Due Tuesday, November 23 nd, 12:00 midnight

Size: px
Start display at page:

Download "Due Tuesday, November 23 nd, 12:00 midnight"

Transcription

1 Due Tuesday, November 23 nd, 12:00 midnight This challenging but very rewarding homework is considering the finite element analysis of advection-diffusion and incompressible fluid flow problems. Problem 1 can be addressed by modifying the 1DBVP MatLab programs to include SUPG stabilization. Problems 2 and 3 need the FEM libraries provided here that are based on a stabilized second-order fractional-step method FEM implementation for the solution of incompressible unsteady Navier-Stokes equations (read the provided Readme file for the theory, implementation and examples). Finally, Problem 4 requires that you modify the 2DBVP libraries for scalar fields (to include time dependence and advection terms) and couple them with the provided fluid flow libraries in order to address natural convection problems. An overall algorithm for the needed computational approach is provided. Problem 1 Advection-Diffusion problems using SUPG (streamline upwind Petrov- Galerkin) methods (MatLab) Consider a one-dimensional stationary diffusion equation: with boundary conditions as 2 d c dc u 0 2 dx dx c(0) 0, c(1) 1 a) Show that by applying classical Galerkin formulation the solution shows wiggles 2 as long as x Pe, where the Peclet number Pe is defined as u Pe. Plot the computed solution and the exact solution for h=x = 0.1, u = 1 and ε = Repeat the calculation for number of nodes 6, 11 and 21 and 1,0.1,0.005 For each of these cases tabulate the finite element error in max-norm. b) Modify your 1DBVP and repeat the above calculation by considering an SUPG formulation. In this case, the weak form is as follows: Ne dch dch dwh dch u wh d phu d 0 dx dx dx dx k1 e k h dwh The stabilization parameter is taken as ph 2 dx where Finite Element Analysis for Mechanical & Aerospace Design Page 1 of 24

2 1 uh coth( ), Element Peclet Number 2 Repeat the calculation from case (a) above (h=x=0.1,u=1,=0.01) and show that the wiggles disappear. Repeat the calculation for number of nodes 6, 11 and 21 and =1, 0.1,0.005 and show the accuracy of the method is now practically O(h 2 ) for small. Analytical Solution: Since the equation is a standard ordinary differential equation, let Thus, the characteristic equation is, And the roots are: c = e rx r εr + u = 0 r 1 = 0 and r 2 = u ε The general solution now is: c = c 1 + c 2 e u ε x Applying the boundary conditions and solving for the constants c 1 and c 2, The analytical solution becomes: c 0 = c 1 + c 2 = 0 c 1 = c 1 + c 2 e u ε = 1 c 1 = 1 e u, c 2 = 1 ε 1 e u ε 1 c = eu ε x 1 e u ε 1 Derivation of the Weak Form: From the original equation, multiply by an arbitrary weight function w(x) and integrate on the domain 1 u dc w dx 0 dx Performing integration by parts on the second term, 0 1 ε d2 c w dx = 0, w in 0 < x < 1 dx2 Finite Element Analysis for Mechanical & Aerospace Design Page 2 of 24

3 0 1 u dc w dx dx ε dc dx w ε dc dx dw dx dx = 0, w in 0 < x < 1 Since the displacements at the boundaries are defined, w(0) = w(1) = 0, and we can simplify the weak form as: 1 u dc w dx 0 dx For each element, using the approximations: 1 + ε dc dw dx dx dx = 0, w in 0 < x < 1 0 w e = w et N et, c e = N e c e, Substitution into the weak form gives: e w et 1 B et ε B e dx 0 Thus, for the MATLAB code modifications, The results are as follows: K e = c e + dw dx dc dx T = w et B et = Be c e 1 un et B e dx 0 p x = ε, q x = u, f x = 0 1 B et p(x) B e + q(x)n et B e dx 0 c e = 0 The figure shows that the FE solutions show wiggles, and these wiggles will be present as long as Δx > 2, Pe = u. Δx > 2 ε => 0.1 > Pe ε u Finite Element Analysis for Mechanical & Aerospace Design Page 3 of 24

4 The following figures, however, do not have wiggles because ε is equal to 1 instead of 0.01, which means Δx > 2 is not satisfied. Pe The figure shows that FE solutions approximate the exact solutions very smoothly. no SUPG (bold - no wiggles & plain - wiggles) Element size, h ε FE error in max-norm 1/ E-03 1/ E-01 1/ E-01 1/ E-01 1/ E-03 1/ E-02 1/ E-01 1/ E-01 1/ E-04 1/ E-02 1/ E-01 1/ E-01 The above table displays that the finite element errors in maximum norm decrease as the element size gets smaller and ε increases to 1. b) Ω e u dc dx w + ε dc dw dx dx N e dc dω + pu dx dω = 0 k=1 p = hξ 2, ξ = coth α 1 α Ω e k & α = uh 2ε Finite Element Analysis for Mechanical & Aerospace Design Page 4 of 24

5 To take the stabilization parameter into account (SUPG), I have modified integrands.m extensively by adding the following code: B = felm.dn; alpha = qq(felm.x)/(n*2*pp(felm.x)); Ke = Ke + (pp(felm.x)*b'*b + qq(felm.x)*felm.n'*b+... 1/n*qq(felm.x)/2*(coth(alpha)-1/alpha)*B'*B)* felm.detjxw; fe = fe + ff(felm.x) * felm.n' * felm.detjxw; The results are as follows: Unlike previous figures, this figure does not show any wiggles after applying an SUPG formulation. The following table also lists finite element errors with SUPG formulation. SUPG Element size, h ε FE error in max-norm 1/ E-03 1/ E-01 1/ E-01 1/ E-01 1/ E-03 1/ E-02 1/ E-01 1/ E-01 1/ E-04 1/ E-02 1/ E-01 1/ E-01 Finite Element Analysis for Mechanical & Aerospace Design Page 5 of 24

6 This table shows that the finite element errors change relative to the element size for small ε. With this method, there are no wiggles anymore as shown in figures below. Problem 2 A lid-driven cavity flow (MatLab) Finite Element Analysis for Mechanical & Aerospace Design Page 6 of 24

7 This problem has become a standard benchmark test for incompressible flow. The fluid motion generated in a square cavity by the uniform translation of the upper surface of the cavity is a classical example of recirculating fluid flows in a confined area. From a purely computational view point, the cavity flow is an ideal prototype non-linear problem which is readily posted for numerical solution. Its geometric simplicity, comparatively minor singularity, well-defined boundary conditions and no preferred flow directions makes it very attractive as a benchmark problem for new numerical techniques. The problem definition is shown in the above figure. There is discontinuity in the boundary conditions at the two upper corners of the cavity. Here the two corner points are assumed to belong to the fixed vertical walls (non-leaky). Finally, it should be noticed that Dirichlet boundary conditions are imposed on every boundary in this example. Thus at an arbitrary point, the lower left corner of the cavity, the reference value p 0is prescribed. The problem has been studied by many investigators but probably the most detailed investigation was that of Ghia 1 et al. in which they quote many solutions and data for different Reynolds numbers. We shall use those results for comparison. The criterion for convergence to steady-state was generally taken to be No.Nodes n1 i1 4 No.Nodes n1 i1 u u u 2 n In this problem, we will use a 6464 uniform mesh and take t 0.1. In the example, we have already seen the steady state solutions for Re = 100. Now repeat the calculations and compare the steady-state solutions with those of Ghia et al. for Re = 400 and (1) The streamline function, pressure and vorticity contour (2) The velocity vector plot Finite Element Analysis for Mechanical & Aerospace Design Page 7 of 24

8 (3) Plot u velocity along the line x 0.5, v velocity along the line y 0.5 and vorticity along moving boundary. Compare your results with that listed in Table I, II and IV of the paper Ghia 1. [1]. U. Ghia, K. N. Ghia and C. T. Shin, High-resolution for incompressible flow using the Navier-Stokes equations and multigrid method, Journal of Computational Physics. 48: , Solution: Re = 400: Finite Element Analysis for Mechanical & Aerospace Design Page 8 of 24

9 Re = 1000: Finite Element Analysis for Mechanical & Aerospace Design Page 9 of 24

10 Finite Element Analysis for Mechanical & Aerospace Design Page 10 of 24

11 Problem 3 Unsteady flow past a circular cylinder at Reynolds number 100 (MatLab) Simulation of flow past a circular cylinder is one of the most challenging problems in CFD as unlike other typical numerical tests all the terms in the governing equations are significant in this case. The problem consists of a circular cylinder immersed in a flowing viscous fluid. At Reynolds number below about 40, a pair of symmetrical eddies forms on the downstream side of the cylinder. At higher Reynolds numbers, the symmetrical eddies become unstable and periodic vortex shedding occurs. The eddies are transported downstream, resulting in the well-known Karman vortex street. A Reynolds number of 100 is considered to be the standard for testing FEM algorithms on the cylinder problem. It is high enough for vortex shedding to occur, but low enough that the boundary layers can be easily resolved. The domain and the boundary conditions are shown in the figure. The inlet flow is uniform and the cylinder is placed at the centerline between two slip walls. The distance from the inlet and slip walls to the center of the cylinder are 4.5. A no-slip condition is applied on the cylinder surface. In order to simulate the outflow condition, we take p 0at the outflow (right) boundary. Take time step as The initial condition is that of zero velocity. Initially, a pair of symmetric attached eddies grew behind the cylinder and the flow reach a steady state. At this state, the flow has not developed fully yet, and the flow appears symmetric, with twin vortices forming behind the cylinder. As time progresses, the flow becomes asymmetric and periodic vortex shedding over the cylinder is attained. In the present problem, generate your own mesh from ANSYS. Make sure your mesh is fine enough near the cylinder. Since our code is very stable, you may choose a time step t 0.05 and run the problem up to t 70. (1) Plot the time history of vertical v velocity at the mid-point of exit. Identify the steady state at t=9 and shedding period. Compute the dimensionless shedding D frequency, or Strouhal number S, where u0 1in present problem. u 0 Finite Element Analysis for Mechanical & Aerospace Design Page 11 of 24

12 Velocity (2) Give the velocity vector plot, pressure, vorticity and streamline contours at the steady state at t=9. Clearly identify the symmetric twin vortex behind the cylinder. (3) Give the same plots as in (2) during a half period of vortex shedding when the flow has fully developed yet, i.e. at the beginning, ¼, ½ of the period,. Clearly identify the asymmetric vortex shedding behind the cylinder. Compare your results with following two literatures or any other papers you can find: [2]. T. E. Tezduyar, S. Mittal, S. E. Ray and R. Shih, Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity pressure elements, Computer Methods in Applied Mechanics and Engineering 95 (1992) [3]. R. Sampath and N. Zabaras, A diffpack implementation of the Brooks/Hughes Streamline-upwind/Petrov-Galerkin FEM formulation of the incompressible Navier- Stokes equations, Research Report MM-97-01, Cornell University, March Solution: (1) The time history of vertical velocity at the midpoint of exit is: 0.3 Vertical velocity at the middel exit Time Therefore, it is clear that after time t=30, the flow has fully developed. The steady state is achieve around t=9. The shedding period is about 6.Therefore, the Strouhal number is 1 S (2) The flow achieved steady state at t=9: Finite Element Analysis for Mechanical & Aerospace Design Page 12 of 24

13 Finite Element Analysis for Mechanical & Aerospace Design Page 13 of 24

14 It is seen that, at this time, the flow has not developed fully yet, and the flow appears symmetric, with twin vortices forming behind the cylinder. (3) From the time history plot, we identify the following three times during half cycle of the period. Finite Element Analysis for Mechanical & Aerospace Design Page 14 of 24

15 Finite Element Analysis for Mechanical & Aerospace Design Page 15 of 24

16 Finite Element Analysis for Mechanical & Aerospace Design Page 16 of 24

17 Finite Element Analysis for Mechanical & Aerospace Design Page 17 of 24

18 It is seen from the result that at t = 60.5 and t = 63.5, the flow separate at the leading edge, and the vortex is detached from the cylinder. At t = 62, the growing vortex is ready to depart from the cylinder. Problem 4 Natural convection flow in a cavity (MatLab) Finite Element Analysis for Mechanical & Aerospace Design Page 18 of 24

19 To illustrate the use of the flow in another incompressible flow problem, we shall describe the splitting-up approximate solution of unsteady natural convection problems. Such problems involve a coupling between the Navier-Stokes equations describing the fluid motion and the thermal energy equation governing the space-time evolution of the temperature. The forces which induce natural convection are in fact spatially variable gravity forces generated by (buoyancy) density variations in the fluid due to the nonuniformity of the temperature. The dimensionless equations, in vector form, are u 2 u u p Pr u Pr RaT eg in [0, T] t u 0 in [0, T] T 2 u T T in t where Pr is the Prandtl number, Ra is the Rayleigh number and eg is the unit vector in the direction of gravity. The problem of interest here is the unit square cavity containing a viscous fluid. The walls are solid and subjected to no-slip velocity boundary conditions (zero-velocity components). One of the vertical walls is subjected to a higher temperature ( T 1) than the other vertical wall ( T 0 ). Both the top and bottom walls are assumed to be insulated (zero heat flux). The steady state solution to this problem is sought herein. In this calculation the Prandtl number is kept constant at 0.71 (air) and the problem is solved for four different Rayleigh numbers : 10,10,10,10. Please choose a smaller time step when the Rayleigh numbers increases. (1) Develop the finite element code based on the fluid flow solver and heat solver based on the following time discretization: Finite Element Analysis for Mechanical & Aerospace Design Page 19 of 24

20 u n1 u dt n n n1 n1 2 n1 n u u p Pr u Pr RaT eg u n1 0 n1 n T T n1 n1 2 n1 u T T dt In other words, first solve the fluid velocity given temperature from last time step using the given fluid solver and then use the velocity at this time step to update the temperature. (2) Plot the streamlines, vorticity contours, pressure contours and isothermal lines for each case. Compare your results with those in [4]. (3) Compare the quantitative results with that of de Vahl Davis 5,6 in the following table: Ra Maximum stream function magnitude Maximum horizontal velocity Maximum vertical velocity [4]. H. G. Choi, H. Choi and J. Y. Yoo, A fractional four-step finite element formulation of the unsteady incompressible Navier-Stokes equations using SUPG and linear equalorder element methods, Comput. Methods Appl. Mechrg, 143 (1997) [5] G. devahl Davis, Natural convection on air in a square cavity: A benchmark numerical solution, International Journal of Numerical methods fluids, 3 (1982) [6] P. L. Quere and T. A. DE Roquefort, Computation of natural convection in twodimensional cavities with chebyshev polynomials, Journal of Computational Physics, 57 (1985) Solution: (2) Finite Element Analysis for Mechanical & Aerospace Design Page 20 of 24

21 Finite Element Analysis for Mechanical & Aerospace Design Page 21 of 24

22 Finite Element Analysis for Mechanical & Aerospace Design Page 22 of 24

23 Discussion: For Ra = 10 3 and 10 4 no distinct boundary layers can be seen. The flow at Ra = 10 4 shows the onset of a stratified core in the cavity, a behavior characteristic of higher Rayleigh number flows. At Ra = 10 5 three major changes can be seen: 1. Secondary circulation exists in the core. 2. There is a substantial temperature gradient near the vertical walls. 3. The lower and upper right corners have become much more active than the other two. Also, it is expected that the pressure field is influenced by the For high Ra the pressure becomes more uniform across the cavity, except near the corners. The vorticity plots generally show a central negative area (rotation in the direction of the main circulation) separated by a zero contour from positive vorticity regions adjacent to the walls. By Ra = Finite Element Analysis for Mechanical & Aerospace Design Page 23 of 24

24 10 4 there are two distinct valleys of vorticity in the central area; with increasing Ra these move apart, leaving a central area with little action. (3) The finite element solution is : Ra Maximum stream function magnitude Maximum horizontal velocity Maximum vertical velocity From the table, the finite element solutions are accurate for low Rayleigh numbers. For high Rayleigh numbers, the horizontal velocity lost accuracy. This is possibly due to the lack of stabilization of the convection terms since in these cases the magnitude of the velocity is quite big. Therefore, it is possible to add SUPG onto the current algorithm to make the solution more stable. Finite Element Analysis for Mechanical & Aerospace Design Page 24 of 24

Study of Forced and Free convection in Lid driven cavity problem

Study of Forced and Free convection in Lid driven cavity problem MIT Study of Forced and Free convection in Lid driven cavity problem 18.086 Project report Divya Panchanathan 5-11-2014 Aim To solve the Navier-stokes momentum equations for a lid driven cavity problem

More information

Validation 3. Laminar Flow Around a Circular Cylinder

Validation 3. Laminar Flow Around a Circular Cylinder Validation 3. Laminar Flow Around a Circular Cylinder 3.1 Introduction Steady and unsteady laminar flow behind a circular cylinder, representing flow around bluff bodies, has been subjected to numerous

More information

J. Liou Tulsa Research Center Amoco Production Company Tulsa, OK 74102, USA. Received 23 August 1990 Revised manuscript received 24 October 1990

J. Liou Tulsa Research Center Amoco Production Company Tulsa, OK 74102, USA. Received 23 August 1990 Revised manuscript received 24 October 1990 Computer Methods in Applied Mechanics and Engineering, 94 (1992) 339 351 1 A NEW STRATEGY FOR FINITE ELEMENT COMPUTATIONS INVOLVING MOVING BOUNDARIES AND INTERFACES THE DEFORMING-SPATIAL-DOMAIN/SPACE-TIME

More information

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders A. Jugal M. Panchal, B. A M Lakdawala 2 A. M. Tech student, Mechanical Engineering Department, Institute

More information

NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD

NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD V. G. Guedes a, G. C. R. Bodstein b, and M. H. Hirata c a Centro de Pesquisas de Energia Elétrica Departamento de Tecnologias

More information

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Chapter 1 Earth Science Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Project Representative Yozo Hamano Authors Ataru Sakuraba Yusuke Oishi

More information

Simulation and improvement of the ventilation of a welding workshop using a Finite volume scheme code

Simulation and improvement of the ventilation of a welding workshop using a Finite volume scheme code 1 st. Annual (National) Conference on Industrial Ventilation-IVC2010 Feb 24-25, 2010, Sharif University of Technology, Tehran, Iran IVC2010 Simulation and improvement of the ventilation of a welding workshop

More information

The behaviour of high Reynolds flows in a driven cavity

The behaviour of high Reynolds flows in a driven cavity The behaviour of high Reynolds flows in a driven cavity Charles-Henri BRUNEAU and Mazen SAAD Mathématiques Appliquées de Bordeaux, Université Bordeaux 1 CNRS UMR 5466, INRIA team MC 351 cours de la Libération,

More information

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Jingwei Zhu May 14, 2014 Instructor: Surya Pratap Vanka 1 Project Description The objective of

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

LEAST-SQUARES FINITE ELEMENT MODELS

LEAST-SQUARES FINITE ELEMENT MODELS LEAST-SQUARES FINITE ELEMENT MODELS General idea of the least-squares formulation applied to an abstract boundary-value problem Works of our group Application to Poisson s equation Application to flows

More information

Open boundary conditions in numerical simulations of unsteady incompressible flow

Open boundary conditions in numerical simulations of unsteady incompressible flow Open boundary conditions in numerical simulations of unsteady incompressible flow M. P. Kirkpatrick S. W. Armfield Abstract In numerical simulations of unsteady incompressible flow, mass conservation can

More information

SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE

SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE Computational Thermal Sciences, 3 (1): 63 72 (2011) SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE M. Zhao, 1, M. Yang, 1 M. Lu, 1 & Y. W. Zhang 2 1

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010 CFD analysis of 2D unsteady flow around a square cylinder Gera.B, Pavan K. Sharma, Singh R.K Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India 400085 pa1.sharma@gmail.com ABSTRACT

More information

Stabilized and Coupled FEM/EFG Approximations for Fluid Problems

Stabilized and Coupled FEM/EFG Approximations for Fluid Problems COMPUTATIONAL MECHANICS WCCM VI in conjunction with APCOM4, Sept. 5-, 24, Beijing, China c 24 Tsinghua University Press & Springer-Verlag Stabilized and Coupled FEM/EFG Approximations for Fluid Problems

More information

CFD STUDY OF MASS TRANSFER IN SPACER FILLED MEMBRANE MODULE

CFD STUDY OF MASS TRANSFER IN SPACER FILLED MEMBRANE MODULE GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 31 (2011) 33-41 CFD STUDY OF MASS TRANSFER IN SPACER FILLED MEMBRANE MODULE Sharmina Hussain Department of Mathematics and Natural Science BRAC University,

More information

NATURAL CONVECTION OF AIR IN TILTED SQUARE CAVITIES WITH DIFFERENTIALLY HEATED OPPOSITE WALLS

NATURAL CONVECTION OF AIR IN TILTED SQUARE CAVITIES WITH DIFFERENTIALLY HEATED OPPOSITE WALLS Proceedings of the International onference on Mechanical Engineering 0 (IME0 8-0 December 0, Dhaka, Bangladesh IME- NATURAL ONVETION OF AIR IN TILTED SQUARE AVITIES WIT DIFFERENTIALLY EATED OPPOSITE WALLS

More information

Meysam ATASHAFROOZ, Seyyed Abdolreza GANDJALIKHAN NASSAB, and Amir Babak ANSARI

Meysam ATASHAFROOZ, Seyyed Abdolreza GANDJALIKHAN NASSAB, and Amir Babak ANSARI THERMAL SCIENCE: Year 014, Vol. 18, No., pp. 479-49 479 NUMERICAL INVESTIGATION OF ENTROPY GENERATION IN LAMINAR FORCED CONVECTION FLOW OVER INCLINED BACKWARD AND FORWARD FACING STEPS IN A DUCT UNDER BLEEDING

More information

Fine Grid Numerical Solutions of Triangular Cavity Flow

Fine Grid Numerical Solutions of Triangular Cavity Flow Published in : The European Physical Journal - Applied Physics (2007) Eur. Phys. J. Appl. Phys. 2007; Vol 38: pp 97-105 Fine Grid Numerical Solutions of Triangular Cavity Flow Ercan Erturk 1 and Orhan

More information

Lattice Boltzmann Method for Fluid Simulations

Lattice Boltzmann Method for Fluid Simulations Lattice Boltzmann Method for Fluid Simulations Yuanxun Bill Bao & Justin Meskas April 14, 2011 1 Introduction In the last two decades, the Lattice Boltzmann method (LBM) has emerged as a promising tool

More information

Computation of Incompressible Flows: SIMPLE and related Algorithms

Computation of Incompressible Flows: SIMPLE and related Algorithms Computation of Incompressible Flows: SIMPLE and related Algorithms Milovan Perić CoMeT Continuum Mechanics Technologies GmbH milovan@continuummechanicstechnologies.de SIMPLE-Algorithm I - - - Consider

More information

Laminar Forced Convection Heat Transfer from Two Heated Square Cylinders in a Bingham Plastic Fluid

Laminar Forced Convection Heat Transfer from Two Heated Square Cylinders in a Bingham Plastic Fluid Laminar Forced Convection Heat Transfer from Two Heated Square Cylinders in a Bingham Plastic Fluid E. Tejaswini 1*, B. Sreenivasulu 2, B. Srinivas 3 1,2,3 Gayatri Vidya Parishad College of Engineering

More information

Project #1 Internal flow with thermal convection

Project #1 Internal flow with thermal convection Project #1 Internal flow with thermal convection MAE 494/598, Fall 2017, Project 1 (20 points) Hard copy of report is due at the start of class on the due date. The rules on collaboration will be released

More information

Numerical study of the steady state uniform flow past a rotating cylinder

Numerical study of the steady state uniform flow past a rotating cylinder Numerical study of the steady state uniform flow past a rotating cylinder J. C. Padrino and D. D. Joseph December 17, 24 1 Introduction A rapidly rotating circular cylinder immersed in a free stream generates

More information

A STUDY ON NATURAL CONVECTION HEAT TRANSFER IN COMPLEX BOUNDARIES

A STUDY ON NATURAL CONVECTION HEAT TRANSFER IN COMPLEX BOUNDARIES http://doi.org/10.4867/jpe-017-01-11 JPE (017) Vol.0 (1) Mohapatra, C. R. Preliminary Note A STUDY ON NATURAL CONVECTION HEAT TRANSFER IN COMPLEX BOUNDARIES Received: 3 February 017 / Accepted: 01 April

More information

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

More information

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions R. S. Sellers MAE 5440, Computational Fluid Dynamics Utah State University, Department of Mechanical and Aerospace Engineering

More information

A Meshless Radial Basis Function Method for Fluid Flow with Heat Transfer

A Meshless Radial Basis Function Method for Fluid Flow with Heat Transfer Copyright c 2008 ICCES ICCES, vol.6, no.1, pp.13-18 A Meshless Radial Basis Function Method for Fluid Flow with Heat Transfer K agamani Devi 1,D.W.Pepper 2 Summary Over the past few years, efforts have

More information

In Proc. of the V European Conf. on Computational Fluid Dynamics (ECFD), Preprint

In Proc. of the V European Conf. on Computational Fluid Dynamics (ECFD), Preprint V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 J. C. F. Pereira and A. Sequeira (Eds) Lisbon, Portugal, 14 17 June 2010 THE HIGH ORDER FINITE ELEMENT METHOD FOR STEADY CONVECTION-DIFFUSION-REACTION

More information

SUPG STABILIZATION PARAMETERS CALCULATED FROM THE QUADRATURE-POINT COMPONENTS OF THE ELEMENT-LEVEL MATRICES

SUPG STABILIZATION PARAMETERS CALCULATED FROM THE QUADRATURE-POINT COMPONENTS OF THE ELEMENT-LEVEL MATRICES European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 24 P. Neittaanmäki, T. Rossi, K. Majava, and O. Pironneau (eds.) W. Rodi and P. Le Quéré (assoc. eds.) Jyväskylä,

More information

Natural Convection in Parabolic Enclosure Heated from Below

Natural Convection in Parabolic Enclosure Heated from Below www.ccsenet.org/mas Modern Applied Science Vol. 5, No. 3; June 011 Natural Convection in Parabolic Enclosure Heated from Below Dr. Ahmed W. Mustafa (Corresponding auther) University of Tikrit, College

More information

A FLOW-CONDITION-BASED INTERPOLATION MIXED FINITE ELEMENT PROCEDURE FOR HIGHER REYNOLDS NUMBER FLUID FLOWS

A FLOW-CONDITION-BASED INTERPOLATION MIXED FINITE ELEMENT PROCEDURE FOR HIGHER REYNOLDS NUMBER FLUID FLOWS Mathematical Models and Methods in Applied Sciences Vol. 12, No. 4 (2002) 525 539 c World Scientific Publishing Compan A FLOW-CONDITION-BASED INTERPOLATION MIXED FINITE ELEMENT PROCEDURE FOR HIGHER REYNOLDS

More information

Numerical study of forced convection around heated horizontal triangular ducts

Numerical study of forced convection around heated horizontal triangular ducts Advanced Computational Methods and Experiments in Heat Transfer XI 0 Numerical study of forced convection around heated horizontal triangular ducts O. Zeitoun, M. E. Ali & A. Nuhait King Saud University,

More information

LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN A LID DRIVEN CAVITY

LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN A LID DRIVEN CAVITY LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN A LID DRIVEN CAVITY M. Y. Gokhale, Ignatius Fernandes Maharashtra Institute of Technology, Pune 4 38, India University of Pune, India Email : mukundyg@yahoo.co.in,

More information

FREE CONVECTIVE HEAT TRANSFER FROM AN OBJECT AT LOW RAYLEIGH NUMBER

FREE CONVECTIVE HEAT TRANSFER FROM AN OBJECT AT LOW RAYLEIGH NUMBER Free Convective Heat Transfer From an Object at Low Rayleigh Number FREE CONVECTIVE HEAT TRANSFER FROM AN OBJECT AT LOW RAYLEIGH NUMBER Md. Golam Kader and Khandkar Aftab Hossain * Department of Mechanical

More information

Numerical Investigation of Combined Buoyancy and Surface Tension Driven Convection in an Axi-Symmetric Cylindrical Annulus

Numerical Investigation of Combined Buoyancy and Surface Tension Driven Convection in an Axi-Symmetric Cylindrical Annulus Nonlinear Analysis: Modelling and Control, 2007, Vol. 12, No. 4, 541 552 Numerical Investigation of Combined Buoyancy and Surface Tension Driven Convection in an Axi-Symmetric Cylindrical Annulus M. Sankar

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

EFFECT OF VARYING THE HEATED LOWER REGION ON FLOW WITHIN A HORIZONTAL CYLINDER

EFFECT OF VARYING THE HEATED LOWER REGION ON FLOW WITHIN A HORIZONTAL CYLINDER ISTP-1, 5, PRAGUE 1 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA EFFECT OF VARYING THE HEATED LOWER REGION ON FLOW WITHIN A HORIZONTAL CYLINDER S. S. Leong School of Mechanical and Manufacturing Engineering

More information

Module 2: External Flows Lecture 12: Flow Over Curved Surfaces. The Lecture Contains: Description of Flow past a Circular Cylinder

Module 2: External Flows Lecture 12: Flow Over Curved Surfaces. The Lecture Contains: Description of Flow past a Circular Cylinder The Lecture Contains: Description of Flow past a Circular Cylinder Experimental Results for Circular Cylinder Flow file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture12/12_1.htm[12/24/2014

More information

Spatial discretization scheme for incompressible viscous flows

Spatial discretization scheme for incompressible viscous flows Spatial discretization scheme for incompressible viscous flows N. Kumar Supervisors: J.H.M. ten Thije Boonkkamp and B. Koren CASA-day 2015 1/29 Challenges in CFD Accuracy a primary concern with all CFD

More information

Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle

Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle Nonlinear Analysis: Modelling and Control, 2011, Vol. 16, No. 1, 89 99 89 Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle S. Parvin,

More information

Computational Fluid Dynamics Modelling of Natural Convection in Copper Electrorefining

Computational Fluid Dynamics Modelling of Natural Convection in Copper Electrorefining 16 th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 2007 Abstract Computational Fluid Dynamics Modelling of Natural Convection in Copper Electrorefining A computational

More information

Vortex wake and energy transitions of an oscillating cylinder at low Reynolds number

Vortex wake and energy transitions of an oscillating cylinder at low Reynolds number ANZIAM J. 46 (E) ppc181 C195, 2005 C181 Vortex wake and energy transitions of an oscillating cylinder at low Reynolds number B. Stewart J. Leontini K. Hourigan M. C. Thompson (Received 25 October 2004,

More information

Available online at ScienceDirect. Procedia Engineering 90 (2014 )

Available online at   ScienceDirect. Procedia Engineering 90 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 9 (24 ) 55 556 th International Conference on Mechanical Engineering, ICME 23 Analysis of heat transfer and flow due to natural

More information

Meshfree Petrov-Galerkin Methods for the Incompressible Navier-Stokes Equations

Meshfree Petrov-Galerkin Methods for the Incompressible Navier-Stokes Equations Meshfree Petrov-Galerkin Methods for the Incompressible Navier-Stokes Equations Thomas-Peter Fries and Hermann Georg Matthies Institute of Scientific Computing, Technical University of Braunschweig, Brunswick,

More information

On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion

On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion Volker John and Ellen Schmeyer FR 6.1 Mathematik, Universität des Saarlandes, Postfach 15 11

More information

III. Transport Phenomena

III. Transport Phenomena III. Transport Phenomena Lecture 17: Forced Convection in Fuel Cells (I) MIT Student Last lecture we examined how concentration polarisation limits the current that can be drawn from a fuel cell. Reducing

More information

A fundamental study of the flow past a circular cylinder using Abaqus/CFD

A fundamental study of the flow past a circular cylinder using Abaqus/CFD A fundamental study of the flow past a circular cylinder using Abaqus/CFD Masami Sato, and Takaya Kobayashi Mechanical Design & Analysis Corporation Abstract: The latest release of Abaqus version 6.10

More information

External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method

External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method Available online at http://ijim.srbiau.ac.ir/ Int. J. Industrial Mathematics (ISSN 2008-5621) Vol. 10, No. 2, 2018 Article ID IJIM-00726, 8 pages Research Article External and Internal Incompressible Viscous

More information

SIMULATION OF THREE-DIMENSIONAL INCOMPRESSIBLE CAVITY FLOWS

SIMULATION OF THREE-DIMENSIONAL INCOMPRESSIBLE CAVITY FLOWS ICAS 2000 CONGRESS SIMULATION OF THREE-DIMENSIONAL INCOMPRESSIBLE CAVITY FLOWS H Yao, R K Cooper, and S Raghunathan School of Aeronautical Engineering The Queen s University of Belfast, Belfast BT7 1NN,

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Homework 4 in 5C1212; Part A: Incompressible Navier- Stokes, Finite Volume Methods

Homework 4 in 5C1212; Part A: Incompressible Navier- Stokes, Finite Volume Methods Homework 4 in 5C11; Part A: Incompressible Navier- Stokes, Finite Volume Methods Consider the incompressible Navier Stokes in two dimensions u x + v y = 0 u t + (u ) x + (uv) y + p x = 1 Re u + f (1) v

More information

NOVEL FINITE DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

NOVEL FINITE DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 7 Number Pages 3 39 c Institute for Scientific Computing and Information NOVEL FINITE DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF TWO-DIMENSIONAL

More information

Numerical solutions of 2-D incompressible driven cavity flow with wavy bottom surface

Numerical solutions of 2-D incompressible driven cavity flow with wavy bottom surface American Journal of Applied Mathematics 015; (1-1): 0-4 Published online December 5, 014 (http://www.sciencepublishinggroup.com/j/ajam) doi: 10.11648/j.ajam.s.01500101.14 ISSN: 0-004 (Print); ISSN: 0-006X

More information

Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder

Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder Ali Kianifar, Edris Yousefi Rad Abstract In many applications the flow that past bluff bodies have frequency nature (oscillated)

More information

Towards a Numerical Benchmark for 3D Low Mach Number Mixed Flows in a Rectangular Channel Heated from Below

Towards a Numerical Benchmark for 3D Low Mach Number Mixed Flows in a Rectangular Channel Heated from Below Copyright 2008 Tech Science Press FDMP, vol.4, no.4, pp.263-269, 2008 Towards a Numerical Benchmark for 3D Low Mach Number Mixed Flows in a Rectangular Channel Heated from Below G. Accary 1, S. Meradji

More information

METHOD OF LINES FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN THE STREAM-FUNCTION FORMULATION

METHOD OF LINES FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN THE STREAM-FUNCTION FORMULATION TASKQUARTERLY9No1,17 35 METHOD OF LINES FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN THE STREAM-FUNCTION FORMULATION ZBIGNIEW KOSMA Institute of Applied Mechanics, Radom University of Technology,

More information

JMBC Computational Fluid Dynamics I Exercises by A.E.P. Veldman

JMBC Computational Fluid Dynamics I Exercises by A.E.P. Veldman JMBC Computational Fluid Dynamics I Exercises by A.E.P. Veldman The exercises will be carried out on PC s in the practicum rooms. Several (Matlab and Fortran) files are required. How these can be obtained

More information

DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT

DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT 10 th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, USA, July, 2017 DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT Bing-Chen Wang Department

More information

Abstract. Introduction

Abstract. Introduction Combined forced and natural convection in a square cavity - numerical solution and scale analysis A.T. Franco/ M.M. Ganzarolli'' "DAMEC, CEFET, PR 80230-901, Curitiba, PR Brasil >>DE, FEM, UNICAMP 13081-970,

More information

Development of a Parallel, 3D, Lattice Boltzmann Method CFD Solver for Simulation of Turbulent Reactor Flow

Development of a Parallel, 3D, Lattice Boltzmann Method CFD Solver for Simulation of Turbulent Reactor Flow DOE-FIU SCIENCE & TECHNOLOGY WORKFORCE DEVELOPMENT PROGRAM STUDENT SUMMER INTERNSHIP TECHNICAL REPORT June 4, 2012 to August 10, 2012 Development of a Parallel, 3D, Lattice Boltzmann Method CFD Solver

More information

Experimental and Numerical Investigation of Flow over a Cylinder at Reynolds Number 10 5

Experimental and Numerical Investigation of Flow over a Cylinder at Reynolds Number 10 5 Journal of Modern Science and Technology Vol. 1. No. 1. May 2013 Issue. Pp.52-60 Experimental and Numerical Investigation of Flow over a Cylinder at Reynolds Number 10 5 Toukir Islam and S.M. Rakibul Hassan

More information

Excerpt from the Proceedings of the COMSOL Users Conference 2006 Boston

Excerpt from the Proceedings of the COMSOL Users Conference 2006 Boston Using Comsol Multiphysics to Model Viscoelastic Fluid Flow Bruce A. Finlayson, Professor Emeritus Department of Chemical Engineering University of Washington, Seattle, WA 98195-1750 finlayson@cheme.washington.edu

More information

Numerical Investigation of Laminar Flow over a Rotating Circular Cylinder

Numerical Investigation of Laminar Flow over a Rotating Circular Cylinder International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:13 No:3 32 Numerical Investigation of Laminar Flow over a Rotating Circular Cylinder Ressan Faris Al-Maliky Department of

More information

CFD Analysis for Thermal Behavior of Turbulent Channel Flow of Different Geometry of Bottom Plate

CFD Analysis for Thermal Behavior of Turbulent Channel Flow of Different Geometry of Bottom Plate International Journal Of Engineering Research And Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 13, Issue 9 (September 2017), PP.12-19 CFD Analysis for Thermal Behavior of Turbulent

More information

10. Buoyancy-driven flow

10. Buoyancy-driven flow 10. Buoyancy-driven flow For such flows to occur, need: Gravity field Variation of density (note: not the same as variable density!) Simplest case: Viscous flow, incompressible fluid, density-variation

More information

Numerical Study of Natural Unsteadiness Using Wall-Distance-Free Turbulence Models

Numerical Study of Natural Unsteadiness Using Wall-Distance-Free Turbulence Models Numerical Study of Natural Unsteadiness Using Wall-Distance-Free urbulence Models Yi-Lung Yang* and Gwo-Lung Wang Department of Mechanical Engineering, Chung Hua University No. 707, Sec 2, Wufu Road, Hsin

More information

NUMERICAL SOLUTION OF CONVECTION DIFFUSION EQUATIONS USING UPWINDING TECHNIQUES SATISFYING THE DISCRETE MAXIMUM PRINCIPLE

NUMERICAL SOLUTION OF CONVECTION DIFFUSION EQUATIONS USING UPWINDING TECHNIQUES SATISFYING THE DISCRETE MAXIMUM PRINCIPLE Proceedings of the Czech Japanese Seminar in Applied Mathematics 2005 Kuju Training Center, Oita, Japan, September 15-18, 2005 pp. 69 76 NUMERICAL SOLUTION OF CONVECTION DIFFUSION EQUATIONS USING UPWINDING

More information

Implementation of 3D Incompressible N-S Equations. Mikhail Sekachev

Implementation of 3D Incompressible N-S Equations. Mikhail Sekachev Implementation of 3D Incompressible N-S Equations Mikhail Sekachev Navier-Stokes Equations The motion of a viscous incompressible fluid is governed by the Navier-Stokes equations u + t u = ( u ) 0 Quick

More information

TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS

TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS HEFAT2014 10 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 2014 Orlando, Florida TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS Everts, M.,

More information

CFD as a Tool for Thermal Comfort Assessment

CFD as a Tool for Thermal Comfort Assessment CFD as a Tool for Thermal Comfort Assessment Dimitrios Koubogiannis dkoubog@teiath.gr G. Tsimperoudis, E. Karvelas Department of Energy Technology Engineering Technological Educational Institute of Athens

More information

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations Today's Lecture 2D grid colocated arrangement staggered arrangement Exercise: Make a Fortran program which solves a system of linear equations using an iterative method SIMPLE algorithm Pressure-velocity

More information

Numerical simulation of unsteady mixed convection in a driven cavity using an externally excited sliding lid

Numerical simulation of unsteady mixed convection in a driven cavity using an externally excited sliding lid European Journal of Mechanics B/Fluids 26 (2007) 669 687 Numerical simulation of unsteady mixed convection in a driven cavity using an externally excited sliding lid Khalil M. Khanafer a, Abdalla M. Al-Amiri

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

º Õߪí À À Ë ËÕπ â«ß Õ µ «â«µ Àπàß ÿ æ Ë Ëß øíß å π µ «Õ ªìπøíß å π π ß»

º Õߪí À À Ë ËÕπ â«ß Õ µ «â«µ Àπàß ÿ æ Ë Ëß øíß å π µ «Õ ªìπøíß å π π ß» ««æ π. ªï Ë 31 Ë 4 µÿ - π«2551 643 º Õߪí À À Ë ËÕπ â«ß Õ µ «â«µ Àπàß ÿ æ Ë Ëß øíß å π µ «Õ ªìπøíß å π π ß» µ π» «1 À µ å»ÿπ å ß µ ÕßÀ «ß ª ÿ π 12121 ËÕ 1 惻 π 2550 µõ ËÕ 20 ÿπ π 2551 àõ «µ Àπàß ÿ æ Ë

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 28 CFD BASED HEAT TRANSFER ANALYSIS OF SOLAR AIR HEATER DUCT PROVIDED WITH ARTIFICIAL ROUGHNESS Vivek Rao, Dr. Ajay

More information

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11-TH-014 FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT

More information

Numerical Investigation of Effect of Buoyancy on the Wake Instability of a Heated Cylinder In Contra Flow

Numerical Investigation of Effect of Buoyancy on the Wake Instability of a Heated Cylinder In Contra Flow Numerical Investigation of Effect of Buoyancy on the Wake Instability of a Heated Cylinder In Contra Flow Khyati B. Varma 1 and Hui Hu and Z J Wang 3 Iowa State University,Ames, Iowa, 511 Flow over a cylinder

More information

SIMULATION OF MIXED CONVECTIVE HEAT TRANSFER USING LATTICE BOLTZMANN METHOD

SIMULATION OF MIXED CONVECTIVE HEAT TRANSFER USING LATTICE BOLTZMANN METHOD International Journal of Automotive and Mechanical Engineering (IJAME) ISSN: 2229-8649 (Print); ISSN: 2180-1606 (Online); Volume 2, pp. 130-143, July-December 2010 Universiti Malaysia Pahang DOI: http://dx.doi.org/10.15282/ijame.2.2010.3.0011

More information

Solving the Euler Equations!

Solving the Euler Equations! http://www.nd.edu/~gtryggva/cfd-course/! Solving the Euler Equations! Grétar Tryggvason! Spring 0! The Euler equations for D flow:! where! Define! Ideal Gas:! ρ ρu ρu + ρu + p = 0 t x ( / ) ρe ρu E + p

More information

Stabilized Formulations and Smagorinsky Turbulence Model for Incompressible Flows

Stabilized Formulations and Smagorinsky Turbulence Model for Incompressible Flows WCCM V Fifth World Congress on Computational Mechanics July 7 2, 22, Vienna, Austria Eds.: H.A. Mang, F.G. Rammerstorfer, J. Eberhardsteiner Stabilized Formulations and Smagorinsky Turbulence Model for

More information

Benchmark solutions for the natural convective heat transfer problem in a square cavity

Benchmark solutions for the natural convective heat transfer problem in a square cavity Benchmark solutions for the natural convective heat transfer problem in a square cavity J. Vierendeels', B.Merci' &L E. Dick' 'Department of Flow, Heat and Combustion Mechanics, Ghent University, Belgium.

More information

NUMERICAL SIMULATION OF PULSATING INCOMPRESSIBLE VISCOUS FLOW IN ELASTIC TUBES. Eng. Osama Ali Abdelmonem El Banhawy

NUMERICAL SIMULATION OF PULSATING INCOMPRESSIBLE VISCOUS FLOW IN ELASTIC TUBES. Eng. Osama Ali Abdelmonem El Banhawy NUMERICAL SIMULATION OF PULSATING INCOMPRESSIBLE VISCOUS FLOW IN ELASTIC TUBES By Eng. Osama Ali Abdelmonem El Banhawy A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment

More information

A Finite Element Analysis on MHD Free Convection Flow in Open Square Cavity Containing Heated Circular Cylinder

A Finite Element Analysis on MHD Free Convection Flow in Open Square Cavity Containing Heated Circular Cylinder American Journal of Computational Mathematics, 2015, 5, 41-54 Published Online March 2015 in SciRes. http://www.scirp.org/journal/ajcm http://dx.doi.org/10.4236/ajcm.2015.51003 A Finite Element Analysis

More information

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Universität des Saarlandes. Fachrichtung 6.1 Mathematik Universität des Saarlandes U N I V E R S I T A S S A R A V I E N I S S Fachrichtung 6.1 Mathematik Preprint Nr. 219 On finite element methods for 3D time dependent convection diffusion reaction equations

More information

DUE: WEDS MARCH 26TH 2018

DUE: WEDS MARCH 26TH 2018 HOMEWORK # 2: FINITE DIFFERENCES MAPPING AND TWO DIMENSIONAL PROBLEMS DUE: WEDS MARCH 26TH 2018 NOTE: In this homework, you will choose ONE of the following three questions to perform and hand-in. Each

More information

Flow patterns and heat transfer in square cavities with perfectly conducting horizontal walls: the case of high Rayleigh numbers ( )

Flow patterns and heat transfer in square cavities with perfectly conducting horizontal walls: the case of high Rayleigh numbers ( ) Advances in Fluid Mechanics VII 391 Flow patterns and heat transfer in square cavities with perfectly conducting horizontal walls: the case of high Rayleigh numbers (10 6 10 9 ) R. L. Frederick & S. Courtin

More information

Convectively Unstable Anti-Symmetric Waves in Flows Past Bluff Bodies

Convectively Unstable Anti-Symmetric Waves in Flows Past Bluff Bodies Copyright 29 Tech Science Press CMES, vol.53, no.2, pp.95-12, 29 Convectively Unstable Anti-Symmetric Waves in Flows Past Bluff Bodies Bhaskar Kumar 1 and Sanjay Mittal 1,2 Abstract: The steady flow past

More information

MIXED CONVECTION IN POISEUILLE FLUID FROM AN ASYMMETRICALLY CONFINED HEATED CIRCULAR CYLINDER

MIXED CONVECTION IN POISEUILLE FLUID FROM AN ASYMMETRICALLY CONFINED HEATED CIRCULAR CYLINDER THERMAL SCIENCE: Year 08, Vol., No., pp. 8-8 8 MIXED CONVECTION IN POISEUILLE FLUID FROM AN ASYMMETRICALLY CONFINED HEATED CIRCULAR CYLINDER by Houssem LAIDOUDI * and Mohamed BOUZIT Laboratory of Science

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Effect on heat transfer for laminar flow over Backward Facing Step with square cylinder placed inside using Higher Order Compact Scheme

Effect on heat transfer for laminar flow over Backward Facing Step with square cylinder placed inside using Higher Order Compact Scheme ISSN (e): 2250 3005 Volume, 06 Issue, 01 January 2016 International Journal of Computational Engineering Research (IJCER) Effect on heat transfer for laminar flow over Backward Facing Step with square

More information

Numerical simulation of transient forced convection in a square enclosure containing two heated circular cylinders

Numerical simulation of transient forced convection in a square enclosure containing two heated circular cylinders Numerical simulation of transient forced convection in a square enclosure containing two heated circular cylinders Fariborz Karimi a, Hongtao Xu a, Zhiyun Wang a, Mo Yang a, *, Yuwen Zhang b a School of

More information

MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER

MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER Suranaree J. Sci. Technol. Vol. 17 No. 2; April - June 2010 139 MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER Md. Mustafizur Rahman 1 *, M. A. Alim 1 and Sumon Saha

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 3 LAMINAR BOUNDARY LAYER FLOW LAMINAR BOUNDARY LAYER FLOW Boundary

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

The effective slip length and vortex formation in laminar flow over a rough surface

The effective slip length and vortex formation in laminar flow over a rough surface The effective slip length and vortex formation in laminar flow over a rough surface Anoosheh Niavarani and Nikolai V. Priezjev Movies and preprints @ http://www.egr.msu.edu/~niavaran A. Niavarani and N.V.

More information

Fine grid numerical solutions of triangular cavity flow

Fine grid numerical solutions of triangular cavity flow Eur. Phys. J. Appl. Phys. 38, 97 105 (2007) DOI: 10.1051/epjap:2007057 THE EUROPEAN PHYSICAL JOURNAL APPLIED PHYSICS Fine grid numerical solutions of triangular cavity flow E. Erturk 1,a and O. Gokcol

More information

Stability of flow past a confined cylinder

Stability of flow past a confined cylinder Stability of flow past a confined cylinder Andrew Cliffe and Simon Tavener University of Nottingham and Colorado State University Stability of flow past a confined cylinder p. 1/60 Flow past a cylinder

More information

THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW

THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW Luigi De Giorgi, Carlo Cima, Emilio Cafaro Dipartimento di Energetica, Politecnico di Torino, Torino, Italy Volfango Bertola School

More information

ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics

ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics For Friday, October 26 th Start reading the handout entitled Notes on finite-volume methods. Review Chapter 7 on Dimensional Analysis

More information