A method of Lagrange Galerkin of second order in time. Une méthode de Lagrange Galerkin d ordre deux en temps

Size: px
Start display at page:

Download "A method of Lagrange Galerkin of second order in time. Une méthode de Lagrange Galerkin d ordre deux en temps"

Transcription

1 A metod of Lagrange Galerkin of second order in time Une métode de Lagrange Galerkin d ordre deux en temps Jocelyn Étienne a a DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, Great-Britain. Tel.: , Fax : Abstract Te Lagrange Galerkin metod is te coupling of a finite element metod for space discretisation wit te metod of caracteristics for te discretisation of te material derivative in some parabolic problems. We propose a new sceme of second-order accuracy in time, wic in contrast wit previous metods does not require a correction term. Numerical examples, including Burgers equation, illustrate te convergence rate and low computational cost of te metod. To cite tis article: J. Étienne, C. R. Acad. Sci. Paris, Ser. I 336 (003). Résumé La métode de Lagrange Galerkin consiste à coupler une discrétisation aux éléments finis en espace avec la métode des caractéristiques pour la discrétisation de la dérivée matérielle dans certains problèmes paraboliques. Nous proposons un nouveau scéma, d ordre deux en temps, ne faisant pas intervenir de terme de correction comme les métodes précédentes. Des exemples numériques, dont l équation de Burgers, illustrent le taux de convergence et l efficacité en temps de calcul de la métode. Pour citer cet article : J. Étienne, C. R. Acad. Sci. Paris, Ser. I 336 (003).. Introduction Te metod of caracteristics consists in using te caracteritic curves of an advection field a in order to rewrite te transport operator ( t + a ) in terms of a partial derivative in time. Indeed, if one introduces te caracteristics X defined for any (x, s) Ω [0, T] by: dx {x, s; t} = a(x{x, s; t}, t) dt for t [0, T], () X{x, s; s} = x address: J.Etienne@damtp.cam.ac.uk (Jocelyn Étienne). Preprint submitted to Elsevier Science 5t October 005

2 one notes tat by te cain rule, u(x{x, s; t}, t) t = [( ) ] t + a u (X{x, s; t}, t) () If te advection field is interpreted as te velocity of a continuous medium, tis transform is te passage from a Eulerian frame to te Lagrangian frame. Tis metod was employed in te context of finite elements by Bercovier and Pironneau [] as a particular upwinding metod, were te left and side derivative of () is discretised by a backward Euler finite difference and te instant s is cosen as te current time step t n, so tat X{, s; t n } is te identity. For a parabolic problem of te type ( ) t + a u + Au = f in Ω, u(, t 0 ) = u 0, u Ω [0,T] = 0, a time-step by te metod of caracteristics is: u n u n X{, t n ; t n } + Au n = f(, t n ), (3) and allows to calculate an approximation u n of u(, t n ) if te caracteristic mapping X{, t n ; t n } and an approximation u n of u(, t n ) are known, wit a first order accuracy (see e.g. []). Te transport problem in Eq. (3) is idden in te term u n X{, t n ; t n }. Te calculation of tis term cannot be considered separately from te discretisation in space employed, and tus we now introduce our finite elements discretisation. First we write a variational problem to solve, Given u n V, find u n V suc tat (un, v) + a(u n, v) = f(, t n ) + ( u n X{, t n ; t n }, v ) v V (4) were V is an appropriate subspace of H0(Ω), and a(v, v ) = (Av, v ) for all v, v V. Let V V be a finite element space of degree k based on a triangulation T, equiped wit a projection operator Π suc tat for f V, s = 0 or, f Π f s,ω C k s+ f k+,ω Ten te discrete problem is, Given u n V, find u n V suc tat (un, v ) + a(u n, v ) = Π f(, t n ) + ( ) u n X{, t n ; t n }, v v V (5) were Π is a projection operator from V onto V. Te advected field transfer, tat is, te calculation of te term ( u n ) X{, t n ; t n }, v is not standard, because in general u n X{, t n ; t n } V, and can be done in two main different ways [3], tat we will briefly describe. In one approac, u n X{, t n ; t n } is treated as a function analytically known at every point of te domain, and quadrature formulae are used eiter directly, or after interpolating u n X{, t n ; t n } by a function in V. Alternatively, advantage can be taken of te fact tat u n belongs to V by calculating a triangulation T = (T X {, t n ; t n }) T, were X {, t n ; t n } is an approximation of X{, t n ; t n }, and te projection ũ V can be calculated suc tat: (ũ, v ) = v u n (X {, t n ; t n }) dx v V. (6) K T K because bot v and u n (X {, t n ; t n }) are polynomial on K T. Te caracteristic feet X{, t n ; t n } (for te first approac of te advected field transfer) or X{, t n ; t n } (for te second) are not known exactly in general, and need to be numerically integrated from Problem (). For a first order sceme, a Euler meod is enoug to obtain te desired accuracy, wit:

3 X{x, t n ; t n } = x + a(x, t n ) + O( ), X{x, t n ; t n } = x a(x, t n ) + O( ). (7) Te space discretisation as to be done in a finite element space of degree larger tan k. Tus, if k, isoparametric elements elements of degree k are needed if one wants to calculate T. In te case of nonlinear transport (a = u), te approximation u n of a(, t n) is not known by te time wen we need to approximate X{, t n ; t n }, but one notes tat using u n instead does not affect te order of accuracy in Eq. (7). Tis will not be te case anymore wen considering a second order sceme. It is ten easy to ceck formally tat (un ũ ) is a discretisation of ( t + a ) u to te first order in time, and it is possible to prove an error estimate in k+s + as is done in [] for te incompressible Navier Stokes equations. We will now consider te extension of tis sceme to second-order time accuracy.. Second order scemes Te difficulty of extending te Lagrange Galerkin sceme to second-order time accuracy was pointed out in [4]. Indeed, a time-sceme suc as: u n u n X{, t n ; t n } + (Aun + Au n ) = (f(, t n ) + f(, t n )) (8) is not second order accurate, because we ave: t + a u(x{, t n ; t n / }, t n / ) = (un u n X{, t n ; t n }) + O( ), but te point X{, t n ; t n / } is at a distance of order of x, and we ave only: t + a u(x, t n / ) = (un u n X{, t n ; t n }) + O(). Tus a correct second order sceme writes, u n u n X{, t n ; t n } + (Aun X{, t n ; t n } + Au n ) = (f(x{, t n; t n }, t n ) + f(, t n )) were Au n X{, t n ; t n } is understood as (Au n ) X{, t n ; t n }. Te problem is tat, if one wants to apply te Green formula to te variational form of Eq. (9), te cange of variable X{, t n ; t n } produces an additional correction term. If A is te Laplace operator, tis term is ( J n u n X{, t n ; t n }, v ), were J n is te Jacobian matrix of a(, t n ). Altoug calculations are possible wit tis discretisation [4], we sow in tis Note tat a two-step time discretisation allows to write a simpler sceme, wic as te advantage to be independent of te form of operator A, and can be naturally extended to te nonlinear transport case a = u. Let us consider te two-step sceme, u u n = Au n + f(, t n ), (0a) u n u X{, t n ; t n } + Au n = f(, t n ). (0b) No Au n X{, t n ; t n } appears in Eqs. (0a) and (0b), so te Green formula can be applied as usual to teir variational form, witout te Jacobian of te transform X{, t n ; t n } appearing. On te oter and, if we compose te first equation by X{, t n ; t n } and sum te two, we obtain exactly Eq. (9), wic implies tat u n constructed in tis way is a second-order accurate approximation of u(, t n ). 3 (9)

4 (a) Figure. Error max n u n u(, t n) 0 (b) versus for (a), problem () and (b), problem (). +, algoritm (3), and 0 - -, algoritm (0). Te triangles ave a ratio of and, respectively. Note tat te first step of tis sceme is only te explicit calculation of some auxiliary variable u, and( is computationally very ceap. Tis auxiliary variable can be interpreted as u = u(, t n ) + t + a ) u(, t n ) + O(). Tis is interesting, because an approximation of appropriate order of te mapping X{, t n ; t n } writes: X{x, t n ; t n } = x + a(x, t n ) + t + a u(, t n ) + O( 3 ), and tus in te nonlinear transport case a = u, we can calculate te carateristic mapping very easily wit: X{x, t n ; t n } = x + u + O( 3 ). 3. Numerical examples We present numerical examples for one-dimensional test problems and compare te result to teir analytical solution. Te finite element space V cosen is piecewise linear (k = ) on a 000-elements regular mes and te advected field transfer is done by projection. Te first problem is linear, wit te rigt-and-side f cosen suc tat te exact solution is u(x, t) = x( x)( + cost) V : u (x, t) + x( x)sin(t) u t x (x, t) + u (x, t) = f(x, t) (x, t) (0, ) [0, ] () x u(x, 0) = x( x), u(0, t) = u(, t) = 0 Te convergence of algoritms (3) and (0) is sown in Fig. (a). Tis is te case only for te advected field transfer by projection, for te quadrature metod, it is necessary to obtain a second-order approximation X {x, tn; t n } of X{x, t n; t n }, for instance wit Eq. (7), and ten to calculate X{x, t n; t n } = x + u X {x, tn; t n } + O( 3 ). 4

5 Te second problem is known as Burger s viscous equation, wic involves a nonlinear transport term, and tis time te rigt-and-side f is suc tat te exact solution is u(x, t) = x( x)t: u (x, t) + u(x, t) u t x (x, t) + u (x, t) = f(x, t) (x, t) (0, ) [0, ] () x wit te same initial and boundary conditions. Te convergence of algoritms (3) and (0) is sown in Fig. (b). For te same timestep, te CPU time is found to be only around 30% more wit te second order accurate metod. Tis overcost sould be even lower in dimensions iger tan one, as te resolution of te linear system in te implicit step increases faster tan te one of oter operations. 4. Perspectives Tis novel metod of second-order in time for Lagrange Galerkin discretisation of parabolic problems does not require to introduce a correction term but only te explicit calculation of an auxilliary variable. Te case of nonlinear transport is treated, and a metod making use of te same auxilliary variable is introduced to approximate te caracteristic curves in tat case. Numerical results confirm te order of convergence of te metod. Tis metod can be directly applied to muc more complicated problems, suc as te Navier Stokes equations. It can also be used for free-boundary flow problems, since te application of tis tecnique in te context of te Arbitrary Lagrangian Eulerian metod (ALE) is staigtforward. A detailed analysis of te second-order ALE metod will be presented in a fortcoming paper [5]. References [] M. Bercovier and O. Pironneau. Caracteristics and te finite elements metod. In Tadaiko Kawai, editor, Finite element flow analysis, proceedings of te 4t Int. Symp. on Finite Elements Metods in Flow Problems, Tokyo, pages Nort-Holland, 6 9 July 98. [] E. Süli. Convergence and nonlinear stability of te Lagrange-Galerkin metod for te Navier-Stokes equation. Numer. Mat., 53: , 988. [3] A. Priestley. Exact projections and te Lagrange-Galerkin metod: A realistic alternative to quadrature. J. Comput. Pys., :36 333, 993. [4] H. Rui and M. Tabata. A second order caracteristic finite element sceme for convection-diffusion problems. Numer. Mat., 9:6 77, 00. [5] J. Étienne. Te second order Lagrange Galerkin metod for free surface flows. in preparation. 5

New Streamfunction Approach for Magnetohydrodynamics

New Streamfunction Approach for Magnetohydrodynamics New Streamfunction Approac for Magnetoydrodynamics Kab Seo Kang Brooaven National Laboratory, Computational Science Center, Building 63, Room, Upton NY 973, USA. sang@bnl.gov Summary. We apply te finite

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

Jian-Guo Liu 1 and Chi-Wang Shu 2

Jian-Guo Liu 1 and Chi-Wang Shu 2 Journal of Computational Pysics 60, 577 596 (000) doi:0.006/jcp.000.6475, available online at ttp://www.idealibrary.com on Jian-Guo Liu and Ci-Wang Su Institute for Pysical Science and Tecnology and Department

More information

Dedicated to the 70th birthday of Professor Lin Qun

Dedicated to the 70th birthday of Professor Lin Qun Journal of Computational Matematics, Vol.4, No.3, 6, 4 44. ACCELERATION METHODS OF NONLINEAR ITERATION FOR NONLINEAR PARABOLIC EQUATIONS Guang-wei Yuan Xu-deng Hang Laboratory of Computational Pysics,

More information

Finite Difference Method

Finite Difference Method Capter 8 Finite Difference Metod 81 2nd order linear pde in two variables General 2nd order linear pde in two variables is given in te following form: L[u] = Au xx +2Bu xy +Cu yy +Du x +Eu y +Fu = G According

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

ERROR BOUNDS FOR THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BRADLEY J. LUCIER*

ERROR BOUNDS FOR THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BRADLEY J. LUCIER* EO BOUNDS FO THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BADLEY J. LUCIE* Abstract. Te expected error in L ) attimet for Glimm s sceme wen applied to a scalar conservation law is bounded by + 2 ) ) /2 T

More information

Finite Difference Methods Assignments

Finite Difference Methods Assignments Finite Difference Metods Assignments Anders Söberg and Aay Saxena, Micael Tuné, and Maria Westermarck Revised: Jarmo Rantakokko June 6, 1999 Teknisk databeandling Assignment 1: A one-dimensional eat equation

More information

MODIFIED DIFFERENTIAL EQUATIONS. Dedicated to Prof. Michel Crouzeix

MODIFIED DIFFERENTIAL EQUATIONS. Dedicated to Prof. Michel Crouzeix ESAIM: PROCEEDINGS, September 2007, Vol.21, 16-20 Gabriel Caloz & Monique Dauge, Editors MODIFIED DIFFERENTIAL EQUATIONS Pilippe Cartier 1, Ernst Hairer 2 and Gilles Vilmart 1,2 Dedicated to Prof. Micel

More information

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines Lecture 5 Interpolation II Introduction In te previous lecture we focused primarily on polynomial interpolation of a set of n points. A difficulty we observed is tat wen n is large, our polynomial as to

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

LECTURE 14 NUMERICAL INTEGRATION. Find

LECTURE 14 NUMERICAL INTEGRATION. Find LECTURE 14 NUMERCAL NTEGRATON Find b a fxdx or b a vx ux fx ydy dx Often integration is required. However te form of fx may be suc tat analytical integration would be very difficult or impossible. Use

More information

FEM solution of the ψ-ω equations with explicit viscous diffusion 1

FEM solution of the ψ-ω equations with explicit viscous diffusion 1 FEM solution of te ψ-ω equations wit explicit viscous diffusion J.-L. Guermond and L. Quartapelle 3 Abstract. Tis paper describes a variational formulation for solving te D time-dependent incompressible

More information

Chapter 5 FINITE DIFFERENCE METHOD (FDM)

Chapter 5 FINITE DIFFERENCE METHOD (FDM) MEE7 Computer Modeling Tecniques in Engineering Capter 5 FINITE DIFFERENCE METHOD (FDM) 5. Introduction to FDM Te finite difference tecniques are based upon approximations wic permit replacing differential

More information

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations Pysically Based Modeling: Principles and Practice Implicit Metods for Differential Equations David Baraff Robotics Institute Carnegie Mellon University Please note: Tis document is 997 by David Baraff

More information

MATH745 Fall MATH745 Fall

MATH745 Fall MATH745 Fall MATH745 Fall 5 MATH745 Fall 5 INTRODUCTION WELCOME TO MATH 745 TOPICS IN NUMERICAL ANALYSIS Instructor: Dr Bartosz Protas Department of Matematics & Statistics Email: bprotas@mcmasterca Office HH 36, Ext

More information

DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science

DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Matematics and Computer Science. ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU) Tuesday January 9 008, 9:00-:00

More information

A First-Order System Approach for Diffusion Equation. I. Second-Order Residual-Distribution Schemes

A First-Order System Approach for Diffusion Equation. I. Second-Order Residual-Distribution Schemes A First-Order System Approac for Diffusion Equation. I. Second-Order Residual-Distribution Scemes Hiroaki Nisikawa W. M. Keck Foundation Laboratory for Computational Fluid Dynamics, Department of Aerospace

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

A proof in the finite-difference spirit of the superconvergence of the gradient for the Shortley-Weller method.

A proof in the finite-difference spirit of the superconvergence of the gradient for the Shortley-Weller method. A proof in te finite-difference spirit of te superconvergence of te gradient for te Sortley-Weller metod. L. Weynans 1 1 Team Mempis, INRIA Bordeaux-Sud-Ouest & CNRS UMR 551, Université de Bordeaux, France

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016 MAT244 - Ordinary Di erential Equations - Summer 206 Assignment 2 Due: July 20, 206 Full Name: Student #: Last First Indicate wic Tutorial Section you attend by filling in te appropriate circle: Tut 0

More information

Entropy and the numerical integration of conservation laws

Entropy and the numerical integration of conservation laws Pysics Procedia Pysics Procedia 00 2011) 1 28 Entropy and te numerical integration of conservation laws Gabriella Puppo Dipartimento di Matematica, Politecnico di Torino Italy) Matteo Semplice Dipartimento

More information

The Verlet Algorithm for Molecular Dynamics Simulations

The Verlet Algorithm for Molecular Dynamics Simulations Cemistry 380.37 Fall 2015 Dr. Jean M. Standard November 9, 2015 Te Verlet Algoritm for Molecular Dynamics Simulations Equations of motion For a many-body system consisting of N particles, Newton's classical

More information

Implicit-explicit variational integration of highly oscillatory problems

Implicit-explicit variational integration of highly oscillatory problems Implicit-explicit variational integration of igly oscillatory problems Ari Stern Structured Integrators Worksop April 9, 9 Stern, A., and E. Grinspun. Multiscale Model. Simul., to appear. arxiv:88.39 [mat.na].

More information

Superconvergence of energy-conserving discontinuous Galerkin methods for. linear hyperbolic equations. Abstract

Superconvergence of energy-conserving discontinuous Galerkin methods for. linear hyperbolic equations. Abstract Superconvergence of energy-conserving discontinuous Galerkin metods for linear yperbolic equations Yong Liu, Ci-Wang Su and Mengping Zang 3 Abstract In tis paper, we study superconvergence properties of

More information

Numerical Experiments Using MATLAB: Superconvergence of Nonconforming Finite Element Approximation for Second-Order Elliptic Problems

Numerical Experiments Using MATLAB: Superconvergence of Nonconforming Finite Element Approximation for Second-Order Elliptic Problems Applied Matematics, 06, 7, 74-8 ttp://wwwscirporg/journal/am ISSN Online: 5-7393 ISSN Print: 5-7385 Numerical Experiments Using MATLAB: Superconvergence of Nonconforming Finite Element Approximation for

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015 Mat 3A Discussion Notes Week 4 October 20 and October 22, 205 To prepare for te first midterm, we ll spend tis week working eamples resembling te various problems you ve seen so far tis term. In tese notes

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

ON A PROBLEM OF SHALLOW WATER TYPE

ON A PROBLEM OF SHALLOW WATER TYPE 24-Fez conference on Differential Equations and Mecanics Electronic Journal of Differential Equations, Conference 11, 24, pp. 19 116. ISSN: 172-6691. URL: ttp://ejde.mat.txstate.edu or ttp://ejde.mat.unt.edu

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 34, pp. 14-19, 2008. Copyrigt 2008,. ISSN 1068-9613. ETNA A NOTE ON NUMERICALLY CONSISTENT INITIAL VALUES FOR HIGH INDEX DIFFERENTIAL-ALGEBRAIC EQUATIONS

More information

A finite element approximation for the quasi-static Maxwell Landau Lifshitz Gilbert equations

A finite element approximation for the quasi-static Maxwell Landau Lifshitz Gilbert equations ANZIAM J. 54 (CTAC2012) pp.c681 C698, 2013 C681 A finite element approximation for te quasi-static Maxwell Landau Lifsitz Gilbert equations Kim-Ngan Le 1 T. Tran 2 (Received 31 October 2012; revised 29

More information

1 Upwind scheme for advection equation with variable. 2 Modified equations: numerical dissipation and dispersion

1 Upwind scheme for advection equation with variable. 2 Modified equations: numerical dissipation and dispersion 1 Upwind sceme for advection equation wit variable coefficient Consider te equation u t + a(x)u x Applying te upwind sceme, we ave u n 1 = a (un u n 1), a 0 u n 1 = a (un +1 u n ) a < 0. CFL condition

More information

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

Fourier Type Super Convergence Study on DDGIC and Symmetric DDG Methods

Fourier Type Super Convergence Study on DDGIC and Symmetric DDG Methods DOI 0.007/s095-07-048- Fourier Type Super Convergence Study on DDGIC and Symmetric DDG Metods Mengping Zang Jue Yan Received: 7 December 06 / Revised: 7 April 07 / Accepted: April 07 Springer Science+Business

More information

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations International Journal of Applied Science and Engineering 2013. 11, 4: 361-373 Parameter Fitted Sceme for Singularly Perturbed Delay Differential Equations Awoke Andargiea* and Y. N. Reddyb a b Department

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

A Hybrid Mixed Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems

A Hybrid Mixed Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems A Hybrid Mixed Discontinuous Galerkin Finite Element Metod for Convection-Diffusion Problems Herbert Egger Joacim Scöberl We propose and analyse a new finite element metod for convection diffusion problems

More information

Flavius Guiaş. X(t + h) = X(t) + F (X(s)) ds.

Flavius Guiaş. X(t + h) = X(t) + F (X(s)) ds. Numerical solvers for large systems of ordinary differential equations based on te stocastic direct simulation metod improved by te and Runge Kutta principles Flavius Guiaş Abstract We present a numerical

More information

Differentiation in higher dimensions

Differentiation in higher dimensions Capter 2 Differentiation in iger dimensions 2.1 Te Total Derivative Recall tat if f : R R is a 1-variable function, and a R, we say tat f is differentiable at x = a if and only if te ratio f(a+) f(a) tends

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

Mass Lumping for Constant Density Acoustics

Mass Lumping for Constant Density Acoustics Lumping 1 Mass Lumping for Constant Density Acoustics William W. Symes ABSTRACT Mass lumping provides an avenue for efficient time-stepping of time-dependent problems wit conforming finite element spatial

More information

APPROXIMATION OF CRYSTALLINE DENDRITE GROWTH IN TWO SPACE DIMENSIONS. Introduction

APPROXIMATION OF CRYSTALLINE DENDRITE GROWTH IN TWO SPACE DIMENSIONS. Introduction Acta Mat. Univ. Comenianae Vol. LXVII, 1(1998), pp. 57 68 57 APPROXIMATION OF CRYSTALLINE DENDRITE GROWTH IN TWO SPACE DIMENSIONS A. SCHMIDT Abstract. Te pase transition between solid and liquid in an

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

(4.2) -Richardson Extrapolation

(4.2) -Richardson Extrapolation (.) -Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Suppose tat lim G 0 and lim F L. Te function F is said to converge to L as

More information

1. Introduction. Consider a semilinear parabolic equation in the form

1. Introduction. Consider a semilinear parabolic equation in the form A POSTERIORI ERROR ESTIMATION FOR PARABOLIC PROBLEMS USING ELLIPTIC RECONSTRUCTIONS. I: BACKWARD-EULER AND CRANK-NICOLSON METHODS NATALIA KOPTEVA AND TORSTEN LINSS Abstract. A semilinear second-order parabolic

More information

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4. December 09, 20 Calculus PracticeTest s Name: (4 points) Find te absolute extrema of f(x) = x 3 0 on te interval [0, 4] Te derivative of f(x) is f (x) = 3x 2, wic is zero only at x = 0 Tus we only need

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

Differential equations. Differential equations

Differential equations. Differential equations Differential equations A differential equation (DE) describes ow a quantity canges (as a function of time, position, ) d - A ball dropped from a building: t gt () dt d S qx - Uniformly loaded beam: wx

More information

Definition of the Derivative

Definition of the Derivative Te Limit Definition of te Derivative Tis Handout will: Define te limit grapically and algebraically Discuss, in detail, specific features of te definition of te derivative Provide a general strategy of

More information

LEAST-SQUARES FINITE ELEMENT APPROXIMATIONS TO SOLUTIONS OF INTERFACE PROBLEMS

LEAST-SQUARES FINITE ELEMENT APPROXIMATIONS TO SOLUTIONS OF INTERFACE PROBLEMS SIAM J. NUMER. ANAL. c 998 Society for Industrial Applied Matematics Vol. 35, No., pp. 393 405, February 998 00 LEAST-SQUARES FINITE ELEMENT APPROXIMATIONS TO SOLUTIONS OF INTERFACE PROBLEMS YANZHAO CAO

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

Logarithmic functions

Logarithmic functions Roberto s Notes on Differential Calculus Capter 5: Derivatives of transcendental functions Section Derivatives of Logaritmic functions Wat ou need to know alread: Definition of derivative and all basic

More information

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

Robotic manipulation project

Robotic manipulation project Robotic manipulation project Bin Nguyen December 5, 2006 Abstract Tis is te draft report for Robotic Manipulation s class project. Te cosen project aims to understand and implement Kevin Egan s non-convex

More information

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Matematics National Institute of Tecnology Durgapur Durgapur-7109 email: anita.buie@gmail.com 1 . Capter 8 Numerical Solution of Ordinary

More information

Numerical Solution of One Dimensional Nonlinear Longitudinal Oscillations in a Class of Generalized Functions

Numerical Solution of One Dimensional Nonlinear Longitudinal Oscillations in a Class of Generalized Functions Proc. of te 8t WSEAS Int. Conf. on Matematical Metods and Computational Tecniques in Electrical Engineering, Bucarest, October 16-17, 2006 219 Numerical Solution of One Dimensional Nonlinear Longitudinal

More information

Reflection Symmetries of q-bernoulli Polynomials

Reflection Symmetries of q-bernoulli Polynomials Journal of Nonlinear Matematical Pysics Volume 1, Supplement 1 005, 41 4 Birtday Issue Reflection Symmetries of q-bernoulli Polynomials Boris A KUPERSHMIDT Te University of Tennessee Space Institute Tullaoma,

More information

Blanca Bujanda, Juan Carlos Jorge NEW EFFICIENT TIME INTEGRATORS FOR NON-LINEAR PARABOLIC PROBLEMS

Blanca Bujanda, Juan Carlos Jorge NEW EFFICIENT TIME INTEGRATORS FOR NON-LINEAR PARABOLIC PROBLEMS Opuscula Matematica Vol. 26 No. 3 26 Blanca Bujanda, Juan Carlos Jorge NEW EFFICIENT TIME INTEGRATORS FOR NON-LINEAR PARABOLIC PROBLEMS Abstract. In tis work a new numerical metod is constructed for time-integrating

More information

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error.

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error. Lecture 09 Copyrigt by Hongyun Wang, UCSC Recap: Te total error in numerical differentiation fl( f ( x + fl( f ( x E T ( = f ( x Numerical result from a computer Exact value = e + f x+ Discretization error

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow 1.7, Groundwater Hydrology Prof. Carles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow Simulation: Te prediction of quantities of interest (dependent variables) based upon an equation

More information

On the accuracy of the rotation form in simulations of the Navier-Stokes equations

On the accuracy of the rotation form in simulations of the Navier-Stokes equations On te accuracy of te rotation form in simulations of te Navier-Stokes equations William Layton 1 Carolina C. Manica Monika Neda 3 Maxim Olsanskii Leo G. Rebolz 5 Abstract Te rotation form of te Navier-Stokes

More information

A Finite Element Primer

A Finite Element Primer A Finite Element Primer David J. Silvester Scool of Matematics, University of Mancester d.silvester@mancester.ac.uk. Version.3 updated 4 October Contents A Model Diffusion Problem.................... x.

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

Department of Mathematical Sciences University of South Carolina Aiken Aiken, SC 29801

Department of Mathematical Sciences University of South Carolina Aiken Aiken, SC 29801 RESEARCH SUMMARY AND PERSPECTIVES KOFFI B. FADIMBA Department of Matematical Sciences University of Sout Carolina Aiken Aiken, SC 29801 Email: KoffiF@usca.edu 1. Introduction My researc program as focused

More information

Approximation of the Viability Kernel

Approximation of the Viability Kernel Approximation of te Viability Kernel Patrick Saint-Pierre CEREMADE, Université Paris-Daupine Place du Marécal de Lattre de Tassigny 75775 Paris cedex 16 26 october 1990 Abstract We study recursive inclusions

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

Exercises for numerical differentiation. Øyvind Ryan

Exercises for numerical differentiation. Øyvind Ryan Exercises for numerical differentiation Øyvind Ryan February 25, 2013 1. Mark eac of te following statements as true or false. a. Wen we use te approximation f (a) (f (a +) f (a))/ on a computer, we can

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture 4 Numerical solution of initial value problems Te metods you ve learned so far ave obtained closed-form solutions to initial value problems. A closedform solution is an explicit algebriac formula

More information

The Laplace equation, cylindrically or spherically symmetric case

The Laplace equation, cylindrically or spherically symmetric case Numerisce Metoden II, 7 4, und Übungen, 7 5 Course Notes, Summer Term 7 Some material and exercises Te Laplace equation, cylindrically or sperically symmetric case Electric and gravitational potential,

More information

Some Applications of Fractional Step Runge-Kutta Methods

Some Applications of Fractional Step Runge-Kutta Methods Some Applications of Fractional Step Runge-Kutta Metods JORGE, J.C., PORTERO, L. Dpto. de Matematica e Informatica Universidad Publica de Navarra Campus Arrosadia, s/n 3006 Pamplona Navarra SPAIN Abstract:

More information

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014 Solutions to te Multivariable Calculus and Linear Algebra problems on te Compreensive Examination of January 3, 24 Tere are 9 problems ( points eac, totaling 9 points) on tis portion of te examination.

More information

arxiv: v1 [math.na] 12 Mar 2018

arxiv: v1 [math.na] 12 Mar 2018 ON PRESSURE ESTIMATES FOR THE NAVIER-STOKES EQUATIONS J A FIORDILINO arxiv:180304366v1 [matna 12 Mar 2018 Abstract Tis paper presents a simple, general tecnique to prove finite element metod (FEM) pressure

More information

Efficient algorithms for for clone items detection

Efficient algorithms for for clone items detection Efficient algoritms for for clone items detection Raoul Medina, Caroline Noyer, and Olivier Raynaud Raoul Medina, Caroline Noyer and Olivier Raynaud LIMOS - Université Blaise Pascal, Campus universitaire

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Material for Difference Quotient

Material for Difference Quotient Material for Difference Quotient Prepared by Stepanie Quintal, graduate student and Marvin Stick, professor Dept. of Matematical Sciences, UMass Lowell Summer 05 Preface Te following difference quotient

More information

arxiv: v2 [math.na] 5 Jul 2017

arxiv: v2 [math.na] 5 Jul 2017 Trace Finite Element Metods for PDEs on Surfaces Maxim A. Olsanskii and Arnold Reusken arxiv:1612.00054v2 [mat.na] 5 Jul 2017 Abstract In tis paper we consider a class of unfitted finite element metods

More information

arxiv: v3 [math.na] 15 Dec 2009

arxiv: v3 [math.na] 15 Dec 2009 THE NAVIER-STOKES-VOIGHT MODEL FOR IMAGE INPAINTING M.A. EBRAHIMI, MICHAEL HOLST, AND EVELYN LUNASIN arxiv:91.4548v3 [mat.na] 15 Dec 9 ABSTRACT. In tis paper we investigate te use of te D Navier-Stokes-Voigt

More information

Excursions in Computing Science: Week v Milli-micro-nano-..math Part II

Excursions in Computing Science: Week v Milli-micro-nano-..math Part II Excursions in Computing Science: Week v Milli-micro-nano-..mat Part II T. H. Merrett McGill University, Montreal, Canada June, 5 I. Prefatory Notes. Cube root of 8. Almost every calculator as a square-root

More information

Numerical Solution to Parabolic PDE Using Implicit Finite Difference Approach

Numerical Solution to Parabolic PDE Using Implicit Finite Difference Approach Numerical Solution to arabolic DE Using Implicit Finite Difference Approac Jon Amoa-Mensa, Francis Oene Boateng, Kwame Bonsu Department of Matematics and Statistics, Sunyani Tecnical University, Sunyani,

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

Numerical analysis of a free piston problem

Numerical analysis of a free piston problem MATHEMATICAL COMMUNICATIONS 573 Mat. Commun., Vol. 15, No. 2, pp. 573-585 (2010) Numerical analysis of a free piston problem Boris Mua 1 and Zvonimir Tutek 1, 1 Department of Matematics, University of

More information

1. Introduction. We consider the model problem: seeking an unknown function u satisfying

1. Introduction. We consider the model problem: seeking an unknown function u satisfying A DISCONTINUOUS LEAST-SQUARES FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC EQUATIONS XIU YE AND SHANGYOU ZHANG Abstract In tis paper, a discontinuous least-squares (DLS) finite element metod is introduced

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

Application of Quintic B-splines Collocation Method on Some Rosenau Type Nonlinear Higher Order Evolution Equations.

Application of Quintic B-splines Collocation Method on Some Rosenau Type Nonlinear Higher Order Evolution Equations. ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.13(2012) No.2,pp.142-152 Application of Quintic B-splines Collocation Metod on Some Rosenau Type Nonlinear Higer

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

An Adaptive Model Switching and Discretization Algorithm for Gas Flow on Networks

An Adaptive Model Switching and Discretization Algorithm for Gas Flow on Networks Procedia Computer Science 1 (21) (212) 1 1 1331 134 Procedia Computer Science www.elsevier.com/locate/procedia International Conference on Computational Science, ICCS 21 An Adaptive Model Switcing and

More information

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001 Investigating Euler s Metod and Differential Equations to Approximate π Lindsa Crowl August 2, 2001 Tis researc paper focuses on finding a more efficient and accurate wa to approximate π. Suppose tat x

More information

arxiv: v1 [math.na] 9 Sep 2015

arxiv: v1 [math.na] 9 Sep 2015 arxiv:509.02595v [mat.na] 9 Sep 205 An Expandable Local and Parallel Two-Grid Finite Element Sceme Yanren ou, GuangZi Du Abstract An expandable local and parallel two-grid finite element sceme based on

More information

Poisson Equation in Sobolev Spaces

Poisson Equation in Sobolev Spaces Poisson Equation in Sobolev Spaces OcMountain Dayligt Time. 6, 011 Today we discuss te Poisson equation in Sobolev spaces. It s existence, uniqueness, and regularity. Weak Solution. u = f in, u = g on

More information

A Mixed-Hybrid-Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems

A Mixed-Hybrid-Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems A Mixed-Hybrid-Discontinuous Galerkin Finite Element Metod for Convection-Diffusion Problems Herbert Egger Joacim Scöberl We propose and analyse a new finite element metod for convection diffusion problems

More information