Numerical Solution of One Dimensional Nonlinear Longitudinal Oscillations in a Class of Generalized Functions

Size: px
Start display at page:

Download "Numerical Solution of One Dimensional Nonlinear Longitudinal Oscillations in a Class of Generalized Functions"

Transcription

1 Proc. of te 8t WSEAS Int. Conf. on Matematical Metods and Computational Tecniques in Electrical Engineering, Bucarest, October 16-17, Numerical Solution of One Dimensional Nonlinear Longitudinal Oscillations in a Class of Generalized Functions Rafik Rasulov Te Seki Filial of te Istitute of Teacers, Seki, Az5, Republic of Azerbaycan, Haluk Kul Beykent University, Department of Computer Engineering, Istanbul 34900, Turkey July 12, 2006 Abstract In tis paper a new numerical metod for solution of initial value problem for te second order nonlinear wave equation wic describes te standing vibrations of a finite continuous and nonlinear string. Special auxiliary problem as been suggested and using te advantages of te suggested auxiliary problem, a finite difference sceme is constructed for te numerical solution of te main problem. K eywords: Longitudinal Oscillation. Numerical modeling. In a class of discontinuous function. Nonlinear wave propagation. 1 Introduction. Te problems associated wit wave propagation and standing oscillation in nonlinear fields ave been important for pysics and engineering, and 1

2 Proc. of te 8t WSEAS Int. Conf. on Matematical Metods and Computational Tecniques in Electrical Engineering, Bucarest, October 16-17, today it is still an actual topic. One of te nonlinear wave equations as been studied by Zabusky N.J in[2] for te first time and te exact solution as been acieved. In [1],[9] special metods for finding te exact solution of some nonlinear wave equations ave been developed. However, it is not always possible to obtain te exact solutions of tese problems. It is well known tat, numerical solutions play an important role, were obtaining exact solutions falls sort. For tis reason in tis paper an original numerical metod for finding te numerical solution of te problem for te second order nonlinear partial wave equation given below 2 u t 2 = x K ( ) u, (1.1) x u(x, 0) = u 0 (x), (1.2) u(x, 0) = u 1 (x) (1.3) t is suggested. Here te functions u 0 (x) and u 1 (x) are given functions (may be discontinuous as well) and te function K(s) satisfy te following conditions: (i) K(s) is continuous and differentiable, (ii) K(0) 0 for s 0, (iii) K (s) canges of sign. It is obvious tat te equation (1.1) degenerates twice, in deed since u K( ) = x x K ( u) 2 u and K (s) = 0, K(0) = 0 te equation (1.1) degenerates to first order differential equation. If K(s) = s te equation(1.1) x x 2 describes te little vibration of te string, but if K(s) = s3 + s te equation 3 (1.1) describes a larger vibration of te string. In addition, since te equation (1.1) is nonlinear in general, it is impossible to find te exact solution of te Caucy problem of te equation (1.1). As it is seen from te pysical structure of te problem K( u) u, it must x x be a continuous function, owever te second order derivatives of te solution may not exist. Because te classical solution of te problem (1.1)-(1.3) does not exist, te weak solution of tis problem is defined as Definition 1. A function u(x, t) wic satisfy te conditions (1.2),(1.3) is called a weak solution of te problem (1.1)-(1.3), if te following integral relation { ( ) } u f u f D t t K dxdt x x 2

3 Proc. of te 8t WSEAS Int. Conf. on Matematical Metods and Computational Tecniques in Electrical Engineering, Bucarest, October 16-17, f(0, t) + u 0 (x) dx t u 1 (x)f(0, t)dx = 0 (1.4) olds for every test function f(x, t) W 2 1,1( o R 2 l ) and f(x, T ) = 0, ere, W 2 1,1( o R 2 l ) is a Sobolev s space on o R 2 l. In literature tere are many familiar omogenous finite differences scemes in wic te differentiability property of te solution is neglected [3],[4],[7],[8]. In order to find te numerical solution of te problem (1.1)-(1.3) in accordance to [5],[6] we introduce te following auxiliary problem. 2 Auxiliary problem. Te problem 2 v t 2 = K ( 2 v x 2 ) 2 v x 2, (2.1) v(x, 0) = v 0 (x), (2.2) v(x, 0) = v 1 (x). (2.3) t is called an auxiliary problem. Here, te functions v 0 (x) and v 1 (x) are any continuous solutions of te equations dv 0 (x) dx = u 0 (x), dv 1 (x) dx = u 1 (x). (2.4) Teorem 1. If v ( x, t) is te classical solution of te auxiliary problem (2.1)-(2.3), ten te function defined by v(x, t) u(x, t) = (2.5) x is weak solution of te main problem (1.1)-(1.3). Wit reference to (2.5) te auxiliary equation can be written as 2 v t 2 = K ( ) u u x x. (2.6) 3

4 Proc. of te 8t WSEAS Int. Conf. on Matematical Metods and Computational Tecniques in Electrical Engineering, Bucarest, October 16-17, Te auxiliary problem as te following advantages: Te second order derivatives of u(x, t)wit respect to x does not ave to exist and it is not necessary to use tis second order derivatives in te algoritm written to find te solution eiter. Te v(x, t) is absolutely continuous. Bot advantages of te auxiliary problem enables to construct te economical numerical algoritm for te problem (1.1)-(1.3). 3 Numerical algoritm in a class of discontinues functions. In order to develop a numerical algoritm for te problem (2.1)-(2.3), at first, we cover te region Rl 2 by te grid as ω,τ = {(x i, t k ) x i = i, t k = kτ, i = 0, ±1, ±2,..., k = 0, 1, 2,...; > 0, τ > 0}. Here, and τ are te steps of te grid ω,τ wit respect to x and t variables, respectively. We approximate te problem (2.1),(2.3) to finite differences as follows V i,k+1 2V i,k + V i,k 1 τ 2 ( ) ( ) Ui,k U i 1,k Ui,k U i 1,k = K (3.1) V i,0 = v 0 (x i ), (3.2) V i,1 V i,0 = u 1 (x i ) (3.3) τ Te following teorem olds; Teorem 2. If V i,k+1 is te numerical solutions of te auxiliary problem (2.1)-(2.3), ten te relations defined by V i,k+1 V i 1,k+1 is numerical solution of te problem = U i,k+1 (3.4) 4

5 Proc. of te 8t WSEAS Int. Conf. on Matematical Metods and Computational Tecniques in Electrical Engineering, Bucarest, October 16-17, U i,k+1 2U i,k + U i,k 1 τ 2 = 1 [ K ( ) ( )] Ui+1,k U i,k Ui,k U i 1,k K (3.5) U i,0 = u 0 (x i ), (3.6) U i,1 U i,0 = u 1 (x i ). (3.7) τ Te difference sceme (3.1) is te second order wit respect to τ, owever, te order of it can be made iger by applying, for example, te Runge-Kutta metod. As it can be seen from (3.1)-(3.3), te suggested algoritms are very effective and economic from a computational point of view. 4 Conclusion In tis study an original metod for obtaining te numerical solution of te Caucy problem for te second order nonlinear partial equation is suggested. We ave introduced an auxiliary problem wose differentiability property of solution is one order iger tan te differentiability property of te solution of te main problem. By tis auxiliary problem an economical and effective differences sceme as been developed. References [1] Ames, W. F. Nonlinear Partial Differential Equations in Engineering. Academic Press, New York, London, [2] Zabusky, N.,J. Exact Solution for te Vibrations of a Nonlinear Continuous Model String. Journal of Matematical Pysics, vol. 3, No 5, pp , [3] Godunov, S.K. Equations of Matematical Pysics. Nauka, Moskow, [4] Godunov, S.K., Ryabenkii, V.S. Finite Difference Scemes. Moskow, Nauka,

6 Proc. of te 8t WSEAS Int. Conf. on Matematical Metods and Computational Tecniques in Electrical Engineering, Bucarest, October 16-17, [5] Rasulov, M. A. On a Metod of Solving te Caucy Problem for a First Order Nonlinear Equation of Hyperbolic Type wit a Smoot Initial Condition. Soviet Mat. Dok. 43, No.1, [6] Rasulov, M. A. Finite Difference Sceme for Solving of Some Nonlinear Problems of Matematical Pysics in a Class of Discontinuous Functions. Baku, 1996, (in Russian). [7] Ricmyer, R. D., Morton, K. W. Difference Metods for Initial Value Problems. New York, Wiley, Int., [8] Smoller, J. A. Sock Wave and Reaction Diffusion Equations. Springer- Verlag, New York Inc., [9] Witam, G. B. Linear and Nonlinear Waves. Wiley Int., New York, pp ,

ERROR BOUNDS FOR THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BRADLEY J. LUCIER*

ERROR BOUNDS FOR THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BRADLEY J. LUCIER* EO BOUNDS FO THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BADLEY J. LUCIE* Abstract. Te expected error in L ) attimet for Glimm s sceme wen applied to a scalar conservation law is bounded by + 2 ) ) /2 T

More information

An Approximation to the Solution of the Brusselator System by Adomian Decomposition Method and Comparing the Results with Runge-Kutta Method

An Approximation to the Solution of the Brusselator System by Adomian Decomposition Method and Comparing the Results with Runge-Kutta Method Int. J. Contemp. Mat. Sciences, Vol. 2, 27, no. 2, 983-989 An Approximation to te Solution of te Brusselator System by Adomian Decomposition Metod and Comparing te Results wit Runge-Kutta Metod J. Biazar

More information

LECTURE 14 NUMERICAL INTEGRATION. Find

LECTURE 14 NUMERICAL INTEGRATION. Find LECTURE 14 NUMERCAL NTEGRATON Find b a fxdx or b a vx ux fx ydy dx Often integration is required. However te form of fx may be suc tat analytical integration would be very difficult or impossible. Use

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Stability properties of a family of chock capturing methods for hyperbolic conservation laws

Stability properties of a family of chock capturing methods for hyperbolic conservation laws Proceedings of te 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August 0-, 005 (pp48-5) Stability properties of a family of cock capturing metods for yperbolic conservation

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

1. Introduction. We consider the model problem: seeking an unknown function u satisfying

1. Introduction. We consider the model problem: seeking an unknown function u satisfying A DISCONTINUOUS LEAST-SQUARES FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC EQUATIONS XIU YE AND SHANGYOU ZHANG Abstract In tis paper, a discontinuous least-squares (DLS) finite element metod is introduced

More information

Superconvergence of energy-conserving discontinuous Galerkin methods for. linear hyperbolic equations. Abstract

Superconvergence of energy-conserving discontinuous Galerkin methods for. linear hyperbolic equations. Abstract Superconvergence of energy-conserving discontinuous Galerkin metods for linear yperbolic equations Yong Liu, Ci-Wang Su and Mengping Zang 3 Abstract In tis paper, we study superconvergence properties of

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

Dedicated to the 70th birthday of Professor Lin Qun

Dedicated to the 70th birthday of Professor Lin Qun Journal of Computational Matematics, Vol.4, No.3, 6, 4 44. ACCELERATION METHODS OF NONLINEAR ITERATION FOR NONLINEAR PARABOLIC EQUATIONS Guang-wei Yuan Xu-deng Hang Laboratory of Computational Pysics,

More information

Chapter 4: Numerical Methods for Common Mathematical Problems

Chapter 4: Numerical Methods for Common Mathematical Problems 1 Capter 4: Numerical Metods for Common Matematical Problems Interpolation Problem: Suppose we ave data defined at a discrete set of points (x i, y i ), i = 0, 1,..., N. Often it is useful to ave a smoot

More information

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim Mat 311 - Spring 013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, 013 Question 1. [p 56, #10 (a)] 4z Use te teorem of Sec. 17 to sow tat z (z 1) = 4. We ave z 4z (z 1) = z 0 4 (1/z) (1/z

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

1 Upwind scheme for advection equation with variable. 2 Modified equations: numerical dissipation and dispersion

1 Upwind scheme for advection equation with variable. 2 Modified equations: numerical dissipation and dispersion 1 Upwind sceme for advection equation wit variable coefficient Consider te equation u t + a(x)u x Applying te upwind sceme, we ave u n 1 = a (un u n 1), a 0 u n 1 = a (un +1 u n ) a < 0. CFL condition

More information

OSCILLATION OF SOLUTIONS TO NON-LINEAR DIFFERENCE EQUATIONS WITH SEVERAL ADVANCED ARGUMENTS. Sandra Pinelas and Julio G. Dix

OSCILLATION OF SOLUTIONS TO NON-LINEAR DIFFERENCE EQUATIONS WITH SEVERAL ADVANCED ARGUMENTS. Sandra Pinelas and Julio G. Dix Opuscula Mat. 37, no. 6 (2017), 887 898 ttp://dx.doi.org/10.7494/opmat.2017.37.6.887 Opuscula Matematica OSCILLATION OF SOLUTIONS TO NON-LINEAR DIFFERENCE EQUATIONS WITH SEVERAL ADVANCED ARGUMENTS Sandra

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

University Mathematics 2

University Mathematics 2 University Matematics 2 1 Differentiability In tis section, we discuss te differentiability of functions. Definition 1.1 Differentiable function). Let f) be a function. We say tat f is differentiable at

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

These errors are made from replacing an infinite process by finite one.

These errors are made from replacing an infinite process by finite one. Introduction :- Tis course examines problems tat can be solved by metods of approximation, tecniques we call numerical metods. We begin by considering some of te matematical and computational topics tat

More information

Blanca Bujanda, Juan Carlos Jorge NEW EFFICIENT TIME INTEGRATORS FOR NON-LINEAR PARABOLIC PROBLEMS

Blanca Bujanda, Juan Carlos Jorge NEW EFFICIENT TIME INTEGRATORS FOR NON-LINEAR PARABOLIC PROBLEMS Opuscula Matematica Vol. 26 No. 3 26 Blanca Bujanda, Juan Carlos Jorge NEW EFFICIENT TIME INTEGRATORS FOR NON-LINEAR PARABOLIC PROBLEMS Abstract. In tis work a new numerical metod is constructed for time-integrating

More information

Taylor Series and the Mean Value Theorem of Derivatives

Taylor Series and the Mean Value Theorem of Derivatives 1 - Taylor Series and te Mean Value Teorem o Derivatives Te numerical solution o engineering and scientiic problems described by matematical models oten requires solving dierential equations. Dierential

More information

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations International Journal of Applied Science and Engineering 2013. 11, 4: 361-373 Parameter Fitted Sceme for Singularly Perturbed Delay Differential Equations Awoke Andargiea* and Y. N. Reddyb a b Department

More information

High-Order Energy and Linear Momentum Conserving Methods for the Klein-Gordon Equation

High-Order Energy and Linear Momentum Conserving Methods for the Klein-Gordon Equation matematics Article Hig-Order Energy and Linear Momentum Conserving Metods for te Klein-Gordon Equation He Yang Department of Matematics, Augusta University, Augusta, GA 39, USA; yang@augusta.edu; Tel.:

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations

Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations Arbitrary order exactly divergence-free central discontinuous Galerkin metods for ideal MHD equations Fengyan Li, Liwei Xu Department of Matematical Sciences, Rensselaer Polytecnic Institute, Troy, NY

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems 5 Ordinary Differential Equations: Finite Difference Metods for Boundary Problems Read sections 10.1, 10.2, 10.4 Review questions 10.1 10.4, 10.8 10.9, 10.13 5.1 Introduction In te previous capters we

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

MATH745 Fall MATH745 Fall

MATH745 Fall MATH745 Fall MATH745 Fall 5 MATH745 Fall 5 INTRODUCTION WELCOME TO MATH 745 TOPICS IN NUMERICAL ANALYSIS Instructor: Dr Bartosz Protas Department of Matematics & Statistics Email: bprotas@mcmasterca Office HH 36, Ext

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

The Verlet Algorithm for Molecular Dynamics Simulations

The Verlet Algorithm for Molecular Dynamics Simulations Cemistry 380.37 Fall 2015 Dr. Jean M. Standard November 9, 2015 Te Verlet Algoritm for Molecular Dynamics Simulations Equations of motion For a many-body system consisting of N particles, Newton's classical

More information

Entropy and the numerical integration of conservation laws

Entropy and the numerical integration of conservation laws Pysics Procedia Pysics Procedia 00 2011) 1 28 Entropy and te numerical integration of conservation laws Gabriella Puppo Dipartimento di Matematica, Politecnico di Torino Italy) Matteo Semplice Dipartimento

More information

Chapter 5 FINITE DIFFERENCE METHOD (FDM)

Chapter 5 FINITE DIFFERENCE METHOD (FDM) MEE7 Computer Modeling Tecniques in Engineering Capter 5 FINITE DIFFERENCE METHOD (FDM) 5. Introduction to FDM Te finite difference tecniques are based upon approximations wic permit replacing differential

More information

Smoothness of solutions with respect to multi-strip integral boundary conditions for nth order ordinary differential equations

Smoothness of solutions with respect to multi-strip integral boundary conditions for nth order ordinary differential equations 396 Nonlinear Analysis: Modelling and Control, 2014, Vol. 19, No. 3, 396 412 ttp://dx.doi.org/10.15388/na.2014.3.6 Smootness of solutions wit respect to multi-strip integral boundary conditions for nt

More information

A method of Lagrange Galerkin of second order in time. Une méthode de Lagrange Galerkin d ordre deux en temps

A method of Lagrange Galerkin of second order in time. Une méthode de Lagrange Galerkin d ordre deux en temps A metod of Lagrange Galerkin of second order in time Une métode de Lagrange Galerkin d ordre deux en temps Jocelyn Étienne a a DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, Great-Britain.

More information

PECULIARITIES OF THE WAVE FIELD LOCALIZATION IN THE FUNCTIONALLY GRADED LAYER

PECULIARITIES OF THE WAVE FIELD LOCALIZATION IN THE FUNCTIONALLY GRADED LAYER Materials Pysics and Mecanics (5) 5- Received: Marc 7, 5 PECULIARITIES OF THE WAVE FIELD LOCALIZATION IN THE FUNCTIONALLY GRADED LAYER Т.I. Belyankova *, V.V. Kalincuk Soutern Scientific Center of Russian

More information

Recent Progress in the Integration of Poisson Systems via the Mid Point Rule and Runge Kutta Algorithm

Recent Progress in the Integration of Poisson Systems via the Mid Point Rule and Runge Kutta Algorithm Recent Progress in te Integration of Poisson Systems via te Mid Point Rule and Runge Kutta Algoritm Klaus Bucner, Mircea Craioveanu and Mircea Puta Abstract Some recent progress in te integration of Poisson

More information

Mathematics 123.3: Solutions to Lab Assignment #5

Mathematics 123.3: Solutions to Lab Assignment #5 Matematics 3.3: Solutions to Lab Assignment #5 Find te derivative of te given function using te definition of derivative. State te domain of te function and te domain of its derivative..: f(x) 6 x Solution:

More information

Reflection Symmetries of q-bernoulli Polynomials

Reflection Symmetries of q-bernoulli Polynomials Journal of Nonlinear Matematical Pysics Volume 1, Supplement 1 005, 41 4 Birtday Issue Reflection Symmetries of q-bernoulli Polynomials Boris A KUPERSHMIDT Te University of Tennessee Space Institute Tullaoma,

More information

New Fourth Order Quartic Spline Method for Solving Second Order Boundary Value Problems

New Fourth Order Quartic Spline Method for Solving Second Order Boundary Value Problems MATEMATIKA, 2015, Volume 31, Number 2, 149 157 c UTM Centre for Industrial Applied Matematics New Fourt Order Quartic Spline Metod for Solving Second Order Boundary Value Problems 1 Osama Ala yed, 2 Te

More information

The Laplace equation, cylindrically or spherically symmetric case

The Laplace equation, cylindrically or spherically symmetric case Numerisce Metoden II, 7 4, und Übungen, 7 5 Course Notes, Summer Term 7 Some material and exercises Te Laplace equation, cylindrically or sperically symmetric case Electric and gravitational potential,

More information

ERROR BOUNDS FOR FINITE-DIFFERENCE METHODS FOR RUDIN OSHER FATEMI IMAGE SMOOTHING

ERROR BOUNDS FOR FINITE-DIFFERENCE METHODS FOR RUDIN OSHER FATEMI IMAGE SMOOTHING ERROR BOUNDS FOR FINITE-DIFFERENCE METHODS FOR RUDIN OSHER FATEMI IMAGE SMOOTHING JINGYUE WANG AND BRADLEY J. LUCIER Abstract. We bound te difference between te solution to te continuous Rudin Oser Fatemi

More information

, meant to remind us of the definition of f (x) as the limit of difference quotients: = lim

, meant to remind us of the definition of f (x) as the limit of difference quotients: = lim Mat 132 Differentiation Formulas Stewart 2.3 So far, we ave seen ow various real-world problems rate of cange and geometric problems tangent lines lead to derivatives. In tis section, we will see ow to

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

Some Applications of Fractional Step Runge-Kutta Methods

Some Applications of Fractional Step Runge-Kutta Methods Some Applications of Fractional Step Runge-Kutta Metods JORGE, J.C., PORTERO, L. Dpto. de Matematica e Informatica Universidad Publica de Navarra Campus Arrosadia, s/n 3006 Pamplona Navarra SPAIN Abstract:

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture 4 Numerical solution of initial value problems Te metods you ve learned so far ave obtained closed-form solutions to initial value problems. A closedform solution is an explicit algebriac formula

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

MAT 1339-S14 Class 2

MAT 1339-S14 Class 2 MAT 1339-S14 Class 2 July 07, 2014 Contents 1 Rate of Cange 1 1.5 Introduction to Derivatives....................... 1 2 Derivatives 5 2.1 Derivative of Polynomial function.................... 5 2.2 Te

More information

On the Concept of Returns to Scale: Revisited

On the Concept of Returns to Scale: Revisited 3 J. Asian Dev. Stud, Vol. 5, Issue, (Marc 206) ISSN 2304-375X On te Concept of Returns to Scale: Revisited Parvez Azim Abstract Tis paper sows w it is tat in Economics text books and literature we invariabl

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

THE STURM-LIOUVILLE-TRANSFORMATION FOR THE SOLUTION OF VECTOR PARTIAL DIFFERENTIAL EQUATIONS. L. Trautmann, R. Rabenstein

THE STURM-LIOUVILLE-TRANSFORMATION FOR THE SOLUTION OF VECTOR PARTIAL DIFFERENTIAL EQUATIONS. L. Trautmann, R. Rabenstein Worksop on Transforms and Filter Banks (WTFB),Brandenburg, Germany, Marc 999 THE STURM-LIOUVILLE-TRANSFORMATION FOR THE SOLUTION OF VECTOR PARTIAL DIFFERENTIAL EQUATIONS L. Trautmann, R. Rabenstein Lerstul

More information

Analytic Functions. Differentiable Functions of a Complex Variable

Analytic Functions. Differentiable Functions of a Complex Variable Analytic Functions Differentiable Functions of a Complex Variable In tis capter, we sall generalize te ideas for polynomials power series of a complex variable we developed in te previous capter to general

More information

Global Output Feedback Stabilization of a Class of Upper-Triangular Nonlinear Systems

Global Output Feedback Stabilization of a Class of Upper-Triangular Nonlinear Systems 9 American Control Conference Hyatt Regency Riverfront St Louis MO USA June - 9 FrA4 Global Output Feedbac Stabilization of a Class of Upper-Triangular Nonlinear Systems Cunjiang Qian Abstract Tis paper

More information

EXTENSION OF A POSTPROCESSING TECHNIQUE FOR THE DISCONTINUOUS GALERKIN METHOD FOR HYPERBOLIC EQUATIONS WITH APPLICATION TO AN AEROACOUSTIC PROBLEM

EXTENSION OF A POSTPROCESSING TECHNIQUE FOR THE DISCONTINUOUS GALERKIN METHOD FOR HYPERBOLIC EQUATIONS WITH APPLICATION TO AN AEROACOUSTIC PROBLEM SIAM J. SCI. COMPUT. Vol. 26, No. 3, pp. 821 843 c 2005 Society for Industrial and Applied Matematics ETENSION OF A POSTPROCESSING TECHNIQUE FOR THE DISCONTINUOUS GALERKIN METHOD FOR HYPERBOLIC EQUATIONS

More information

LEAST-SQUARES FINITE ELEMENT APPROXIMATIONS TO SOLUTIONS OF INTERFACE PROBLEMS

LEAST-SQUARES FINITE ELEMENT APPROXIMATIONS TO SOLUTIONS OF INTERFACE PROBLEMS SIAM J. NUMER. ANAL. c 998 Society for Industrial Applied Matematics Vol. 35, No., pp. 393 405, February 998 00 LEAST-SQUARES FINITE ELEMENT APPROXIMATIONS TO SOLUTIONS OF INTERFACE PROBLEMS YANZHAO CAO

More information

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c)

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c) Paper 1: Pure Matematics 1 Mark Sceme 1(a) (i) (ii) d d y 3 1x 4x x M1 A1 d y dx 1.1b 1.1b 36x 48x A1ft 1.1b Substitutes x = into teir dx (3) 3 1 4 Sows d y 0 and states ''ence tere is a stationary point''

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk Bob Brown Mat 251 Calculus 1 Capter 3, Section 1 Completed 1 Te Tangent Line Problem Te idea of a tangent line first arises in geometry in te context of a circle. But before we jump into a discussion of

More information

A quadratic interaction estimate for conservation laws: motivations, techniques and open problems*

A quadratic interaction estimate for conservation laws: motivations, techniques and open problems* Bull Braz Mat Soc, New Series 47(2), 589-604 2016, Sociedade Brasileira de Matemática ISSN: 1678-7544 (Print) / 1678-7714 (Online) A quadratic interaction estimate for conservation laws: motivations, tecniques

More information

Poisson Equation in Sobolev Spaces

Poisson Equation in Sobolev Spaces Poisson Equation in Sobolev Spaces OcMountain Dayligt Time. 6, 011 Today we discuss te Poisson equation in Sobolev spaces. It s existence, uniqueness, and regularity. Weak Solution. u = f in, u = g on

More information

POLYNOMIAL AND SPLINE ESTIMATORS OF THE DISTRIBUTION FUNCTION WITH PRESCRIBED ACCURACY

POLYNOMIAL AND SPLINE ESTIMATORS OF THE DISTRIBUTION FUNCTION WITH PRESCRIBED ACCURACY APPLICATIONES MATHEMATICAE 36, (29), pp. 2 Zbigniew Ciesielski (Sopot) Ryszard Zieliński (Warszawa) POLYNOMIAL AND SPLINE ESTIMATORS OF THE DISTRIBUTION FUNCTION WITH PRESCRIBED ACCURACY Abstract. Dvoretzky

More information

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error.

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error. Lecture 09 Copyrigt by Hongyun Wang, UCSC Recap: Te total error in numerical differentiation fl( f ( x + fl( f ( x E T ( = f ( x Numerical result from a computer Exact value = e + f x+ Discretization error

More information

Preconditioning in H(div) and Applications

Preconditioning in H(div) and Applications 1 Preconditioning in H(div) and Applications Douglas N. Arnold 1, Ricard S. Falk 2 and Ragnar Winter 3 4 Abstract. Summarizing te work of [AFW97], we sow ow to construct preconditioners using domain decomposition

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

Two Step Hybrid Block Method with Two Generalized Off-step Points for Solving Second Ordinary Order Differential Equations Directly

Two Step Hybrid Block Method with Two Generalized Off-step Points for Solving Second Ordinary Order Differential Equations Directly Global Journal of Pure and Applied Matematics. ISSN 0973-768 Volume 2, Number 2 (206), pp. 59-535 Researc India Publications ttp://www.ripublication.com/gjpam.tm Two Step Hybrid Block Metod wit Two Generalized

More information

Diffraction. S.M.Lea. Fall 1998

Diffraction. S.M.Lea. Fall 1998 Diffraction.M.Lea Fall 1998 Diffraction occurs wen EM waves approac an aperture (or an obstacle) wit dimension d > λ. We sall refer to te region containing te source of te waves as region I and te region

More information

Applied Linear Statistical Models. Simultaneous Inference Topics. Simultaneous Estimation of β 0 and β 1 Issues. Simultaneous Inference. Dr.

Applied Linear Statistical Models. Simultaneous Inference Topics. Simultaneous Estimation of β 0 and β 1 Issues. Simultaneous Inference. Dr. Applied Linear Statistical Models Simultaneous Inference Dr. DH Jones Simultaneous Inference Topics Simultaneous estimation of β 0 and β 1 Bonferroni Metod Simultaneous estimation of several mean responses

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximating a function f(x, wose values at a set of distinct points x, x, x 2,,x n are known, by a polynomial P (x

More information

Different Approaches to a Posteriori Error Analysis of the Discontinuous Galerkin Method

Different Approaches to a Posteriori Error Analysis of the Discontinuous Galerkin Method WDS'10 Proceedings of Contributed Papers, Part I, 151 156, 2010. ISBN 978-80-7378-139-2 MATFYZPRESS Different Approaces to a Posteriori Error Analysis of te Discontinuous Galerkin Metod I. Šebestová Carles

More information

Implicit-explicit variational integration of highly oscillatory problems

Implicit-explicit variational integration of highly oscillatory problems Implicit-explicit variational integration of igly oscillatory problems Ari Stern Structured Integrators Worksop April 9, 9 Stern, A., and E. Grinspun. Multiscale Model. Simul., to appear. arxiv:88.39 [mat.na].

More information

Finite Difference Method

Finite Difference Method Capter 8 Finite Difference Metod 81 2nd order linear pde in two variables General 2nd order linear pde in two variables is given in te following form: L[u] = Au xx +2Bu xy +Cu yy +Du x +Eu y +Fu = G According

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

Crouzeix-Velte Decompositions and the Stokes Problem

Crouzeix-Velte Decompositions and the Stokes Problem Crouzeix-Velte Decompositions and te Stokes Problem PD Tesis Strauber Györgyi Eötvös Loránd University of Sciences, Insitute of Matematics, Matematical Doctoral Scool Director of te Doctoral Scool: Dr.

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

Continuity. Example 1

Continuity. Example 1 Continuity MATH 1003 Calculus and Linear Algebra (Lecture 13.5) Maoseng Xiong Department of Matematics, HKUST A function f : (a, b) R is continuous at a point c (a, b) if 1. x c f (x) exists, 2. f (c)

More information

arxiv: v1 [math.na] 9 Sep 2015

arxiv: v1 [math.na] 9 Sep 2015 arxiv:509.02595v [mat.na] 9 Sep 205 An Expandable Local and Parallel Two-Grid Finite Element Sceme Yanren ou, GuangZi Du Abstract An expandable local and parallel two-grid finite element sceme based on

More information

arxiv: v3 [math.na] 15 Dec 2009

arxiv: v3 [math.na] 15 Dec 2009 THE NAVIER-STOKES-VOIGHT MODEL FOR IMAGE INPAINTING M.A. EBRAHIMI, MICHAEL HOLST, AND EVELYN LUNASIN arxiv:91.4548v3 [mat.na] 15 Dec 9 ABSTRACT. In tis paper we investigate te use of te D Navier-Stokes-Voigt

More information

More on generalized inverses of partitioned matrices with Banachiewicz-Schur forms

More on generalized inverses of partitioned matrices with Banachiewicz-Schur forms More on generalized inverses of partitioned matrices wit anaciewicz-scur forms Yongge Tian a,, Yosio Takane b a Cina Economics and Management cademy, Central University of Finance and Economics, eijing,

More information

Gradient Descent etc.

Gradient Descent etc. 1 Gradient Descent etc EE 13: Networked estimation and control Prof Kan) I DERIVATIVE Consider f : R R x fx) Te derivative is defined as d fx) = lim dx fx + ) fx) Te cain rule states tat if d d f gx) )

More information

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Matematics National Institute of Tecnology Durgapur Durgapur-7109 email: anita.buie@gmail.com 1 . Capter 8 Numerical Solution of Ordinary

More information

N igerian Journal of M athematics and Applications V olume 23, (2014), 1 13

N igerian Journal of M athematics and Applications V olume 23, (2014), 1 13 N igerian Journal of M atematics and Applications V olume 23, (24), 3 c N ig. J. M at. Appl. ttp : //www.kwsman.com CONSTRUCTION OF POLYNOMIAL BASIS AND ITS APPLICATION TO ORDINARY DIFFERENTIAL EQUATIONS

More information

Discontinuous Galerkin Methods for Relativistic Vlasov-Maxwell System

Discontinuous Galerkin Methods for Relativistic Vlasov-Maxwell System Discontinuous Galerkin Metods for Relativistic Vlasov-Maxwell System He Yang and Fengyan Li December 1, 16 Abstract e relativistic Vlasov-Maxwell (RVM) system is a kinetic model tat describes te dynamics

More information

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves.

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves. Calculus can be divided into two ke areas: Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and minima problems Integral

More information

Department of Mathematical Sciences University of South Carolina Aiken Aiken, SC 29801

Department of Mathematical Sciences University of South Carolina Aiken Aiken, SC 29801 RESEARCH SUMMARY AND PERSPECTIVES KOFFI B. FADIMBA Department of Matematical Sciences University of Sout Carolina Aiken Aiken, SC 29801 Email: KoffiF@usca.edu 1. Introduction My researc program as focused

More information

MANY scientific and engineering problems can be

MANY scientific and engineering problems can be A Domain Decomposition Metod using Elliptical Arc Artificial Boundary for Exterior Problems Yajun Cen, and Qikui Du Abstract In tis paper, a Diriclet-Neumann alternating metod using elliptical arc artificial

More information

Finite Difference Methods Assignments

Finite Difference Methods Assignments Finite Difference Metods Assignments Anders Söberg and Aay Saxena, Micael Tuné, and Maria Westermarck Revised: Jarmo Rantakokko June 6, 1999 Teknisk databeandling Assignment 1: A one-dimensional eat equation

More information

Handling Missing Data on Asymmetric Distribution

Handling Missing Data on Asymmetric Distribution International Matematical Forum, Vol. 8, 03, no. 4, 53-65 Handling Missing Data on Asymmetric Distribution Amad M. H. Al-Kazale Department of Matematics, Faculty of Science Al-albayt University, Al-Mafraq-Jordan

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

3.4 Algebraic Limits. Ex 1) lim. Ex 2)

3.4 Algebraic Limits. Ex 1) lim. Ex 2) Calculus Maimus.4 Algebraic Limits At tis point, you sould be very comfortable finding its bot grapically and numerically wit te elp of your graping calculator. Now it s time to practice finding its witout

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

NONLINEAR SYSTEMS IDENTIFICATION USING THE VOLTERRA MODEL. Georgeta Budura

NONLINEAR SYSTEMS IDENTIFICATION USING THE VOLTERRA MODEL. Georgeta Budura NONLINEAR SYSTEMS IDENTIFICATION USING THE VOLTERRA MODEL Georgeta Budura Politenica University of Timisoara, Faculty of Electronics and Telecommunications, Comm. Dep., georgeta.budura@etc.utt.ro Abstract:

More information

Numerical methods for nonlinear optimal control problems

Numerical methods for nonlinear optimal control problems Title: Name: Affil./Addr.: Numerical metods for nonlinear optimal control problems Lars Grüne Matematical Institute, University of Bayreut, 95440 Bayreut, Germany (e-mail: lars.gruene@uni-bayreut.de) Numerical

More information