constant. Proof: Using the first lemma of Strang. For a proper error estimate, we have to: bound the mesh constant C S, estimate the Dirichlet approximation error, estimate the Neumann approximation error.

32 A Céa-type estimate Bounding the mesh-dependant constants Estimating the approximation errors Mesh constants The constant C S depends only on c 0,i = D i v, v inf v H 1/2 (Γ i ) V 1 i v, v (0, 1 4 ) i {1,..., N}. Recent results by C. Pechstein: c 0,i may be bounded away from zero solely in terms of the Jones parameter C U (T i ), the Poincaré constant C P (T i ).

33 A Céa-type estimate Bounding the mesh-dependant constants Estimating the approximation errors Mesh constants The constant C S depends only on c 0,i = D i v, v inf v H 1/2 (Γ i ) V 1 i v, v (0, 1 4 ) i {1,..., N}. Recent results by C. Pechstein: c 0,i may be bounded away from zero solely in terms of the Jones parameter C U (T i ), the Poincaré constant C P (T i ).

34 A Céa-type estimate Bounding the mesh-dependant constants Estimating the approximation errors Estimating the approximation errors Dirichlet approximation error: Introduce a regular local triangulation of T i and use standard FEM approximation results. Neumann approximation error: recent results by C. Pechstein: bound Vi by C(C U (T i ), C P (T i )) H 1/2 (Γ i ) again use a local triangulation of T i composed of regular tetrahedra estimate error piecewise on each triangle on the surface of these tetrahedra

35 A Céa-type estimate Bounding the mesh-dependant constants Estimating the approximation errors Main result Theorem If every polyhedral element T i has a regular tetrahedral triangulation, has a uniform upper bound on the number of its surface triangles, has a uniform upper bound on its Jones and Poincaré constants, and if u Ω H 2 (Ω) is the exact solution, we have u Ω H S u h H 1 (Ω) C ( i h 2 i u Ω 2 H 2 (T i ) ) 1 2 Ch u Ω H 2 (Ω).

36 A 3D numerical example Outlook A 3D numerical example implementation in C++ based on PARMAX framework by Pechstein & Copeland generation of BEM matrix entries: OSTBEM (Steinbach et al.) solution of linear system by non-preconditioned CG method

37 A 3D numerical example Outlook Problem specification Solve the pure Dirichlet Laplace equation, u = 0 in Ω, u(x) = g(x) x Ω, on the unit cube, Ω = (0, 1) 3. Exact solution: u(x, y, z) = exp(x) cos(y)(1 + z) Two sets of meshes: a purely tetrahedral mesh, a mixed mesh consisting of tetrahedra and polyhedra Number of degrees of freedom is identical.

38 A 3D numerical example Outlook

39 A 3D numerical example Outlook

40 A 3D numerical example Outlook Tetrahedral mesh: mesh size h H 1 error L 2 error #tets e Mixed mesh: mesh size h H 1 error L 2 error #tets #polys e

41 A 3D numerical example Outlook error L 2 error (tets) L 2 error (mixed) H 1 error (tets) H 1 error (mixed) h (mesh size)

42 A 3D numerical example Outlook Outlook treat convection-diffusion-reaction problems: div(a(x) u(x)) + b(x) u(x) + c(x)u(x) = f (x), x Ω DG discretization develop optimal solvers higher order schemes: Levy functions (Wendland)

43 Bibliography Method description A 3D numerical example Outlook D. Copeland, U. Langer, and D. Pusch. From the boundary element method to local Trefftz finite element methods on polyhedral meshes. In M. Bercovier, M. J. Gander, R. Kornhuber, and O. Widlund, editors, Domain Decomposition Methods in Science and Engineering XVIII, volume 70 of Lecture Notes in Computational Science and Engineering. Springer, Heidelberg, G. C. Hsiao, O. Steinbach, and W. L. Wendland. Domain decomposition methods via boundary integral equations. Journal of Computational and Applied Mathematics, 125(1-2): , G. C. Hsiao and W. L. Wendland. Domain decomposition in boundary element methods. In R. Glowinski, Y. A. Kuznetsov, G. Meurant, J. Périaux, and O. B. Widlund, editors, Proceedings of the Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Moscow, May 21-25, 1990, pages 41 49, Philadelphia, SIAM. C. Pechstein. Shape-explicit constants for some boundary integral operators. DK-Report 09-11, Doctoral Program in Computational Mathematics, Johannes Kepler University Linz, Austria, Submitted.

44 Boundary integral operators Fundamental solution of 3D Laplace operator: U (x, y) = 1 4π x y. V i : H 1/2 (Γ i ) H 1/2 (Γ i ) : (V i v)(y) = U (x, y)v(x) ds x Γ i K i : H 1/2 (Γ i ) H 1/2 (Γ i ) : U (K i u)(y) = Γi (x, y)u(x) ds x n x K i : H 1/2 (Γ i ) H 1/2 (Γ i ) : (K i v)(y) = D i : H 1/2 (Γ i ) H 1/2 (Γ i ) : Γi U (D i u)(y) = n y n y (x, y)v(x) ds x Γi U n x (x, y) ( u(x) u(y) ) ds x

45 Norms for error estimates We use harmonic extensions H i heavily. Natural norms to work in: v i H 1/2 (Γ i ) := H iv i H 1 (T i ) = inf φ H 1 (T i ) φ Γi =v i φ H1 (T i ), v i 2 H 1/2 (Γ i ) := 1 diam(t i ) 2 H iv i 2 L 2 (T i ) + H iv i 2 H 1 (T i ). Easily extended to the skeleton Γ S : v S := ( N 1/2 v i 2 H 1/2 (Γ i )) = HS v H 1 (Ω). i=1

46 Jones parameter Definition (Uniform domain) A bounded and connected set D R d is called a uniform domain if there exists a constant C U (D) such that any two points x 1, x 2 D can be joined by a rectifiable curve γ(t) : [0, 1] D with γ(0) = x 1 and γ(1) = x 2 such that l(γ) C U (D) x 1 x 2, min x i γ(t) C U (D) dist(γ(t), D) t [0, 1]. i=1,2 We call the smallest such C U (D) the Jones parameter of D. Any Lipschitz domain is a uniform domain.

47 Poincaré constant Definition (Poincaré constant) Let D be a uniform domain. The Poincaré constant C P (D) is the smallest constant such that inf u c L c R 2 (D) C P (D) diam(d) u H 1 (D) u H 1 (D). C P (D) can be bounded using the constant in an isoperimetric inequality. For convex domains, C P (D) 1 π (Payne & Weinberger 1960; Bebendorf 2003).

48 Mesh constants The constant C S depends only on c 0,i = D i v, v inf v H 1/2 (Γ i ) V 1 i v, v (0, 1 4 ) i {1,..., N}. Recent results by C. Pechstein: For each element, fix a ball B i enclosing it: B i T i, dist( B i, T i ) 1 2 diam(t i). c 0,i may be bounded away from zero solely in terms of the Jones parameters C U (T i ) and C U (B i \ T i ), the Poincaré constants C P (T i ) and C P (B i \ T i ).

49 Mesh constants The constant C S depends only on c 0,i = D i v, v inf v H 1/2 (Γ i ) V 1 i v, v (0, 1 4 ) i {1,..., N}. Recent results by C. Pechstein: For each element, fix a ball B i enclosing it: B i T i, dist( B i, T i ) 1 2 diam(t i). c 0,i may be bounded away from zero solely in terms of the Jones parameters C U (T i ) and C U (B i \ T i ), the Poincaré constants C P (T i ) and C P (B i \ T i ).

50 Mesh regularity (3D) Standard regularity assumptions on every tetrahedron τ Ξ i : with J τ Jacobian of affine mapping from unit tetrahedron to τ, c 1 (diam τ) 3 det J τ c 1 (diam τ) 3, J τ l2 c 2 diam τ, J 1 τ l2 (c 2 diam τ) 1. This implies regularity of the boundary faces: for all f F i and the tetrahedron τ on which f lies, c 2 diam τ diam f diam τ, c 1 2c 2 (diam τ) 2 f 1 2 (diam τ)2. Furthermore, we assume that the number of boundary faces per element is uniformly small.

51 Mesh regularity (3D) Standard regularity assumptions on every tetrahedron τ Ξ i : with J τ Jacobian of affine mapping from unit tetrahedron to τ, c 1 (diam τ) 3 det J τ c 1 (diam τ) 3, J τ l2 c 2 diam τ, J 1 τ l2 (c 2 diam τ) 1. This implies regularity of the boundary faces: for all f F i and the tetrahedron τ on which f lies, c 2 diam τ diam f diam τ, c 1 2c 2 (diam τ) 2 f 1 2 (diam τ)2. Furthermore, we assume that the number of boundary faces per element is uniformly small.

52 Mesh regularity (3D) Standard regularity assumptions on every tetrahedron τ Ξ i : with J τ Jacobian of affine mapping from unit tetrahedron to τ, c 1 (diam τ) 3 det J τ c 1 (diam τ) 3, J τ l2 c 2 diam τ, J 1 τ l2 (c 2 diam τ) 1. This implies regularity of the boundary faces: for all f F i and the tetrahedron τ on which f lies, c 2 diam τ diam f diam τ, c 1 2c 2 (diam τ) 2 f 1 2 (diam τ)2. Furthermore, we assume that the number of boundary faces per element is uniformly small.

53 Estimating the Dirichlet approximation error Conforming global triangulation Ξ = i Ξ i. Introduce globally cont., pw. linear FE space V h over Ξ. Choose suitable FE interpolant I Vh u Ω V h. Skeletal interpolant I Wh u Ω := γ S (V h u Ω ) W h. = γ i (u Ω I Vh u Ω ) = u i I Wh u Ω.

54 Estimating the Dirichlet approximation error Conforming global triangulation Ξ = i Ξ i. Introduce globally cont., pw. linear FE space V h over Ξ. Choose suitable FE interpolant I Vh u Ω V h. Skeletal interpolant I Wh u Ω := γ S (V h u Ω ) W h. = γ i (u Ω I Vh u Ω ) = u i I Wh u Ω.

55 Estimating the Dirichlet approximation error Conforming global triangulation Ξ = i Ξ i. Introduce globally cont., pw. linear FE space V h over Ξ. Choose suitable FE interpolant I Vh u Ω V h. Skeletal interpolant I Wh u Ω := γ S (V h u Ω ) W h. = γ i (u Ω I Vh u Ω ) = u i I Wh u Ω.

56 Estimating the Dirichlet approximation error Conforming global triangulation Ξ = i Ξ i. Introduce globally cont., pw. linear FE space V h over Ξ. Choose suitable FE interpolant I Vh u Ω V h. Skeletal interpolant I Wh u Ω := γ S (V h u Ω ) W h. = γ i (u Ω I Vh u Ω ) = u i I Wh u Ω.

57 Estimating the Dirichlet approximation error Conforming global triangulation Ξ = i Ξ i. Introduce globally cont., pw. linear FE space V h over Ξ. Choose suitable FE interpolant I Vh u Ω V h. Skeletal interpolant I Wh u Ω := γ S (V h u Ω ) W h. = γ i (u Ω I Vh u Ω ) = u i I Wh u Ω. inf v h W h u v h 2 S

58 Estimating the Dirichlet approximation error Conforming global triangulation Ξ = i Ξ i. Introduce globally cont., pw. linear FE space V h over Ξ. Choose suitable FE interpolant I Vh u Ω V h. Skeletal interpolant I Wh u Ω := γ S (V h u Ω ) W h. = γ i (u Ω I Vh u Ω ) = u i I Wh u Ω. inf v h W h u v h 2 S u I Wh u Ω 2 S

59 Estimating the Dirichlet approximation error Conforming global triangulation Ξ = i Ξ i. Introduce globally cont., pw. linear FE space V h over Ξ. Choose suitable FE interpolant I Vh u Ω V h. Skeletal interpolant I Wh u Ω := γ S (V h u Ω ) W h. = γ i (u Ω I Vh u Ω ) = u i I Wh u Ω. inf v h W h u v h 2 S u I Wh u Ω 2 S = N H i (u I Wh u Ω ) 2 H 1 (T i ) i=1

60 Estimating the Dirichlet approximation error Conforming global triangulation Ξ = i Ξ i. Introduce globally cont., pw. linear FE space V h over Ξ. Choose suitable FE interpolant I Vh u Ω V h. Skeletal interpolant I Wh u Ω := γ S (V h u Ω ) W h. = γ i (u Ω I Vh u Ω ) = u i I Wh u Ω. inf v h W h u v h 2 S u I Wh u Ω 2 S = N H i (u I Wh u Ω ) 2 H 1 (T i ) i=1 N u Ω I Vh u Ω 2 H 1 (T i ) i=1

61 Estimating the Dirichlet approximation error Conforming global triangulation Ξ = i Ξ i. Introduce globally cont., pw. linear FE space V h over Ξ. Choose suitable FE interpolant I Vh u Ω V h. Skeletal interpolant I Wh u Ω := γ S (V h u Ω ) W h. = γ i (u Ω I Vh u Ω ) = u i I Wh u Ω. inf v h W h u v h 2 S u I Wh u Ω 2 S = N H i (u I Wh u Ω ) 2 H 1 (T i ) i=1 N u Ω I Vh u Ω 2 H 1 (T i ) = u Ω I Vh u Ω 2 H 1 (Ω) i=1

62 Estimating the Neumann approximation error Steps in this estimation are quite standard, but: choice of norms is delicate, results need to be explicit in the regularity parameters. (C is a generic constant depending only on the reg. param.) inf z h,i Z h,i u Ω n i z h,i Vi

63 Estimating the Neumann approximation error Steps in this estimation are quite standard, but: choice of norms is delicate, results need to be explicit in the regularity parameters. (C is a generic constant depending only on the reg. param.) inf z h,i Z h,i u Ω n i z h,i Interpolation Vi u Ω n i ( ) uω Q h,i n i V i

64 Estimating the Neumann approximation error Steps in this estimation are quite standard, but: choice of norms is delicate, results need to be explicit in the regularity parameters. (C is a generic constant depending only on the reg. param.) inf z h,i Z h,i u Ω n i z h,i Interpolation Vi [Pechstein] CV ( ) u Ω uω Q h,i n i n i V ( ) i u Ω uω Q h,i n i n i H 1/2 (Γ i )

65 Estimating the Neumann approximation error Steps in this estimation are quite standard, but: choice of norms is delicate, results need to be explicit in the regularity parameters. (C is a generic constant depending only on the reg. param.) inf z h,i Z h,i u Ω n i z h,i Interpolation Vi [Pechstein] CV Approx. thm. ( ) u Ω uω Q h,i n i n i V ( ) i u Ω uω Q h,i n i n i u Ω C h i n i H 1/2 pw(γ i ) H 1/2 (Γ i )

66 Estimating the Neumann approximation error Steps in this estimation are quite standard, but: choice of norms is delicate, results need to be explicit in the regularity parameters. (C is a generic constant depending only on the reg. param.) inf z h,i Z h,i u Ω n i z h,i Interpolation Vi [Pechstein] CV Approx. thm. ( ) u Ω uω Q h,i n i n i V ( ) i u Ω uω Q h,i n i n i u Ω C h i n i H 1/2 pw(γ i ) N. trace thm. C h i u Ω H 2 (T i ). H 1/2 (Γ i )

67 On the Neumann approximation theorem Standard approximation on pw. constant boundary function space (e.g. Steinbach): v Q h,i v L2 (Γ i ) C (diam T i ) 1/2 v H 1/2 pw(γ i ). We use the norm relations (for v H 1/2 (Γ i )) to obtain v H 1/2 pw(γ i ) C v H 1/2 pw (Γ i ) C #F i v H 1/2 (Γ i ) v Q h v L2 (Γ i ) C #F i (diam T i ) 1/2 v H 1/2 (Γ i ). If #F i bounded, this gives us the desired approximation result for H 1/2 (Γ i ) using a duality argument.

68 On the Neumann approximation theorem Standard approximation on pw. constant boundary function space (e.g. Steinbach): v Q h,i v L2 (Γ i ) C (diam T i ) 1/2 v H 1/2 pw(γ i ). We use the norm relations (for v H 1/2 (Γ i )) to obtain v H 1/2 pw(γ i ) C v H 1/2 pw (Γ i ) C #F i v H 1/2 (Γ i ) v Q h v L2 (Γ i ) C #F i (diam T i ) 1/2 v H 1/2 (Γ i ). If #F i bounded, this gives us the desired approximation result for H 1/2 (Γ i ) using a duality argument.

69 On the Neumann approximation theorem Standard approximation on pw. constant boundary function space (e.g. Steinbach): v Q h,i v L2 (Γ i ) C (diam T i ) 1/2 v H 1/2 pw(γ i ). We use the norm relations (for v H 1/2 (Γ i )) to obtain v H 1/2 pw(γ i ) C v H 1/2 pw (Γ i ) C #F i v H 1/2 (Γ i ) v Q h v L2 (Γ i ) C #F i (diam T i ) 1/2 v H 1/2 (Γ i ). If #F i bounded, this gives us the desired approximation result for H 1/2 (Γ i ) using a duality argument.

70 On the Neumann approximation theorem Standard approximation on pw. constant boundary function space (e.g. Steinbach): v Q h,i v L2 (Γ i ) C (diam T i ) 1/2 v H 1/2 pw(γ i ). We use the norm relations (for v H 1/2 (Γ i )) to obtain v H 1/2 pw(γ i ) C v H 1/2 pw (Γ i ) C #F i v H 1/2 (Γ i ) v Q h v L2 (Γ i ) C #F i (diam T i ) 1/2 v H 1/2 (Γ i ). If #F i bounded, this gives us the desired approximation result for H 1/2 (Γ i ) using a duality argument.

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes Dylan Copeland 1, Ulrich Langer 2, and David Pusch 3 1 Institute of Computational Mathematics,

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz A note on the stable coupling of finite and boundary elements O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2009/4 Technische Universität Graz A

More information

All-Floating Coupled Data-Sparse Boundary and Interface-Concentrated Finite Element Tearing and Interconnecting Methods

All-Floating Coupled Data-Sparse Boundary and Interface-Concentrated Finite Element Tearing and Interconnecting Methods All-Floating Coupled Data-Sparse Boundary and Interface-Concentrated Finite Element Tearing and Interconnecting Methods Ulrich Langer 1,2 and Clemens Pechstein 2 1 Institute of Computational Mathematics,

More information

JOHANNES KEPLER UNIVERSITY LINZ. Shape-Explicit Constants for Some Boundary Integral Operators

JOHANNES KEPLER UNIVERSITY LINZ. Shape-Explicit Constants for Some Boundary Integral Operators JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Shape-Explicit Constants for Some Boundary Integral Operators Clemens Pechstein Institute of Computational Mathematics, Johannes Kepler

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

Preconditioned space-time boundary element methods for the heat equation

Preconditioned space-time boundary element methods for the heat equation W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

Domain decomposition methods via boundary integral equations

Domain decomposition methods via boundary integral equations Domain decomposition methods via boundary integral equations G. C. Hsiao a O. Steinbach b W. L. Wendland b a Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716, USA. E

More information

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS Proceedings of ALGORITMY 2009 pp. 1 10 SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS MILOSLAV VLASÁK Abstract. We deal with a numerical solution of a scalar

More information

WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES

WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES INERNAIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 12, Number 1, Pages 31 53 c 2015 Institute for Scientific Computing and Information WEAK GALERKIN FINIE ELEMEN MEHODS ON POLYOPAL MESHES LIN

More information

Coupled FETI/BETI for Nonlinear Potential Problems

Coupled FETI/BETI for Nonlinear Potential Problems Coupled FETI/BETI for Nonlinear Potential Problems U. Langer 1 C. Pechstein 1 A. Pohoaţǎ 1 1 Institute of Computational Mathematics Johannes Kepler University Linz {ulanger,pechstein,pohoata}@numa.uni-linz.ac.at

More information

Space-time Finite Element Methods for Parabolic Evolution Problems

Space-time Finite Element Methods for Parabolic Evolution Problems Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients Ulrich Langer, Martin Neumüller, Andreas Schafelner Johannes Kepler University, Linz Doctoral Program Computational

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

JOHANNES KEPLER UNIVERSITY LINZ. A Robust FEM-BEM Solver for Time-Harmonic Eddy Current Problems

JOHANNES KEPLER UNIVERSITY LINZ. A Robust FEM-BEM Solver for Time-Harmonic Eddy Current Problems JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics A Robust FEM-BEM Solver for Time-Harmonic Eddy Current Problems Michael Kolmbauer Institute of Computational Mathematics, Johannes

More information

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM Finite Elements February 22, 2019 In the previous sections, we introduced the concept of finite element spaces, which contain certain functions defined on a domain. Finite element spaces are examples of

More information

Maximum-norm a posteriori estimates for discontinuous Galerkin methods

Maximum-norm a posteriori estimates for discontinuous Galerkin methods Maximum-norm a posteriori estimates for discontinuous Galerkin methods Emmanuil Georgoulis Department of Mathematics, University of Leicester, UK Based on joint work with Alan Demlow (Kentucky, USA) DG

More information

Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems

Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems U. Langer A. Pohoaţǎ O. Steinbach 27th September 2004 Institute of Computational Mathematics Johannes Kepler University

More information

Inexact Data-Sparse BETI Methods by Ulrich Langer. (joint talk with G. Of, O. Steinbach and W. Zulehner)

Inexact Data-Sparse BETI Methods by Ulrich Langer. (joint talk with G. Of, O. Steinbach and W. Zulehner) Inexact Data-Sparse BETI Methods by Ulrich Langer (joint talk with G. Of, O. Steinbach and W. Zulehner) Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences http://www.ricam.oeaw.ac.at

More information

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of,

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of, 269 C, Vese Practice problems [1] Write the differential equation u + u = f(x, y), (x, y) Ω u = 1 (x, y) Ω 1 n + u = x (x, y) Ω 2, Ω = {(x, y) x 2 + y 2 < 1}, Ω 1 = {(x, y) x 2 + y 2 = 1, x 0}, Ω 2 = {(x,

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 11, pp. 1-24, 2000. Copyright 2000,. ISSN 1068-9613. ETNA NEUMANN NEUMANN METHODS FOR VECTOR FIELD PROBLEMS ANDREA TOSELLI Abstract. In this paper,

More information

The All-floating BETI Method: Numerical Results

The All-floating BETI Method: Numerical Results The All-floating BETI Method: Numerical Results Günther Of Institute of Computational Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria, of@tugraz.at Summary. The all-floating

More information

Mimetic Finite Difference methods

Mimetic Finite Difference methods Mimetic Finite Difference methods An introduction Andrea Cangiani Università di Roma La Sapienza Seminario di Modellistica Differenziale Numerica 2 dicembre 2008 Andrea Cangiani (IAC CNR) mimetic finite

More information

The Mortar Boundary Element Method

The Mortar Boundary Element Method The Mortar Boundary Element Method A Thesis submitted for the degree of Doctor of Philosophy by Martin Healey School of Information Systems, Computing and Mathematics Brunel University March 2010 Abstract

More information

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM ERIK BURMAN AND BENJAMIN STAMM Abstract. We propose a low order discontinuous Galerkin method for incompressible flows. Stability of the

More information

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Ernst P. Stephan 1, Matthias Maischak 2, and Thanh Tran 3 1 Institut für Angewandte Mathematik, Leibniz

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM Finite Elements January 15, 2018 Why Can solve PDEs on complicated domains. Have flexibility to increase order of accuracy and match the numerics to the physics. has an elegant mathematical formulation

More information

On Surface Meshes Induced by Level Set Functions

On Surface Meshes Induced by Level Set Functions On Surface Meshes Induced by Level Set Functions Maxim A. Olshanskii, Arnold Reusken, and Xianmin Xu Bericht Nr. 347 Oktober 01 Key words: surface finite elements, level set function, surface triangulation,

More information

Institut de Recherche MAthématique de Rennes

Institut de Recherche MAthématique de Rennes LMS Durham Symposium: Computational methods for wave propagation in direct scattering. - July, Durham, UK The hp version of the Weighted Regularization Method for Maxwell Equations Martin COSTABEL & Monique

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Variational Problems of the Dirichlet BVP of the Poisson Equation 1 For the homogeneous

More information

Adaptive tree approximation with finite elements

Adaptive tree approximation with finite elements Adaptive tree approximation with finite elements Andreas Veeser Università degli Studi di Milano (Italy) July 2015 / Cimpa School / Mumbai Outline 1 Basic notions in constructive approximation 2 Tree approximation

More information

An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions

An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions Leszek Marcinkowski Department of Mathematics, Warsaw University, Banacha

More information

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS A. RÖSCH AND R. SIMON Abstract. An optimal control problem for an elliptic equation

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

Space time finite and boundary element methods

Space time finite and boundary element methods Space time finite and boundary element methods Olaf Steinbach Institut für Numerische Mathematik, TU Graz http://www.numerik.math.tu-graz.ac.at based on joint work with M. Neumüller, H. Yang, M. Fleischhacker,

More information

1. Let a(x) > 0, and assume that u and u h are the solutions of the Dirichlet problem:

1. Let a(x) > 0, and assume that u and u h are the solutions of the Dirichlet problem: Mathematics Chalmers & GU TMA37/MMG800: Partial Differential Equations, 011 08 4; kl 8.30-13.30. Telephone: Ida Säfström: 0703-088304 Calculators, formula notes and other subject related material are not

More information

On angle conditions in the finite element method. Institute of Mathematics, Academy of Sciences Prague, Czech Republic

On angle conditions in the finite element method. Institute of Mathematics, Academy of Sciences Prague, Czech Republic On angle conditions in the finite element method Michal Křížek Institute of Mathematics, Academy of Sciences Prague, Czech Republic Joint work with Jan Brandts (University of Amsterdam), Antti Hannukainen

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

A DECOMPOSITION RESULT FOR BIHARMONIC PROBLEMS AND THE HELLAN-HERRMANN-JOHNSON METHOD

A DECOMPOSITION RESULT FOR BIHARMONIC PROBLEMS AND THE HELLAN-HERRMANN-JOHNSON METHOD Electronic ransactions on Numerical Analysis. Volume 45, pp. 257 282, 2016. Copyright c 2016,. ISSN 1068 9613. ENA A DECOMPOSIION RESUL FOR BIHARMONIC PROBLEMS AND HE HELLAN-HERRMANN-JOHNSON MEHOD WOLFGANG

More information

A posteriori error estimates for non conforming approximation of eigenvalue problems

A posteriori error estimates for non conforming approximation of eigenvalue problems A posteriori error estimates for non conforming approximation of eigenvalue problems E. Dari a, R. G. Durán b and C. Padra c, a Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and CONICE,

More information

The mortar element method for quasilinear elliptic boundary value problems

The mortar element method for quasilinear elliptic boundary value problems The mortar element method for quasilinear elliptic boundary value problems Leszek Marcinkowski 1 Abstract We consider a discretization of quasilinear elliptic boundary value problems by the mortar version

More information

Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations

Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations Christoph Hofer and Ulrich Langer Doctoral Program Computational Mathematics Numerical

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Stability of the Laplace single layer boundary integral operator in Sobolev spaces O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2016/2 Technische

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

A very short introduction to the Finite Element Method

A very short introduction to the Finite Element Method A very short introduction to the Finite Element Method Till Mathis Wagner Technical University of Munich JASS 2004, St Petersburg May 4, 2004 1 Introduction This is a short introduction to the finite element

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions Juan Gabriel Calvo Preprint No. 25-2017 PRAHA 2017 A VIRTUAL

More information

A FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS ON SURFACES

A FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS ON SURFACES A FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS ON SURFACES MAXIM A. OLSHANSKII, ARNOLD REUSKEN, AND JÖRG GRANDE Abstract. In this paper a new finite element approach for the discretization of elliptic

More information

Convergence and optimality of an adaptive FEM for controlling L 2 errors

Convergence and optimality of an adaptive FEM for controlling L 2 errors Convergence and optimality of an adaptive FEM for controlling L 2 errors Alan Demlow (University of Kentucky) joint work with Rob Stevenson (University of Amsterdam) Partially supported by NSF DMS-0713770.

More information

Projected Surface Finite Elements for Elliptic Equations

Projected Surface Finite Elements for Elliptic Equations Available at http://pvamu.edu/aam Appl. Appl. Math. IN: 1932-9466 Vol. 8, Issue 1 (June 2013), pp. 16 33 Applications and Applied Mathematics: An International Journal (AAM) Projected urface Finite Elements

More information

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation A local-structure-preserving local discontinuous Galerkin method for the Laplace equation Fengyan Li 1 and Chi-Wang Shu 2 Abstract In this paper, we present a local-structure-preserving local discontinuous

More information

A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATIONS

A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATIONS A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATIONS LIN MU, JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This article introduces and analyzes a weak Galerkin mixed finite element method

More information

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov,

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov, LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES Sergey Korotov, Institute of Mathematics Helsinki University of Technology, Finland Academy of Finland 1 Main Problem in Mathematical

More information

b i (x) u + c(x)u = f in Ω,

b i (x) u + c(x)u = f in Ω, SIAM J. NUMER. ANAL. Vol. 39, No. 6, pp. 1938 1953 c 2002 Society for Industrial and Applied Mathematics SUBOPTIMAL AND OPTIMAL CONVERGENCE IN MIXED FINITE ELEMENT METHODS ALAN DEMLOW Abstract. An elliptic

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES On the approximation of a virtual coarse space for domain decomposition methods in two dimensions Juan Gabriel Calvo Preprint No. 31-2017 PRAHA 2017

More information

A Finite Element Method for the Surface Stokes Problem

A Finite Element Method for the Surface Stokes Problem J A N U A R Y 2 0 1 8 P R E P R I N T 4 7 5 A Finite Element Method for the Surface Stokes Problem Maxim A. Olshanskii *, Annalisa Quaini, Arnold Reusken and Vladimir Yushutin Institut für Geometrie und

More information

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs Lecture Notes: African Institute of Mathematics Senegal, January 26 opic itle: A short introduction to numerical methods for elliptic PDEs Authors and Lecturers: Gerard Awanou (University of Illinois-Chicago)

More information

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Contents Chapter I. Introduction 7 I.1. Motivation 7 I.2. Sobolev and finite

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Nonconformity and the Consistency Error First Strang Lemma Abstract Error Estimate

More information

JOHANNES KEPLER UNIVERSITY LINZ. Weighted Poincaré Inequalities and Applications in Domain Decomposition

JOHANNES KEPLER UNIVERSITY LINZ. Weighted Poincaré Inequalities and Applications in Domain Decomposition JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Weighted Poincaré Inequalities and Applications in Domain Decomposition Clemens Pechstein Institute of Computational Mathematics,

More information

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION JOHNNY GUZMÁN, ABNER J. SALGADO, AND FRANCISCO-JAVIER SAYAS Abstract. The analysis of finite-element-like Galerkin discretization techniques for the

More information

Adaptive methods for control problems with finite-dimensional control space

Adaptive methods for control problems with finite-dimensional control space Adaptive methods for control problems with finite-dimensional control space Saheed Akindeinde and Daniel Wachsmuth Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

Integral Representation Formula, Boundary Integral Operators and Calderón projection

Integral Representation Formula, Boundary Integral Operators and Calderón projection Integral Representation Formula, Boundary Integral Operators and Calderón projection Seminar BEM on Wave Scattering Franziska Weber ETH Zürich October 22, 2010 Outline Integral Representation Formula Newton

More information

Trefftz-discontinuous Galerkin methods for time-harmonic wave problems

Trefftz-discontinuous Galerkin methods for time-harmonic wave problems Trefftz-discontinuous Galerkin methods for time-harmonic wave problems Ilaria Perugia Dipartimento di Matematica - Università di Pavia (Italy) http://www-dimat.unipv.it/perugia Joint work with Ralf Hiptmair,

More information

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian BULLETIN OF THE GREE MATHEMATICAL SOCIETY Volume 57, 010 (1 7) On an Approximation Result for Piecewise Polynomial Functions O. arakashian Abstract We provide a new approach for proving approximation results

More information

BETI for acoustic and electromagnetic scattering

BETI for acoustic and electromagnetic scattering BETI for acoustic and electromagnetic scattering O. Steinbach, M. Windisch Institut für Numerische Mathematik Technische Universität Graz Oberwolfach 18. Februar 2010 FWF-Project: Data-sparse Boundary

More information

Iterative methods for positive definite linear systems with a complex shift

Iterative methods for positive definite linear systems with a complex shift Iterative methods for positive definite linear systems with a complex shift William McLean, University of New South Wales Vidar Thomée, Chalmers University November 4, 2011 Outline 1. Numerical solution

More information

Trefftz-DG solution to the Helmholtz equation involving integral equations

Trefftz-DG solution to the Helmholtz equation involving integral equations Trefftz-DG solution to the Helmholtz equation involving integral equations H. Barucq, A. Bendali, M. Fares, V. Mattesi, S. Tordeux Magique 3D Inria Bordeaux Sud Ouest LMA UMR CNRS 5142 INSA of Toulouse

More information

Numerical Analysis of Elliptic PDEs with Random Coefficients

Numerical Analysis of Elliptic PDEs with Random Coefficients Numerical Analysis of Elliptic PDEs with Random Coefficients (Lecture I) Robert Scheichl Department of Mathematical Sciences University of Bath Workshop on PDEs with Random Coefficients Weierstrass Institute,

More information

arxiv: v1 [math.na] 29 Feb 2016

arxiv: v1 [math.na] 29 Feb 2016 EFFECTIVE IMPLEMENTATION OF THE WEAK GALERKIN FINITE ELEMENT METHODS FOR THE BIHARMONIC EQUATION LIN MU, JUNPING WANG, AND XIU YE Abstract. arxiv:1602.08817v1 [math.na] 29 Feb 2016 The weak Galerkin (WG)

More information

arxiv: v1 [math.na] 5 Jun 2018

arxiv: v1 [math.na] 5 Jun 2018 PRIMAL-DUAL WEAK GALERKIN FINIE ELEMEN MEHODS FOR ELLIPIC CAUCHY PROBLEMS CHUNMEI WANG AND JUNPING WANG arxiv:1806.01583v1 [math.na] 5 Jun 2018 Abstract. he authors propose and analyze a well-posed numerical

More information

Chapter 3 Conforming Finite Element Methods 3.1 Foundations Ritz-Galerkin Method

Chapter 3 Conforming Finite Element Methods 3.1 Foundations Ritz-Galerkin Method Chapter 3 Conforming Finite Element Methods 3.1 Foundations 3.1.1 Ritz-Galerkin Method Let V be a Hilbert space, a(, ) : V V lr a bounded, V-elliptic bilinear form and l : V lr a bounded linear functional.

More information

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Universität des Saarlandes. Fachrichtung 6.1 Mathematik Universität des Saarlandes Fachrichtung 6.1 Mathematik Preprint Nr. 362 An iterative method for EIT involving only solutions of Poisson equations. I: Mesh-free forward solver Thorsten Hohage and Sergej

More information

Solution of Non-Homogeneous Dirichlet Problems with FEM

Solution of Non-Homogeneous Dirichlet Problems with FEM Master Thesis Solution of Non-Homogeneous Dirichlet Problems with FEM Francesco Züger Institut für Mathematik Written under the supervision of Prof. Dr. Stefan Sauter and Dr. Alexander Veit August 27,

More information

Past, present and space-time

Past, present and space-time Past, present and space-time Arnold Reusken Chair for Numerical Mathematics RWTH Aachen Utrecht, 12.11.2015 Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 1 / 20 Outline Past. Past

More information

Finite volume method for nonlinear transmission problems

Finite volume method for nonlinear transmission problems Finite volume method for nonlinear transmission problems Franck Boyer, Florence Hubert To cite this version: Franck Boyer, Florence Hubert. Finite volume method for nonlinear transmission problems. Proceedings

More information

A Hybrid Method for the Wave Equation. beilina

A Hybrid Method for the Wave Equation.   beilina A Hybrid Method for the Wave Equation http://www.math.unibas.ch/ beilina 1 The mathematical model The model problem is the wave equation 2 u t 2 = (a 2 u) + f, x Ω R 3, t > 0, (1) u(x, 0) = 0, x Ω, (2)

More information

Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods

Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods Contents Ralf Hartmann Institute of Aerodynamics and Flow Technology DLR (German Aerospace Center) Lilienthalplatz 7, 3808

More information

Key words. Incompressible magnetohydrodynamics, mixed finite element methods, discontinuous Galerkin methods

Key words. Incompressible magnetohydrodynamics, mixed finite element methods, discontinuous Galerkin methods A MIXED DG METHOD FOR LINEARIZED INCOMPRESSIBLE MAGNETOHYDRODYNAMICS PAUL HOUSTON, DOMINIK SCHÖTZAU, AND XIAOXI WEI Journal of Scientific Computing, vol. 40, pp. 8 34, 009 Abstract. We introduce and analyze

More information

A Multigrid Method for Two Dimensional Maxwell Interface Problems

A Multigrid Method for Two Dimensional Maxwell Interface Problems A Multigrid Method for Two Dimensional Maxwell Interface Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University USA JSA 2013 Outline A

More information

Numerical Approximation Methods for Elliptic Boundary Value Problems

Numerical Approximation Methods for Elliptic Boundary Value Problems Numerical Approximation Methods for Elliptic Boundary Value Problems Olaf Steinbach Numerical Approximation Methods for Elliptic Boundary Value Problems Finite and Boundary Elements Olaf Steinbach Institute

More information

Multigrid and Iterative Strategies for Optimal Control Problems

Multigrid and Iterative Strategies for Optimal Control Problems Multigrid and Iterative Strategies for Optimal Control Problems John Pearson 1, Stefan Takacs 1 1 Mathematical Institute, 24 29 St. Giles, Oxford, OX1 3LB e-mail: john.pearson@worc.ox.ac.uk, takacs@maths.ox.ac.uk

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

Discontinuous Petrov-Galerkin Methods

Discontinuous Petrov-Galerkin Methods Discontinuous Petrov-Galerkin Methods Friederike Hellwig 1st CENTRAL School on Analysis and Numerics for Partial Differential Equations, November 12, 2015 Motivation discontinuous Petrov-Galerkin (dpg)

More information

Overlapping Schwarz preconditioners for Fekete spectral elements

Overlapping Schwarz preconditioners for Fekete spectral elements Overlapping Schwarz preconditioners for Fekete spectral elements R. Pasquetti 1, L. F. Pavarino 2, F. Rapetti 1, and E. Zampieri 2 1 Laboratoire J.-A. Dieudonné, CNRS & Université de Nice et Sophia-Antipolis,

More information

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Department of Mathematics and Institute for Physical Science and Technology University of Maryland, USA www.math.umd.edu/ rhn 7th

More information

1 Discretizing BVP with Finite Element Methods.

1 Discretizing BVP with Finite Element Methods. 1 Discretizing BVP with Finite Element Methods In this section, we will discuss a process for solving boundary value problems numerically, the Finite Element Method (FEM) We note that such method is a

More information

Different Approaches to a Posteriori Error Analysis of the Discontinuous Galerkin Method

Different Approaches to a Posteriori Error Analysis of the Discontinuous Galerkin Method WDS'10 Proceedings of Contributed Papers, Part I, 151 156, 2010. ISBN 978-80-7378-139-2 MATFYZPRESS Different Approaces to a Posteriori Error Analysis of te Discontinuous Galerkin Metod I. Šebestová Carles

More information

Local flux mimetic finite difference methods

Local flux mimetic finite difference methods Local flux mimetic finite difference methods Konstantin Lipnikov Mikhail Shashkov Ivan Yotov November 4, 2005 Abstract We develop a local flux mimetic finite difference method for second order elliptic

More information

A Finite Element Method for an Ill-Posed Problem. Martin-Luther-Universitat, Fachbereich Mathematik/Informatik,Postfach 8, D Halle, Abstract

A Finite Element Method for an Ill-Posed Problem. Martin-Luther-Universitat, Fachbereich Mathematik/Informatik,Postfach 8, D Halle, Abstract A Finite Element Method for an Ill-Posed Problem W. Lucht Martin-Luther-Universitat, Fachbereich Mathematik/Informatik,Postfach 8, D-699 Halle, Germany Abstract For an ill-posed problem which has its origin

More information

A space-time Trefftz method for the second order wave equation

A space-time Trefftz method for the second order wave equation A space-time Trefftz method for the second order wave equation Lehel Banjai The Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh Rome, 10th Apr 2017 Joint work with: Emmanuil

More information

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO PREPRINT 2010:23 A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017 ACM/CMS 17 Linear Analysis & Applications Fall 217 Assignment 2: PDEs and Finite Element Methods Due: 7th November 217 For this assignment the following MATLAB code will be required: Introduction http://wwwmdunloporg/cms17/assignment2zip

More information

Space-Time Nonconforming Optimized Schwarz Waveform Relaxation for Heterogeneous Problems and General Geometries

Space-Time Nonconforming Optimized Schwarz Waveform Relaxation for Heterogeneous Problems and General Geometries Space-Time Nonconforming Optimized Schwarz Waveform Relaxation for Heterogeneous Problems and General Geometries Laurence Halpern, Caroline Japhet, and Jérémie Szeftel 3 LAGA, Université Paris XIII, Villetaneuse

More information

Discontinuous Galerkin Methods: Theory, Computation and Applications

Discontinuous Galerkin Methods: Theory, Computation and Applications Discontinuous Galerkin Methods: Theory, Computation and Applications Paola. Antonietti MOX, Dipartimento di Matematica Politecnico di Milano.MO. X MODELLISTICA E CALCOLO SCIENTIICO. MODELING AND SCIENTIIC

More information

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems Etereldes Gonçalves 1, Tarek P. Mathew 1, Markus Sarkis 1,2, and Christian E. Schaerer 1 1 Instituto de Matemática Pura

More information