Past, present and space-time

Size: px
Start display at page:

Download "Past, present and space-time"

Transcription

1 Past, present and space-time Arnold Reusken Chair for Numerical Mathematics RWTH Aachen Utrecht, Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

2 Outline Past. Past present. Space-time. Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

3 Past I: Diploma thesis Stabiliteit en instabiliteit van een Hopscotchmethode Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

4 Past II: (PhD thesis) Convergence Analysis of Nonlinear Multigrid Methods Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

5 Past present A: UU, B: TUE C: 1997-present RWTH Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

6 Space-time Finite Element Method for PDEs on Evolving Surfaces Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

7 Motivation: simulation of two-phase incompressible flows system: n-butanol/water Model: Navier-Stokes equations + coupling conditions Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

8 Rising droplet with surfactant transport solution gravity-driven butanol-droplet in water Velocity field determined from NS-equations. + surfactant eqn. Ṡ D Γ Γ S + ( Γ u)s = 0 Elliptic PDE on evolving surface Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

9 Surfactant PDE Γ(0) smooth surface in R 3, Γ(t) =. Γ(t), t [0, T ], advected by smooth w = w(x, t) R 3. Model for diffusive mass transport on Γ(t): Diffusion equation u + (div Γ w)u Γ u = 0 on Γ(t), t (0, T ] with u = u t + w u. Initial condition u(x, 0) = u 0 (x) for x Γ(0). Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

10 Weak formulations Space-time manifold Γ = Γ(t) {t}, Γ R 4 t (0,T ] Suitable (Sobolev) spaces W (trial), H (test) on Γ. a(u, v) = ( Γ u, Γ v) L 2 (Γ ), u, v H. Well-posed weak formulation determine u W such that u, v + a(u, v) = (f, v) L 2 (Γ ) for all v H. Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

11 Weak formulations Space-time manifold Γ = Γ(t) {t}, Γ R 4 t (0,T ] Suitable (Sobolev) spaces W (trial), H (test) on Γ. a(u, v) = ( Γ u, Γ v) L 2 (Γ ), u, v H. Well-posed weak formulation determine u W such that u, v + a(u, v) = (f, v) L 2 (Γ ) for all v H. Theorem [Olshanskii,R. SINUM 2014] Weak formulation is well-posed. Analysis based on continuity and inf-sup property Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

12 A time-discontinuous Eulerian weak formulation Time slabs: t j = j t, I n := (t n 1, t n ], Γ n := t In Γ(t). Broken space W b := N n=1 W n. Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

13 A time-discontinuous Eulerian weak formulation Time slabs: t j = j t, I n := (t n 1, t n ], Γ n := t In Γ(t). Broken space W b := N n=1 W n. N a(u, v) = a n (u, v), a n (u, v) = n=1 tn t n 1 Γ(t) Γ u Γ v ds dt Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

14 A time-discontinuous Eulerian weak formulation Time slabs: t j = j t, I n := (t n 1, t n ], Γ n := t In Γ(t). Broken space W b := N n=1 W n. N a(u, v) = a n (u, v), a n (u, v) = n=1 tn t n 1 Γ(t) Γ u Γ v ds dt N d(u, v) = d n (u, v), d n (u, v) = [u] n 1 v+ n 1 ds n=1 Γ(t n 1 ) Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

15 A time-discontinuous Eulerian weak formulation Time slabs: t j = j t, I n := (t n 1, t n ], Γ n := t In Γ(t). Broken space W b := N n=1 W n. N a(u, v) = a n (u, v), a n (u, v) = n=1 tn t n 1 Γ(t) Γ u Γ v ds dt N d(u, v) = d n (u, v), d n (u, v) = [u] n 1 v+ n 1 ds n=1 Γ(t n 1 ) N u, v b = u n, v n n n=1 Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

16 A time-discontinuous Eulerian weak formulation Time slabs: t j = j t, I n := (t n 1, t n ], Γ n := t In Γ(t). Broken space W b := N n=1 W n. N a(u, v) = a n (u, v), a n (u, v) = n=1 tn t n 1 Γ(t) Γ u Γ v ds dt N d(u, v) = d n (u, v), d n (u, v) = [u] n 1 v+ n 1 ds n=1 Γ(t n 1 ) N u, v b = u n, v n n n=1 Time-discontinuous weak formulation (allows time-stepping) Find u W b such that u, v b + a(u, v) + d(u, v) = F (v) for all v W b. Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

17 Galerkin FEM based on time-discontinuous formulation Key ideas: W b replaced by FE space Wh Γ on Γ. For FE space we use trace of standard outer space-time FE space. Γ n is approximated (zero level of discrete level set function). Γ(t n ) t n Γ(t n 1 ) t n 1 Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

18 Trace FE spaces Space-time slab: Q n = Ω (t n 1, t n ] R d+1. T n : triangulation of Ω. V n : standard FE space on T n (piecewise linears). Γ(t n ) t n Γ(t n 1 ) t n 1 Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

19 Trace FE spaces Space-time slab: Q n = Ω (t n 1, t n ] R d+1. T n : triangulation of Ω. V n : standard FE space on T n (piecewise linears). Γ(t n ) t n Γ(t n 1 ) t n 1 W n,h := { w : Q n R w(x, t) = φ 0 (x) + tφ 1 (x), φ 0, φ 1 V n } Wn,h Γ := { v : Γ n R v = w Γ n, w W n,h, t }, 1 n N. Wh Γ := N n=1wn,h Γ Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

20 Galerkin FEM Galerkin trace-fem Find u h = u h, t W Γ h such that u h, v h b + a(u h, v h ) + d(u h, v h ) = F (v h ) for all v h W Γ h Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

21 Galerkin FEM Galerkin trace-fem Find u h = u h, t W Γ h such that u h, v h b + a(u h, v h ) + d(u h, v h ) = F (v h ) for all v h W Γ h Time-stepping procedure For n = 1,..., N, do: Find u h = u h, t Wn,h Γ such that u h, v h n +a n (u h, v h )+ u h + v h + ds = t n 1 uh n 1 t n 1 v + h ds+f (v h) v h W Γ n,h Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

22 Error analysis [Olshanskii,AR, SINUM 2014] Discrete stability N u 2 h := u 2 H + max n=1,...,n un 2 t n + [u] n 1 2 t n 1. inf u W b n=1 u, v b + a(u, v) + d(u, v) sup c s v W b v h u h Global stability result. No conditions on t. Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

23 Error analysis [Olshanskii,AR, SINUM 2014] Discrete stability N u 2 h := u 2 H + max n=1,...,n un 2 t n + [u] n 1 2 t n 1. inf u W b n=1 u, v b + a(u, v) + d(u, v) sup c s v W b v h u h Global stability result. No conditions on t. Discretization error bounds. Assume t h u u h h ch( u H 2 (Γ ) + u u h H 1 (Γ ) ch 2 ( u H 2 (Γ ) + sup u H 2 (Γ(t))). t [0,T ] sup u H 2 (Γ(t))). t [0,T ] Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

24 Experiment: diffusion on a moving+deforming ellipsoid Γ(t) is zero level of φ(x, y, z, t) = ( x ) 2 + y 2 + z 2 1, t [0, 4] sin(t) cos(t) Velocity field w(x, y, z, t) = sin(t) (x, 0, 0)T. Solution prescribed: u(x, y, z, t) = e t xy. Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

25 Structure of the algorithm Coarse regular tetrahedral triangulation of Ω = [ 1.5, 1.5] 3. FE space V h : piecewise linears. Per time slab Local spatial refinement close to Γ n. Outer space-time FE space; linear in t. Approximation of space-time surface Γ n. FE space on Γ n : trace space. Apply Galerkin discretization with this FE space. Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

26 Results: discrete L t L 2 x-errors max t [0,4] e h L2 (Γ(t)) log 2 h x log 2 h t h x = h constant h t = t constant. Observations: very stable method; second order convergence. Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

27 Evolving surface with topological singularity h = 1/16, t = 1/128 Domain Ω = ( 3, 3) ( 2, 2) 2, t [0, 1]. Prescribed level set function φ, determines Γ(t). Space-time interpolation yields Γ n. Surfactant transport equation. h = 1/16, t = 1/4 u 0 (x) = 3 x 1 for x 1 0, zero otherwise. Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

28 Summary and outlook The space-time journey started with the Hopscotch stability ( ) under the supervision of Gerard Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

29 Summary and outlook The space-time journey started with the Hopscotch stability ( ) under the supervision of Gerard Bedankt voor de zeer motiverende begeleiding... Ik wens je alle goeds voor de tijd die komen gaat Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

30 Summary and outlook The space-time journey started with the Hopscotch stability ( ) under the supervision of Gerard Bedankt voor de zeer motiverende begeleiding... Ik wens je alle goeds voor de tijd die komen gaat Past present future Reusken (RWTH Aachen) Past, present and space-time Utrecht, / 20

Space-time XFEM for two-phase mass transport

Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Christoph Lehrenfeld joint work with Arnold Reusken EFEF, Prague, June 5-6th 2015 Christoph Lehrenfeld EFEF, Prague,

More information

Error analysis of a space-time finite element method for solving PDEs on evolving surfaces

Error analysis of a space-time finite element method for solving PDEs on evolving surfaces Numerical Analysis and Scientific Computing Preprint Seria Error analysis of a space-time finite element method for solving PDEs on evolving surfaces M.A. Olshanskii A. Reusken Preprint #9 Department of

More information

High Order Unfitted Finite Element Methods for Interface Problems and PDEs on Surfaces

High Order Unfitted Finite Element Methods for Interface Problems and PDEs on Surfaces N O V E M B E R 2 0 1 6 P R E P R I N T 4 5 9 High Order Unfitted Finite Element Methods for Interface Problems and PDEs on Surfaces Christoph Lehrenfeld and Arnold Reusken Institut für Geometrie und Praktische

More information

Finite Element Techniques for the Numerical Simulation of Two-Phase Flows with Mass Transport

Finite Element Techniques for the Numerical Simulation of Two-Phase Flows with Mass Transport Finite Element Techniques for the Numerical Simulation of Two-Phase Flows with Mass Transport Christoph Lehrenfeld and Arnold Reusken Preprint No. 413 December 2014 Key words: Two-phase flow, mass transport,

More information

Preconditioned space-time boundary element methods for the heat equation

Preconditioned space-time boundary element methods for the heat equation W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods

More information

A VOLUME MESH FINITE ELEMENT METHOD FOR PDES ON SURFACES

A VOLUME MESH FINITE ELEMENT METHOD FOR PDES ON SURFACES European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) J. Eberhardsteiner et.al. (eds.) Vienna, Austria, September 10-14, 2012 A VOLUME MESH FINIE ELEMEN MEHOD FOR

More information

A Finite Element Method for the Surface Stokes Problem

A Finite Element Method for the Surface Stokes Problem J A N U A R Y 2 0 1 8 P R E P R I N T 4 7 5 A Finite Element Method for the Surface Stokes Problem Maxim A. Olshanskii *, Annalisa Quaini, Arnold Reusken and Vladimir Yushutin Institut für Geometrie und

More information

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Christian Waluga 1 advised by Prof. Herbert Egger 2 Prof. Wolfgang Dahmen 3 1 Aachen Institute for Advanced Study in Computational

More information

Numerical Methods for the Navier-Stokes equations

Numerical Methods for the Navier-Stokes equations Arnold Reusken Numerical Methods for the Navier-Stokes equations January 6, 212 Chair for Numerical Mathematics RWTH Aachen Contents 1 The Navier-Stokes equations.............................................

More information

Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems

Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems Christoph Lehrenfeld and Arnold Reusken Bericht Nr. 340 April 2012 Key words: transport problem, Nitsche method, XFEM,

More information

WELL POSEDNESS OF PROBLEMS I

WELL POSEDNESS OF PROBLEMS I Finite Element Method 85 WELL POSEDNESS OF PROBLEMS I Consider the following generic problem Lu = f, where L : X Y, u X, f Y and X, Y are two Banach spaces We say that the above problem is well-posed (according

More information

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU Preconditioning Techniques for Solving Large Sparse Linear Systems Arnold Reusken Institut für Geometrie und Praktische Mathematik RWTH-Aachen OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative

More information

INTRODUCTION TO PDEs

INTRODUCTION TO PDEs INTRODUCTION TO PDEs In this course we are interested in the numerical approximation of PDEs using finite difference methods (FDM). We will use some simple prototype boundary value problems (BVP) and initial

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

AN EXTENDED FINITE ELEMENT METHOD APPLIED TO LEVITATED DROPLET PROBLEMS

AN EXTENDED FINITE ELEMENT METHOD APPLIED TO LEVITATED DROPLET PROBLEMS AN EXTENDED FINITE ELEMENT METHOD APPLIED TO LEVITATED DROPLET PROBLEMS PATRICK ESSER, JÖRG GRANDE, ARNOLD REUSKEN Abstract. We consider a standard model for incompressible two-phase flows in which a localized

More information

A FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS ON SURFACES

A FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS ON SURFACES A FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS ON SURFACES MAXIM A. OLSHANSKII, ARNOLD REUSKEN, AND JÖRG GRANDE Abstract. In this paper a new finite element approach for the discretization of elliptic

More information

Efficient FEM-multigrid solver for granular material

Efficient FEM-multigrid solver for granular material Efficient FEM-multigrid solver for granular material S. Mandal, A. Ouazzi, S. Turek Chair for Applied Mathematics and Numerics (LSIII), TU Dortmund STW user committee meeting Enschede, 25th September,

More information

On a Discontinuous Galerkin Method for Surface PDEs

On a Discontinuous Galerkin Method for Surface PDEs On a Discontinuous Galerkin Method for Surface PDEs Pravin Madhavan (joint work with Andreas Dedner and Bjo rn Stinner) Mathematics and Statistics Centre for Doctoral Training University of Warwick Applied

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

arxiv: v1 [math.na] 13 Aug 2014

arxiv: v1 [math.na] 13 Aug 2014 THE NITSCHE XFEM-DG SPACE-TIME METHOD AND ITS IMPLEMENTATION IN THREE SPACE DIMENSIONS CHRISTOPH LEHRENFELD arxiv:1408.2941v1 [math.na] 13 Aug 2014 Abstract. In the recent paper [C. Lehrenfeld, A. Reusken,

More information

Hybridized Discontinuous Galerkin Methods

Hybridized Discontinuous Galerkin Methods Hybridized Discontinuous Galerkin Methods Theory and Christian Waluga Joint work with Herbert Egger (Uni Graz) 1st DUNE User Meeting, Stuttgart Christian Waluga (AICES) HDG Methods October 6-8, 2010 1

More information

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems Finite Element Clifford Algebra: A New Toolkit for Evolution Problems Andrew Gillette joint work with Michael Holst Department of Mathematics University of California, San Diego http://ccom.ucsd.edu/ agillette/

More information

Solving PDEs with freefem++

Solving PDEs with freefem++ Solving PDEs with freefem++ Tutorials at Basque Center BCA Olivier Pironneau 1 with Frederic Hecht, LJLL-University of Paris VI 1 March 13, 2011 Do not forget That everything about freefem++ is at www.freefem.org

More information

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of,

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of, 269 C, Vese Practice problems [1] Write the differential equation u + u = f(x, y), (x, y) Ω u = 1 (x, y) Ω 1 n + u = x (x, y) Ω 2, Ω = {(x, y) x 2 + y 2 < 1}, Ω 1 = {(x, y) x 2 + y 2 = 1, x 0}, Ω 2 = {(x,

More information

A STOKES INTERFACE PROBLEM: STABILITY, FINITE ELEMENT ANALYSIS AND A ROBUST SOLVER

A STOKES INTERFACE PROBLEM: STABILITY, FINITE ELEMENT ANALYSIS AND A ROBUST SOLVER European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004 P. Neittaanmäki, T. Rossi, K. Majava, and O. Pironneau (eds.) O. Nevanlinna and R. Rannacher (assoc. eds.) Jyväskylä,

More information

Simulation of free surface fluids in incompressible dynamique

Simulation of free surface fluids in incompressible dynamique Simulation of free surface fluids in incompressible dynamique Dena Kazerani INRIA Paris Supervised by Pascal Frey at Laboratoire Jacques-Louis Lions-UPMC Workshop on Numerical Modeling of Liquid-Vapor

More information

Spline Element Method for Partial Differential Equations

Spline Element Method for Partial Differential Equations for Partial Differential Equations Department of Mathematical Sciences Northern Illinois University 2009 Multivariate Splines Summer School, Summer 2009 Outline 1 Why multivariate splines for PDEs? Motivation

More information

1 Introduction. J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods

1 Introduction. J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods 1 Introduction Achieving high order time-accuracy in the approximation of the incompressible Navier Stokes equations by means of fractional-step

More information

Nitsche XFEM with Streamline Diffusion Stabilization for a Two Phase Mass Transport Problem

Nitsche XFEM with Streamline Diffusion Stabilization for a Two Phase Mass Transport Problem Nitsche XFEM with Streamline Diffusion Stabilization for a Two Phase Mass Transport Problem Christoph Lehrenfeld and Arnold Reusken Bericht Nr. 333 November 2011 Key words: transport problem, Nitsche method,

More information

c 2014 Society for Industrial and Applied Mathematics

c 2014 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 52, No. 4, pp. 292 212 c 214 Society for Industrial and Applied Mathematics ERROR ANALYSIS OF A SPACE-TIME FINITE ELEMENT METHOD FOR SOLVING PDES ON EVOLVING SURFACES MAXIM A.

More information

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1 On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1 Jie Shen Department of Mathematics, Penn State University University Park, PA 1682 Abstract. We present some

More information

Projection Methods for Rotating Flow

Projection Methods for Rotating Flow Projection Methods for Rotating Flow Daniel Arndt Gert Lube Georg-August-Universität Göttingen Institute for Numerical and Applied Mathematics IACM - ECCOMAS 2014 Computational Modeling of Turbulent and

More information

Space-time Finite Element Methods for Parabolic Evolution Problems

Space-time Finite Element Methods for Parabolic Evolution Problems Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients Ulrich Langer, Martin Neumüller, Andreas Schafelner Johannes Kepler University, Linz Doctoral Program Computational

More information

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé CMCS/IACS Ecole Polytechnique Federale de Lausanne Erik.Burman@epfl.ch Méthodes Numériques

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

Local Mesh Refinement with the PCD Method

Local Mesh Refinement with the PCD Method Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 8, Number 1, pp. 125 136 (2013) http://campus.mst.edu/adsa Local Mesh Refinement with the PCD Method Ahmed Tahiri Université Med Premier

More information

Juan Vicente Gutiérrez Santacreu Rafael Rodríguez Galván. Departamento de Matemática Aplicada I Universidad de Sevilla

Juan Vicente Gutiérrez Santacreu Rafael Rodríguez Galván. Departamento de Matemática Aplicada I Universidad de Sevilla Doc-Course: Partial Differential Equations: Analysis, Numerics and Control Research Unit 3: Numerical Methods for PDEs Part I: Finite Element Method: Elliptic and Parabolic Equations Juan Vicente Gutiérrez

More information

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION Proceedings of ALGORITMY pp. 9 3 FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION JAN STEBEL Abstract. The paper deals with the numerical simulations of steady flows

More information

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS Proceedings of ALGORITMY 2009 pp. 1 10 SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS MILOSLAV VLASÁK Abstract. We deal with a numerical solution of a scalar

More information

Analysis of a high order trace finite element method for PDEs on level set surfaces

Analysis of a high order trace finite element method for PDEs on level set surfaces N O V E M B E R 2 0 1 6 P R E P R I N T 4 5 7 Analysis of a high order trace finite element method for PDEs on level set surfaces Jörg Grande *, Christoph Lehrenfeld and Arnold Reusken * Institut für Geometrie

More information

The CG1-DG2 method for conservation laws

The CG1-DG2 method for conservation laws for conservation laws Melanie Bittl 1, Dmitri Kuzmin 1, Roland Becker 2 MoST 2014, Germany 1 Dortmund University of Technology, Germany, 2 University of Pau, France CG1-DG2 Method - Motivation hp-adaptivity

More information

Discretization of PDEs and Tools for the Parallel Solution of the Resulting Systems

Discretization of PDEs and Tools for the Parallel Solution of the Resulting Systems Discretization of PDEs and Tools for the Parallel Solution of the Resulting Systems Stan Tomov Innovative Computing Laboratory Computer Science Department The University of Tennessee Wednesday April 4,

More information

Numerical Methods for PDEs

Numerical Methods for PDEs Numerical Methods for PDEs Partial Differential Equations (Lecture 1, Week 1) Markus Schmuck Department of Mathematics and Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh

More information

Proper Orthogonal Decomposition (POD) for Nonlinear Dynamical Systems. Stefan Volkwein

Proper Orthogonal Decomposition (POD) for Nonlinear Dynamical Systems. Stefan Volkwein Proper Orthogonal Decomposition (POD) for Nonlinear Dynamical Systems Institute for Mathematics and Scientific Computing, Austria DISC Summerschool 5 Outline of the talk POD and singular value decomposition

More information

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements W I S S E N T E C H N I K L E I D E N S C H A F T A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements Matthias Gsell and Olaf Steinbach Institute of Computational Mathematics

More information

Advanced numerical methods for nonlinear advectiondiffusion-reaction. Peter Frolkovič, University of Heidelberg

Advanced numerical methods for nonlinear advectiondiffusion-reaction. Peter Frolkovič, University of Heidelberg Advanced numerical methods for nonlinear advectiondiffusion-reaction equations Peter Frolkovič, University of Heidelberg Content Motivation and background R 3 T Numerical modelling advection advection

More information

NUMERICAL SIMULATION OF INCOMPRESSIBLE TWO-PHASE FLOWS WITH A BOUSSINESQ-SCRIVEN INTERFACE STRESS TENSOR

NUMERICAL SIMULATION OF INCOMPRESSIBLE TWO-PHASE FLOWS WITH A BOUSSINESQ-SCRIVEN INTERFACE STRESS TENSOR NUMERICAL SIMULATION OF INCOMPRESSIBLE TWO-PHASE FLOWS WITH A BOUSSINESQ-SCRIVEN INTERFACE STRESS TENSOR ARNOLD REUSKEN AND YUANJUN ZHANG Abstract. We consider the numerical simulation of a three-dimensional

More information

An introduction to the mathematical theory of finite elements

An introduction to the mathematical theory of finite elements Master in Seismic Engineering E.T.S.I. Industriales (U.P.M.) Discretization Methods in Engineering An introduction to the mathematical theory of finite elements Ignacio Romero ignacio.romero@upm.es October

More information

Subdiffusion in a nonconvex polygon

Subdiffusion in a nonconvex polygon Subdiffusion in a nonconvex polygon Kim Ngan Le and William McLean The University of New South Wales Bishnu Lamichhane University of Newcastle Monash Workshop on Numerical PDEs, February 2016 Outline Time-fractional

More information

On Surface Meshes Induced by Level Set Functions

On Surface Meshes Induced by Level Set Functions On Surface Meshes Induced by Level Set Functions Maxim A. Olshanskii, Arnold Reusken, and Xianmin Xu Bericht Nr. 347 Oktober 01 Key words: surface finite elements, level set function, surface triangulation,

More information

Due Tuesday, November 23 nd, 12:00 midnight

Due Tuesday, November 23 nd, 12:00 midnight Due Tuesday, November 23 nd, 12:00 midnight This challenging but very rewarding homework is considering the finite element analysis of advection-diffusion and incompressible fluid flow problems. Problem

More information

FEM Convergence for PDEs with Point Sources in 2-D and 3-D

FEM Convergence for PDEs with Point Sources in 2-D and 3-D FEM Convergence for PDEs with Point Sources in 2-D and 3-D Kourosh M. Kalayeh 1, Jonathan S. Graf 2 Matthias K. Gobbert 2 1 Department of Mechanical Engineering 2 Department of Mathematics and Statistics

More information

A space-time Trefftz method for the second order wave equation

A space-time Trefftz method for the second order wave equation A space-time Trefftz method for the second order wave equation Lehel Banjai The Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh & Department of Mathematics, University of

More information

A Primal-Dual Weak Galerkin Finite Element Method for Second Order Elliptic Equations in Non-Divergence Form

A Primal-Dual Weak Galerkin Finite Element Method for Second Order Elliptic Equations in Non-Divergence Form A Primal-Dual Weak Galerkin Finite Element Method for Second Order Elliptic Equations in Non-Divergence Form Chunmei Wang Visiting Assistant Professor School of Mathematics Georgia Institute of Technology

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

Question 9: PDEs Given the function f(x, y), consider the problem: = f(x, y) 2 y2 for 0 < x < 1 and 0 < x < 1. x 2 u. u(x, 0) = u(x, 1) = 0 for 0 x 1

Question 9: PDEs Given the function f(x, y), consider the problem: = f(x, y) 2 y2 for 0 < x < 1 and 0 < x < 1. x 2 u. u(x, 0) = u(x, 1) = 0 for 0 x 1 Question 9: PDEs Given the function f(x, y), consider the problem: 2 u x 2 u = f(x, y) 2 y2 for 0 < x < 1 and 0 < x < 1 u(x, 0) = u(x, 1) = 0 for 0 x 1 u(0, y) = u(1, y) = 0 for 0 y 1. a. Discuss how you

More information

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs Lecture Notes: African Institute of Mathematics Senegal, January 26 opic itle: A short introduction to numerical methods for elliptic PDEs Authors and Lecturers: Gerard Awanou (University of Illinois-Chicago)

More information

A review of stability and dynamical behaviors of differential equations:

A review of stability and dynamical behaviors of differential equations: A review of stability and dynamical behaviors of differential equations: scalar ODE: u t = f(u), system of ODEs: u t = f(u, v), v t = g(u, v), reaction-diffusion equation: u t = D u + f(u), x Ω, with boundary

More information

Space time finite element methods in biomedical applications

Space time finite element methods in biomedical applications Space time finite element methods in biomedical applications Olaf Steinbach Institut für Angewandte Mathematik, TU Graz http://www.applied.math.tugraz.at SFB Mathematical Optimization and Applications

More information

Finite Volume Schemes: an introduction

Finite Volume Schemes: an introduction Finite Volume Schemes: an introduction First lecture Annamaria Mazzia Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università di Padova mazzia@dmsa.unipd.it Scuola di dottorato

More information

A non-standard Finite Element Method based on boundary integral operators

A non-standard Finite Element Method based on boundary integral operators A non-standard Finite Element Method based on boundary integral operators Clemens Hofreither Ulrich Langer Clemens Pechstein June 30, 2010 supported by Outline 1 Method description Motivation Variational

More information

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Contents Chapter I. Introduction 7 I.1. Motivation 7 I.2. Sobolev and finite

More information

On some nonlinear parabolic equation involving variable exponents

On some nonlinear parabolic equation involving variable exponents On some nonlinear parabolic equation involving variable exponents Goro Akagi (Kobe University, Japan) Based on a joint work with Giulio Schimperna (Pavia Univ., Italy) Workshop DIMO-2013 Diffuse Interface

More information

Conservation Laws of Surfactant Transport Equations

Conservation Laws of Surfactant Transport Equations Conservation Laws of Surfactant Transport Equations Alexei Cheviakov Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada Winter 2011 CMS Meeting Dec. 10, 2011 A. Cheviakov

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 47, No. 5, pp. 3339 3358 c 2009 Society for Industrial and Applied Mathematics A FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS ON SURFACES MAXIM A. OLSHANSKII, ARNOLD REUSKEN,

More information

Space-time sparse discretization of linear parabolic equations

Space-time sparse discretization of linear parabolic equations Space-time sparse discretization of linear parabolic equations Roman Andreev August 2, 200 Seminar for Applied Mathematics, ETH Zürich, Switzerland Support by SNF Grant No. PDFMP2-27034/ Part of PhD thesis

More information

A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations

A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations Songul Kaya and Béatrice Rivière Abstract We formulate a subgrid eddy viscosity method for solving the steady-state

More information

Borel Summability in PDE initial value problems

Borel Summability in PDE initial value problems Borel Summability in PDE initial value problems Saleh Tanveer (Ohio State University) Collaborator Ovidiu Costin & Guo Luo Research supported in part by Institute for Math Sciences (IC), EPSRC & NSF. Main

More information

PDEs, part 1: Introduction and elliptic PDEs

PDEs, part 1: Introduction and elliptic PDEs PDEs, part 1: Introduction and elliptic PDEs Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 Partial di erential equations The solution depends on several variables,

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

Space-time Discontinuous Galerkin Methods for Compressible Flows

Space-time Discontinuous Galerkin Methods for Compressible Flows Space-time Discontinuous Galerkin Methods for Compressible Flows Jaap van der Vegt Numerical Analysis and Computational Mechanics Group Department of Applied Mathematics University of Twente Joint Work

More information

Info. No lecture on Thursday in a week (March 17) PSet back tonight

Info. No lecture on Thursday in a week (March 17) PSet back tonight Lecture 0 8.086 Info No lecture on Thursday in a week (March 7) PSet back tonight Nonlinear transport & conservation laws What if transport becomes nonlinear? Remember: Nonlinear transport A first attempt

More information

Laplace s Equation FEM Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy, Jaime Peraire and Tony Patera

Laplace s Equation FEM Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy, Jaime Peraire and Tony Patera Introduction to Simulation - Lecture 19 Laplace s Equation FEM Methods Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy, Jaime Peraire and Tony Patera Outline for Poisson Equation

More information

Finite Volume Method

Finite Volume Method Finite Volume Method An Introduction Praveen. C CTFD Division National Aerospace Laboratories Bangalore 560 037 email: praveen@cfdlab.net April 7, 2006 Praveen. C (CTFD, NAL) FVM CMMACS 1 / 65 Outline

More information

Discontinuous Petrov-Galerkin Methods

Discontinuous Petrov-Galerkin Methods Discontinuous Petrov-Galerkin Methods Friederike Hellwig 1st CENTRAL School on Analysis and Numerics for Partial Differential Equations, November 12, 2015 Motivation discontinuous Petrov-Galerkin (dpg)

More information

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Martin Eigel C. Carstensen, C. Löbhard, R.H.W. Hoppe Humboldt-Universität zu Berlin 19.05.2010 1 we know of Guidelines for Applicants

More information

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation A local-structure-preserving local discontinuous Galerkin method for the Laplace equation Fengyan Li 1 and Chi-Wang Shu 2 Abstract In this paper, we present a local-structure-preserving local discontinuous

More information

A method of Lagrange Galerkin of second order in time. Une méthode de Lagrange Galerkin d ordre deux en temps

A method of Lagrange Galerkin of second order in time. Une méthode de Lagrange Galerkin d ordre deux en temps A metod of Lagrange Galerkin of second order in time Une métode de Lagrange Galerkin d ordre deux en temps Jocelyn Étienne a a DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, Great-Britain.

More information

The Navier-Stokes Equations with Time Delay. Werner Varnhorn. Faculty of Mathematics University of Kassel, Germany

The Navier-Stokes Equations with Time Delay. Werner Varnhorn. Faculty of Mathematics University of Kassel, Germany The Navier-Stokes Equations with Time Delay Werner Varnhorn Faculty of Mathematics University of Kassel, Germany AMS: 35 (A 35, D 5, K 55, Q 1), 65 M 1, 76 D 5 Abstract In the present paper we use a time

More information

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN Weierstraß-Institut für Angewandte Analysis und Stochastik Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN 2198-5855 On the divergence constraint in mixed finite element methods for incompressible

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Some remarks on grad-div stabilization of incompressible flow simulations

Some remarks on grad-div stabilization of incompressible flow simulations Some remarks on grad-div stabilization of incompressible flow simulations Gert Lube Institute for Numerical and Applied Mathematics Georg-August-University Göttingen M. Stynes Workshop Numerical Analysis

More information

Discontinuous Galerkin Time Discretization Methods for Parabolic Problems with Linear Constraints

Discontinuous Galerkin Time Discretization Methods for Parabolic Problems with Linear Constraints J A N U A R Y 0 1 8 P R E P R N T 4 7 4 Discontinuous Galerkin Time Discretization Methods for Parabolic Problems with Linear Constraints gor Voulis * and Arnold Reusken nstitut für Geometrie und Praktische

More information

Interaction of Incompressible Fluid and Moving Bodies

Interaction of Incompressible Fluid and Moving Bodies WDS'06 Proceedings of Contributed Papers, Part I, 53 58, 2006. ISBN 80-86732-84-3 MATFYZPRESS Interaction of Incompressible Fluid and Moving Bodies M. Růžička Charles University, Faculty of Mathematics

More information

An Equal-order DG Method for the Incompressible Navier-Stokes Equations

An Equal-order DG Method for the Incompressible Navier-Stokes Equations An Equal-order DG Method for the Incompressible Navier-Stokes Equations Bernardo Cockburn Guido anschat Dominik Schötzau Journal of Scientific Computing, vol. 40, pp. 188 10, 009 Abstract We introduce

More information

Global well-posedness and decay for the viscous surface wave problem without surface tension

Global well-posedness and decay for the viscous surface wave problem without surface tension Global well-posedness and decay for the viscous surface wave problem without surface tension Ian Tice (joint work with Yan Guo) Université Paris-Est Créteil Laboratoire d Analyse et de Mathématiques Appliquées

More information

Towards pressure-robust mixed methods for the incompressible Navier Stokes equations

Towards pressure-robust mixed methods for the incompressible Navier Stokes equations Mohrenstrasse 39 10117 Berlin Germany Tel. +49 30 20372 0 www.wias-berlin.de 2016-05-05, Pittsburgh Weierstrass Institute for Applied Analysis and Stochastics Towards pressure-robust mixed methods for

More information

A Two-grid Method for Coupled Free Flow with Porous Media Flow

A Two-grid Method for Coupled Free Flow with Porous Media Flow A Two-grid Method for Coupled Free Flow with Porous Media Flow Prince Chidyagwai a and Béatrice Rivière a, a Department of Computational and Applied Mathematics, Rice University, 600 Main Street, Houston,

More information

A Higher Order Finite Element Method for Partial Differential Equations on Surfaces

A Higher Order Finite Element Method for Partial Differential Equations on Surfaces A Higher Order Finite Element Method for Partial Differential Equations on Surfaces Jörg Grande and Arnold Reusken Preprint No. 403 July 2014 Key words: Laplace Beltrami equation, surface finite element

More information

Approximation of Geometric Data

Approximation of Geometric Data Supervised by: Philipp Grohs, ETH Zürich August 19, 2013 Outline 1 Motivation Outline 1 Motivation 2 Outline 1 Motivation 2 3 Goal: Solving PDE s an optimization problems where we seek a function with

More information

The Plane Stress Problem

The Plane Stress Problem The Plane Stress Problem Martin Kronbichler Applied Scientific Computing (Tillämpad beräkningsvetenskap) February 2, 2010 Martin Kronbichler (TDB) The Plane Stress Problem February 2, 2010 1 / 24 Outline

More information

Simple Examples on Rectangular Domains

Simple Examples on Rectangular Domains 84 Chapter 5 Simple Examples on Rectangular Domains In this chapter we consider simple elliptic boundary value problems in rectangular domains in R 2 or R 3 ; our prototype example is the Poisson equation

More information

Chapter 12. Partial di erential equations Di erential operators in R n. The gradient and Jacobian. Divergence and rotation

Chapter 12. Partial di erential equations Di erential operators in R n. The gradient and Jacobian. Divergence and rotation Chapter 12 Partial di erential equations 12.1 Di erential operators in R n The gradient and Jacobian We recall the definition of the gradient of a scalar function f : R n! R, as @f grad f = rf =,..., @f

More information

Computer simulation of multiscale problems

Computer simulation of multiscale problems Progress in the SSF project CutFEM, Geometry, and Optimal design Computer simulation of multiscale problems Axel Målqvist and Daniel Elfverson University of Gothenburg and Uppsala University Umeå 2015-05-20

More information

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM ERIK BURMAN AND BENJAMIN STAMM Abstract. We propose a low order discontinuous Galerkin method for incompressible flows. Stability of the

More information

ANALYSIS OF THE FEM AND DGM FOR AN ELLIPTIC PROBLEM WITH A NONLINEAR NEWTON BOUNDARY CONDITION

ANALYSIS OF THE FEM AND DGM FOR AN ELLIPTIC PROBLEM WITH A NONLINEAR NEWTON BOUNDARY CONDITION Proceedings of EQUADIFF 2017 pp. 127 136 ANALYSIS OF THE FEM AND DGM FOR AN ELLIPTIC PROBLEM WITH A NONLINEAR NEWTON BOUNDARY CONDITION MILOSLAV FEISTAUER, ONDŘEJ BARTOŠ, FILIP ROSKOVEC, AND ANNA-MARGARETE

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

Stability and Geometric Conservation Laws

Stability and Geometric Conservation Laws and and Geometric Conservation Laws Dipartimento di Matematica, Università di Pavia http://www-dimat.unipv.it/boffi Advanced Computational Methods for FSI May 3-7, 2006. Ibiza, Spain and Introduction to

More information

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Motivation Numerical methods Numerical tests Conclusions A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Xiaofeng Cai Department of Mathematics

More information

The incompressible Navier-Stokes equations in vacuum

The incompressible Navier-Stokes equations in vacuum The incompressible, Université Paris-Est Créteil Piotr Bogus law Mucha, Warsaw University Journées Jeunes EDPistes 218, Institut Elie Cartan, Université de Lorraine March 23th, 218 Incompressible Navier-Stokes

More information