Subdiffusion in a nonconvex polygon

Size: px
Start display at page:

Download "Subdiffusion in a nonconvex polygon"

Transcription

1 Subdiffusion in a nonconvex polygon Kim Ngan Le and William McLean The University of New South Wales Bishnu Lamichhane University of Newcastle Monash Workshop on Numerical PDEs, February 2016

2 Outline Time-fractional diffusion Poisson equation on a nonconvex polygon Error bounds for fractional diffusion Numerical examples Smoothing property of diffusion equations

3 Time-fractional diffusion Let 0 < α < 1 and seek u = u(x, t) satisfying t u 1 α t K 2 u = 0 for x Ω and t > 0, together with the initial condition u(x, 0) = u 0 (x) and homogeneous Dirichlet boundary conditions, u(x, t) = 0 for x Ω and t > 0. Riemann Liouville fractional derivative in time, t 1 α v(x, t) = t t 0 (t s) α 1 v(x, s) ds. Γ(α) Recover classical (Brownian) diffusion in limit α 1.

4 Spatial discretisation by finite elements Assume that Ω is a 2D polygon. Triangulate Ω and let V h H0 1 (Ω) denote the corresponding space of continuous, piecewise-linear finite element functions that vanish on Ω. Variational solution u : [0, ) H0 1 (Ω) satisfies t u, v + a( 1 α t u, v) = 0 for all v H 1 0 (Ω), with u(0) = u 0, where a(u, v) = K Ω u v dx. Finite element solution u h : [0, ) V h satisfies t u h, χ + a( 1 α t u h, χ) = 0 for all χ V h, with u h (0) = u 0h u 0.

5 Method of lines Let N = dim V h = number of degrees of freedom, U(t) = vector of nodal values of u h (t), M = mass matrix, S = stiffness matrix. Obtain a system of integrodifferential equations in R N : M t U + S 1 α t U = 0. Reduces to usual method of lines for the heat equation in the limiting case when α 1.

6 Convex case Notation: Av = K 2 v : H 1 0 (Ω) H 1 (Ω), and P h : L 2 (Ω) V h denotes the orthoprojector. Theorem (McLean & Thomée, 2010) Let u 0h = P h u 0. If u 0 L 2 (Ω), then u h (t) u(t) Ct α h 2 u 0, for t > 0. If u 0 D(A) = H 2 (Ω) H0 1 (Ω), then u h (t) u(t) Ch 2 Au 0, for t 0. Classical case α = 1 proved by Bramble, Schatz, Thomée & Wahlbin (SINUM, 1977).

7 Error analysis relies on H 2 -regularity of the Poisson problem, K 2 u = f (x) for x Ω, with u(x) = 0 for x Ω. If Ω is convex and f L 2 (Ω), then the (variational) solution u belongs to H 2 (Ω), and u 2 C f. Here, we use the abbreviation v m = v H m (Ω). But H 2 -regularity breaks down if Ω is a polygon with a re-entrant corner.

8 Poisson equation on a nonconvex polygon Suppose only one re-entrant corner at the origin with angle π/β for 1/2 < β < 1. u = 0 π/β 2 u = f

9 Polar coordinates Separating variables, we find that the functions u n ± = r ±nβ sin(nβθ), n {1, 2, 3,...}, satisfy 2 u n ± = 0 for 0 < r < and 0 < θ < π/β, with u n ± = 0 for 0 < r < and θ = 0 or π/β. Let η = η(r) be a C cutoff function equal to 1 for small r. Then, ηu n + H0 1 (Ω) but ηun / H0 1 (Ω) for all n 1. Also, ηu n + H 2 (Ω) for all n 2 but ηu 1 + / H2 (Ω).

10 Singular behaviour Recall A = K 2 and put R = { Av : v H0 1 (Ω) H 2 (Ω) }, N = { v L 2 (Ω) : Av = 0 in Ω, v = 0 on Ω }. Lemma L 2 (Ω) = R N and dim N = 1. Theorem There exists q N (depending only on Ω and η) such that if f L 2 (Ω) then the variational solution u H0 1 (Ω) of the Poisson problem, K 2 u = f (x) for x Ω, with u(x) = 0 for x Ω, satisfies u q, f ηu C f.

11 Local mesh refinement Consider a family of shape-regular triangulations T h. For each element T h, let For some γ 1, assume h = diameter of, r = distance from 0 to, h = max T h h. chr 1 1/γ h Chr 1 1/γ whenever h γ r 1, and ch γ h Ch γ whenever r < h γ. Elements increase in size from h γ near 0 to h when r c > 0.

12 Generalised polygon with γ = 3/2

13 Approximation property Given v C(Ω) let Π h v V h denote the nodal interpolant to v. Theorem If f L 2 (Ω), then the solution of the Poisson problem satisfies K 2 u = f (x) for x Ω, with u(x) = 0 for x Ω, u Π h u Chɛ(h, γ) f and u Π h u H 1 0 (Ω) Cɛ(h, γ) f, where h γβ / γ 1 β, 1 γ < 1/β, ɛ(h, γ) = h log(1 + h 1 ), γ = 1/β, h/ β γ 1, γ > 1/β.

14 Finite element error for the Poisson problem Corollary u h u Cɛ(h, γ) 2 f and u h u 1 Cɛ(h, γ) f. Proof. Error bound in H0 1 (Ω) follows from quasi-optimality, u h u 1 C min v V h v u 1. Error bound in L 2 (Ω) follows by usual duality argument (Nitsche trick). So for a quasi-uniform mesh (γ = 1) we have u h u Ch 2β f and u h u 1 Ch β f.

15 Error bounds for fractional diffusion Let P h : L 2 (Ω) V h denote the orthoprojector and R h : H 1 0 (Ω) V h the Ritz projector. Theorem For general initial data u 0 L 2 (Ω) and all t > 0, and u h (t) u(t) u 0h P h u 0 + Ct α ɛ(h, γ) 2 u 0 u h (t) u(t) 1 Ct α u 0h P h u 0 + C(t α + t 2α )ɛ(h, γ) u 0. For smoother initial data such that A 1+δ u 0 L 2 (Ω) and for 0 t T, u h (t) u(t) u h0 R h u 0 + Cδ 1 ɛ(h, γ) 2 A 1+δ u 0.

16 Integral representation of u(t) The proof relies on the Laplace transform, Since we have and so û(z) = 0 e zt u(t) dt. t u + 1 α t Au = 0 zû(z) u 0 + z 1 α Aû = 0 (z α I + A)û(z) = z α 1 u 0. Inversion formula: for a suitable contour Γ in the complex plane, u(t) = 1 e zt û(z) dz, t > 0. 2πi Γ

17 Integral representation of u h (t) Similarly, where A h : V h V h is defined by Thus, t u h + 1 α t A h u = 0 A h v, w = a(v, w) for v, w V h. (z α I + A h )û h (z) = z α 1 u 0h and u h (t) = 1 e zt û h (z) dz, t > 0, 2πi Γ leading to a representation of the error, u h (t) u(t) = 1 2πi Γ e zt z α 1[ (z α I +A h ) 1 u 0h (z α I +A) 1 u 0 ] dz.

18 Numerical examples We choose Ω to be the domain 0 < r < 1 and 0 < θ < π/β for β = 3/2. In the first example we solve an (inhomogeneous) fractional diffusion equation with exact solution ( t α ) u = 1 + r β (1 r) sin(βθ), Γ(α + 1) with α = 1/2. Time discretisation uses a quadrature approximation to the Laplace inversion formula.

19 Errors u h (t) u(t) at t = Quasiuniform (γ =1) Locally refined (γ =1/β) Error in L 2 (Ω) Degrees of Freedom

20 In the second example we impose mixed boundary conditions and choose the initial data to be the first eigenfunction of A = K 2, u 0 = J β/2 (ωr) sin( 1 2 βθ), where ω is the smallest positive zero of J β/2. For triangulations T h with γ = 2/β = 3 we observe the following convergence rates at t = 1. α = 1/4 α = 3/4 h N error rate error rate e e e e e e e e e e

21 Error u h (t) u(t) as a function of t, for α = 1/ Error in L 2 (Ω) 10-5 h =2 5 h =2 6 h = t

22 Smoothing property of diffusion equations Let φ 1, φ 2, φ 3,... denote the orthonormal Let (φ n, λ n ) denote the nth eigenpair of A = K 2 in Ω: Thus, φ n H0 1 (Ω) with Aφ n = λ n φ n in Ω, with φ n = 0 on Ω. a(φ n, φ m ) = λ n δ mn and φ n, φ m = δ mn. Expand the solution of the fractional diffusion equation in a generalised Fourier series u(t) = u n (t)φ n. n=1 Modes u n (t) are damped as n, for any fixed t > 0.

23 Mittag Leffler function Each mode satisfies a fractional relaxation equation, Using the identity t u n + λ n 1 α t u n = 0, with u n (0) = u(0), φ n. β t t α Γ(α + 1) = we find u n (t) = u n (0)E α ( λ n t α ) where E α (z) = p=0 t α β Γ(α β + 1) z p Γ(1 + pα).

24 Series representation Thus, Note that u(t) = u n (0)E α ( λ n t α )φ n. n=1 E α ( λ n t α ) E 1 ( λ n t) = e λnt as α 1, giving the usual representation for the solution of the heat equation.

Discontinuous Galerkin methods for fractional diffusion problems

Discontinuous Galerkin methods for fractional diffusion problems Discontinuous Galerkin methods for fractional diffusion problems Bill McLean Kassem Mustapha School of Maths and Stats, University of NSW KFUPM, Dhahran Leipzig, 7 October, 2010 Outline Sub-diffusion Equation

More information

Iterative methods for positive definite linear systems with a complex shift

Iterative methods for positive definite linear systems with a complex shift Iterative methods for positive definite linear systems with a complex shift William McLean, University of New South Wales Vidar Thomée, Chalmers University November 4, 2011 Outline 1. Numerical solution

More information

Maximum norm estimates for energy-corrected finite element method

Maximum norm estimates for energy-corrected finite element method Maximum norm estimates for energy-corrected finite element method Piotr Swierczynski 1 and Barbara Wohlmuth 1 Technical University of Munich, Institute for Numerical Mathematics, piotr.swierczynski@ma.tum.de,

More information

Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation

Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation Numer Algor (29 52:69 88 DOI 1.17/s1175-8-9258-8 ORIGINAL PAPER Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation William McLean Kassem Mustapha Received: 16 September

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Residual and Error of Finite Element Solutions Mixed BVP of Poisson Equation

More information

1 Discretizing BVP with Finite Element Methods.

1 Discretizing BVP with Finite Element Methods. 1 Discretizing BVP with Finite Element Methods In this section, we will discuss a process for solving boundary value problems numerically, the Finite Element Method (FEM) We note that such method is a

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

Error estimates for a finite volume element method for parabolic equations in convex polygonal domains

Error estimates for a finite volume element method for parabolic equations in convex polygonal domains Error estimates for a finite volume element method for parabolic equations in convex polygonal domains P Chatzipantelidis, R D Lazarov Department of Mathematics, Texas A&M University, College Station,

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

10 The Finite Element Method for a Parabolic Problem

10 The Finite Element Method for a Parabolic Problem 1 The Finite Element Method for a Parabolic Problem In this chapter we consider the approximation of solutions of the model heat equation in two space dimensions by means of Galerkin s method, using piecewise

More information

An Operator Theoretical Approach to Nonlocal Differential Equations

An Operator Theoretical Approach to Nonlocal Differential Equations An Operator Theoretical Approach to Nonlocal Differential Equations Joshua Lee Padgett Department of Mathematics and Statistics Texas Tech University Analysis Seminar November 27, 2017 Joshua Lee Padgett

More information

Multigrid Methods for Maxwell s Equations

Multigrid Methods for Maxwell s Equations Multigrid Methods for Maxwell s Equations Jintao Cui Institute for Mathematics and Its Applications University of Minnesota Outline Nonconforming Finite Element Methods for a Two Dimensional Curl-Curl

More information

1. Introduction. We consider the model initial boundary value problem for the fractional order parabolic differential equation (FPDE) for u(x, t):

1. Introduction. We consider the model initial boundary value problem for the fractional order parabolic differential equation (FPDE) for u(x, t): ERROR ESTIMATES FOR A SEMIDISCRETE FINITE ELEMENT METHOD FOR FRACTIONAL ORDER PARABOLIC EQUATIONS BANGTI JIN, RAYTCHO LAZAROV, AND ZHI ZHOU Abstract. We consider the initial boundary value problem for

More information

A very short introduction to the Finite Element Method

A very short introduction to the Finite Element Method A very short introduction to the Finite Element Method Till Mathis Wagner Technical University of Munich JASS 2004, St Petersburg May 4, 2004 1 Introduction This is a short introduction to the finite element

More information

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM Finite Elements February 22, 2019 In the previous sections, we introduced the concept of finite element spaces, which contain certain functions defined on a domain. Finite element spaces are examples of

More information

A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions

A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions Zhiqiang Cai Seokchan Kim Sangdong Kim Sooryun Kong Abstract In [7], we proposed a new finite element method

More information

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM Finite Elements January 15, 2018 Why Can solve PDEs on complicated domains. Have flexibility to increase order of accuracy and match the numerics to the physics. has an elegant mathematical formulation

More information

Geometric Multigrid Methods

Geometric Multigrid Methods Geometric Multigrid Methods Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University IMA Tutorial: Fast Solution Techniques November 28, 2010 Ideas

More information

Simple Examples on Rectangular Domains

Simple Examples on Rectangular Domains 84 Chapter 5 Simple Examples on Rectangular Domains In this chapter we consider simple elliptic boundary value problems in rectangular domains in R 2 or R 3 ; our prototype example is the Poisson equation

More information

Preparation for the Final

Preparation for the Final Preparation for the Final Basic Set of Problems that you should be able to do: - all problems on your tests (- 3 and their samples) - ex tra practice problems in this documents. The final will be a mix

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Nonconformity and the Consistency Error First Strang Lemma Abstract Error Estimate

More information

Convergence and optimality of an adaptive FEM for controlling L 2 errors

Convergence and optimality of an adaptive FEM for controlling L 2 errors Convergence and optimality of an adaptive FEM for controlling L 2 errors Alan Demlow (University of Kentucky) joint work with Rob Stevenson (University of Amsterdam) Partially supported by NSF DMS-0713770.

More information

Preconditioned space-time boundary element methods for the heat equation

Preconditioned space-time boundary element methods for the heat equation W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods

More information

Applied/Numerical Analysis Qualifying Exam

Applied/Numerical Analysis Qualifying Exam Applied/Numerical Analysis Qualifying Exam August 9, 212 Cover Sheet Applied Analysis Part Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless,

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

ANALYSIS OF THE FINITE ELEMENT METHOD FOR TRANSMISSION/MIXED BOUNDARY VALUE PROBLEMS ON GENERAL POLYGONAL DOMAINS

ANALYSIS OF THE FINITE ELEMENT METHOD FOR TRANSMISSION/MIXED BOUNDARY VALUE PROBLEMS ON GENERAL POLYGONAL DOMAINS ANALYSIS OF THE FINITE ELEMENT METHOD FOR TRANSMISSION/MIXED BOUNDARY VALUE PROBLEMS ON GENERAL POLYGONAL DOMAINS HENGGUANG LI, ANNA MAZZUCATO, AND VICTOR NISTOR Abstract. We study theoretical and practical

More information

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions.

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions. Complex Analysis Qualifying Examination 1 The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions 2 ANALYTIC FUNCTIONS:

More information

A Multigrid Method for Two Dimensional Maxwell Interface Problems

A Multigrid Method for Two Dimensional Maxwell Interface Problems A Multigrid Method for Two Dimensional Maxwell Interface Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University USA JSA 2013 Outline A

More information

A gradient recovery method based on an oblique projection and boundary modification

A gradient recovery method based on an oblique projection and boundary modification ANZIAM J. 58 (CTAC2016) pp.c34 C45, 2017 C34 A gradient recovery method based on an oblique projection and boundary modification M. Ilyas 1 B. P. Lamichhane 2 M. H. Meylan 3 (Received 24 January 2017;

More information

Numerical Solution I

Numerical Solution I Numerical Solution I Stationary Flow R. Kornhuber (FU Berlin) Summerschool Modelling of mass and energy transport in porous media with practical applications October 8-12, 2018 Schedule Classical Solutions

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Variational Problems of the Dirichlet BVP of the Poisson Equation 1 For the homogeneous

More information

A POSTERIORI ERROR ESTIMATES BY RECOVERED GRADIENTS IN PARABOLIC FINITE ELEMENT EQUATIONS

A POSTERIORI ERROR ESTIMATES BY RECOVERED GRADIENTS IN PARABOLIC FINITE ELEMENT EQUATIONS A POSTERIORI ERROR ESTIMATES BY RECOVERED GRADIENTS IN PARABOLIC FINITE ELEMENT EQUATIONS D. LEYKEKHMAN AND L. B. WAHLBIN Abstract. This paper considers a posteriori error estimates by averaged gradients

More information

Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem

Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem Journal manuscript No. (will be inserted by the editor Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem Constantin Christof Christof Haubner Received:

More information

Projected Surface Finite Elements for Elliptic Equations

Projected Surface Finite Elements for Elliptic Equations Available at http://pvamu.edu/aam Appl. Appl. Math. IN: 1932-9466 Vol. 8, Issue 1 (June 2013), pp. 16 33 Applications and Applied Mathematics: An International Journal (AAM) Projected urface Finite Elements

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II February 23 2017 Separation of variables Wave eq. (PDE) 2 u t (t, x) = 2 u 2 c2 (t, x), x2 c > 0 constant. Describes small vibrations in a homogeneous string. u(t, x)

More information

Jim Lambers ENERGY 281 Spring Quarter Lecture 5 Notes

Jim Lambers ENERGY 281 Spring Quarter Lecture 5 Notes Jim ambers ENERGY 28 Spring Quarter 27-8 ecture 5 Notes These notes are based on Rosalind Archer s PE28 lecture notes, with some revisions by Jim ambers. Fourier Series Recall that in ecture 2, when we

More information

BEST APPROXIMATION PROPERTY IN THE W FINITE ELEMENT METHODS ON GRADED MESHES.

BEST APPROXIMATION PROPERTY IN THE W FINITE ELEMENT METHODS ON GRADED MESHES. BEST APPROXIMATION PROPERTY IN THE W 1 NORM FOR FINITE ELEMENT METHODS ON GRADED MESHES. A. DEMLOW, D. LEYKEKHMAN, A.H. SCHATZ, AND L.B. WAHLBIN Abstract. We consider finite element methods for a model

More information

c 2005 Society for Industrial and Applied Mathematics

c 2005 Society for Industrial and Applied Mathematics SIAM J NUMER ANAL Vol 42, No 5, pp 1932 1958 c 2005 Society for Industrial and Applied Mathematics ERROR ESTIMATES FOR A FINITE VOLUME ELEMENT METHOD FOR ELLIPTIC PDES IN NONCONVEX POLYGONAL DOMAINS P

More information

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs Lecture Notes: African Institute of Mathematics Senegal, January 26 opic itle: A short introduction to numerical methods for elliptic PDEs Authors and Lecturers: Gerard Awanou (University of Illinois-Chicago)

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1 On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1 Jie Shen Department of Mathematics, Penn State University University Park, PA 1682 Abstract. We present some

More information

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck MATH 8.52 COURSE NOTES - CLASS MEETING # 6 8.52 Introduction to PDEs, Fall 20 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations

More information

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck MATH 8.52 COURSE NOTES - CLASS MEETING # 6 8.52 Introduction to PDEs, Spring 208 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations

More information

Solutions of Selected Problems

Solutions of Selected Problems 1 Solutions of Selected Problems October 16, 2015 Chapter I 1.9 Consider the potential equation in the disk := {(x, y) R 2 ; x 2 +y 2 < 1}, with the boundary condition u(x) = g(x) r for x on the derivative

More information

Thomas Apel 1, Ariel L. Lombardi 2 and Max Winkler 1

Thomas Apel 1, Ariel L. Lombardi 2 and Max Winkler 1 Mathematical Modelling and Numerical Analysis Modélisation Mathématique et Analyse Numérique Will be set by the publisher ANISOTROPIC MESH REFINEMENT IN POLYHEDRAL DOMAINS: ERROR ESTIMATES WITH DATA IN

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 37, pp. 41-69, 2010. Copyright 2010,. ISSN 1068-9613. ETNA ANALYSIS OF THE FINITE ELEMENT METHOD FOR TRANSMISSION/MIXED BOUNDARY VALUE PROBLEMS ON

More information

Maximum-norm stability of the finite element Ritz projection with mixed boundary conditions

Maximum-norm stability of the finite element Ritz projection with mixed boundary conditions Noname manuscript No. (will be inserted by the editor) Maximum-norm stability of the finite element Ritz projection with mixed boundary conditions Dmitriy Leykekhman Buyang Li Received: date / Accepted:

More information

PREPRINT 2009:16. Existence and Uniqueness of the Solution of an Integro-Differential Equation with Weakly Singular Kernel FARDIN SAEDPANAH

PREPRINT 2009:16. Existence and Uniqueness of the Solution of an Integro-Differential Equation with Weakly Singular Kernel FARDIN SAEDPANAH PREPRINT 29:16 Existence and Uniqueness of the Solution of an Integro-Differential Equation with Weakly Singular Kernel FARDIN SAEDPANAH Department of Mathematical Sciences Division of Mathematics CHALMERS

More information

A Finite Element Method Using Singular Functions: Interface Problems

A Finite Element Method Using Singular Functions: Interface Problems A Finite Element Method Using Singular Functions: Interface Problems Seokchan Kim Zhiqiang Cai Jae-Hong Pyo Sooryoun Kong Abstract The solution of the interface problem is only in H 1+α (Ω) with α > 0

More information

MULTIGRID METHODS FOR MAXWELL S EQUATIONS

MULTIGRID METHODS FOR MAXWELL S EQUATIONS MULTIGRID METHODS FOR MAXWELL S EQUATIONS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday.

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday. MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* DOUGLAS N ARNOLD, RICHARD S FALK, and RAGNAR WINTHER Dedicated to Professor Jim Douglas, Jr on the occasion of his seventieth birthday Abstract

More information

Higher-Order Compact Finite Element Method

Higher-Order Compact Finite Element Method Higher-Order Compact Finite Element Method Major Qualifying Project Advisor: Professor Marcus Sarkis Amorn Chokchaisiripakdee Worcester Polytechnic Institute Abstract The Finite Element Method (FEM) is

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

Springer Series in Computational Mathematics

Springer Series in Computational Mathematics Springer Series in Computational Mathematics 25 Editorial Board R. Bank R.L. Graham J. Stoer R. Varga H. Yserentant Vidar Thomée Galerkin Finite Element Methods for Parabolic Problems Second Edition ABC

More information

Multigrid Methods for Saddle Point Problems

Multigrid Methods for Saddle Point Problems Multigrid Methods for Saddle Point Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University Advances in Mathematics of Finite Elements (In

More information

Convergence Order Studies for Elliptic Test Problems with COMSOL Multiphysics

Convergence Order Studies for Elliptic Test Problems with COMSOL Multiphysics Convergence Order Studies for Elliptic Test Problems with COMSOL Multiphysics Shiming Yang and Matthias K. Gobbert Abstract. The convergence order of finite elements is related to the polynomial order

More information

Finite Element Method for Ordinary Differential Equations

Finite Element Method for Ordinary Differential Equations 52 Chapter 4 Finite Element Method for Ordinary Differential Equations In this chapter we consider some simple examples of the finite element method for the approximate solution of ordinary differential

More information

An Analysis of the L1 Scheme for the Subdiffusion Equation with Nonsmooth Data

An Analysis of the L1 Scheme for the Subdiffusion Equation with Nonsmooth Data IMA Journal of Numerical Analysis (214) Page 1 of 23 doi:1.193/imanum/drnxxx An Analysis of the L1 Scheme for the Subdiffusion Equation with Nonsmooth Data BANGTI JIN Department of Computer Science, University

More information

Error estimates for Dirichlet control problems in polygonal domains

Error estimates for Dirichlet control problems in polygonal domains Error estimates for Dirichlet control problems in polygonal domains Thomas Apel Mariano Mateos Johannes Pfefferer Arnd Rösch arxiv:1704.08843v1 [math.na] 28 Apr 2017 May 1, 2017 Abstract The paper deals

More information

Maximum principle for the fractional diusion equations and its applications

Maximum principle for the fractional diusion equations and its applications Maximum principle for the fractional diusion equations and its applications Yuri Luchko Department of Mathematics, Physics, and Chemistry Beuth Technical University of Applied Sciences Berlin Berlin, Germany

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

CONVERGENCE OF A MULTISCALE FINITE ELEMENT METHOD FOR ELLIPTIC PROBLEMS WITH RAPIDLY OSCILLATING COEFFICIENTS

CONVERGENCE OF A MULTISCALE FINITE ELEMENT METHOD FOR ELLIPTIC PROBLEMS WITH RAPIDLY OSCILLATING COEFFICIENTS MATHEMATICS OF COMPUTATION Volume 68, Number 227, Pages 913 943 S 0025-5718(99)01077-7 Article electronically published on March 3, 1999 CONVERGENCE OF A MULTISCALE FINITE ELEMENT METHOD FOR ELLIPTIC PROBLEMS

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω)

Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω) Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω) Thomas Apel Ariel L. Lombardi Max Winkler February 6, 2014 arxiv:1303.2960v1 [math.na] 12 Mar 2013 Abstract. The

More information

Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives

Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives Etienne Emmrich Technische Universität Berlin, Institut für Mathematik, Straße

More information

Finite Element Spectral Approximation with Numerical Integration for the Biharmonic Eigenvalue Problem

Finite Element Spectral Approximation with Numerical Integration for the Biharmonic Eigenvalue Problem City University of New York (CUNY) CUNY Academic Works Publications and Research Kingsborough Community College 2014 Finite Element Spectral Approximation with Numerical Integration for the Biharmonic

More information

arxiv: v1 [math.na] 29 Feb 2016

arxiv: v1 [math.na] 29 Feb 2016 EFFECTIVE IMPLEMENTATION OF THE WEAK GALERKIN FINITE ELEMENT METHODS FOR THE BIHARMONIC EQUATION LIN MU, JUNPING WANG, AND XIU YE Abstract. arxiv:1602.08817v1 [math.na] 29 Feb 2016 The weak Galerkin (WG)

More information

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Contents Chapter I. Introduction 7 I.1. Motivation 7 I.2. Sobolev and finite

More information

FEM Convergence for PDEs with Point Sources in 2-D and 3-D

FEM Convergence for PDEs with Point Sources in 2-D and 3-D FEM Convergence for PDEs with Point Sources in -D and 3-D Kourosh M. Kalayeh 1, Jonathan S. Graf, and Matthias K. Gobbert 1 Department of Mechanical Engineering, University of Maryland, Baltimore County

More information

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V Part I: Introduction to Finite Element Methods Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Necel Winter 4/5 The Model Problem FEM Main Ingredients Wea Forms and Wea

More information

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Scuola di Dottorato THE WAVE EQUATION Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Lucio Demeio - DIISM wave equation 1 / 44 1 The Vibrating String Equation 2 Second

More information

VARIATIONAL FORMULATION OF PROBLEMS INVOLVING FRACTIONAL ORDER DIFFERENTIAL OPERATORS

VARIATIONAL FORMULATION OF PROBLEMS INVOLVING FRACTIONAL ORDER DIFFERENTIAL OPERATORS VAIATIONAL FOMULATION OF POBLEMS INVOLVING FACTIONAL ODE DIFFEENTIAL OPEATOS BANGTI JIN, AYTCHO LAZAOV, JOSEPH PASCIAK, AND WILLIAM UNDELL Abstract. In this work, we consider boundary value problems involving

More information

PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED

PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED ALAN DEMLOW Abstract. Recent results of Schatz show that standard Galerkin finite element methods employing piecewise polynomial elements of degree

More information

COMBINING MAXIMAL REGULARITY AND ENERGY ESTIMATES FOR TIME DISCRETIZATIONS OF QUASILINEAR PARABOLIC EQUATIONS

COMBINING MAXIMAL REGULARITY AND ENERGY ESTIMATES FOR TIME DISCRETIZATIONS OF QUASILINEAR PARABOLIC EQUATIONS COMBINING MAXIMAL REGULARITY AND ENERGY ESTIMATES FOR TIME DISCRETIZATIONS OF QUASILINEAR PARABOLIC EQUATIONS GEORGIOS AKRIVIS, BUYANG LI, AND CHRISTIAN LUBICH Abstract. We analyze fully implicit and linearly

More information

A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators

A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators Jeff Ovall University of Kentucky Mathematics www.math.uky.edu/ jovall jovall@ms.uky.edu Kentucky Applied and

More information

On Multigrid for Phase Field

On Multigrid for Phase Field On Multigrid for Phase Field Carsten Gräser (FU Berlin), Ralf Kornhuber (FU Berlin), Rolf Krause (Uni Bonn), and Vanessa Styles (University of Sussex) Interphase 04 Rome, September, 13-16, 2004 Synopsis

More information

Local Mesh Refinement with the PCD Method

Local Mesh Refinement with the PCD Method Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 8, Number 1, pp. 125 136 (2013) http://campus.mst.edu/adsa Local Mesh Refinement with the PCD Method Ahmed Tahiri Université Med Premier

More information

Nodal O(h 4 )-superconvergence of piecewise trilinear FE approximations

Nodal O(h 4 )-superconvergence of piecewise trilinear FE approximations Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-12 INSTITTE of MATHEMATICS Academy of Sciences Czech Republic Nodal O(h 4 )-superconvergence of piecewise trilinear FE approximations Antti Hannukainen

More information

arxiv: v5 [math.na] 1 Sep 2018

arxiv: v5 [math.na] 1 Sep 2018 High-Order Adaptive Extended Stencil FEM (AES-FEM) Part I: Convergence and Superconvergence Xiangmin Jiao Rebecca Conley Tristan J. Delaney arxiv:1603.09325v5 [math.na] 1 Sep 2018 Abstract Finite elements

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Isogeometric Analysis for the Fractional Laplacian

Isogeometric Analysis for the Fractional Laplacian Isogeometric Analysis for the Fractional Laplacian Kailai Xu & Eric Darve CME500 May 14, 2018 1 / 26 Outline Fractional Calculus Isogeometric Analysis Numerical Experiment Regularity for the Fractional

More information

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS CHARALAMBOS MAKRIDAKIS AND RICARDO H. NOCHETTO Abstract. It is known that the energy technique for a posteriori error analysis

More information

ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR THE POINTWISE GRADIENT ERROR ON EACH ELEMENT IN IRREGULAR MESHES. PART II: THE PIECEWISE LINEAR CASE

ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR THE POINTWISE GRADIENT ERROR ON EACH ELEMENT IN IRREGULAR MESHES. PART II: THE PIECEWISE LINEAR CASE MATEMATICS OF COMPUTATION Volume 73, Number 246, Pages 517 523 S 0025-5718(0301570-9 Article electronically published on June 17, 2003 ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR TE POINTWISE GRADIENT

More information

Analysis in weighted spaces : preliminary version

Analysis in weighted spaces : preliminary version Analysis in weighted spaces : preliminary version Frank Pacard To cite this version: Frank Pacard. Analysis in weighted spaces : preliminary version. 3rd cycle. Téhéran (Iran, 2006, pp.75.

More information

Error analysis of a space-time finite element method for solving PDEs on evolving surfaces

Error analysis of a space-time finite element method for solving PDEs on evolving surfaces Numerical Analysis and Scientific Computing Preprint Seria Error analysis of a space-time finite element method for solving PDEs on evolving surfaces M.A. Olshanskii A. Reusken Preprint #9 Department of

More information

A DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC INTERFACE PROBLEMS WITH APPLICATION TO ELECTROPORATION

A DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC INTERFACE PROBLEMS WITH APPLICATION TO ELECTROPORATION A DISCONTINUOUS GALERIN METHOD FOR ELLIPTIC INTERFACE PROBLEMS WITH APPLICATION TO ELECTROPORATION GRÉGORY GUYOMARC H AND CHANG-OC LEE Abstract. We present a discontinuous Galerkin (DG) method to solve

More information

arxiv: v2 [math.na] 11 Jun 2018

arxiv: v2 [math.na] 11 Jun 2018 DISCRETIZATIONS OF THE SPECTRAL FRACTIONAL LAPLACIAN ON GENERAL DOMAINS WITH DIRICHLET, NEUMANN, AND ROIN OUNDARY CONDITIONS NICOLE CUSIMANO, FÉLIX DEL TESO, LUCA GERARDO-GIORDA, AND GIANNI PAGNINI arxiv:78.362v2

More information

High order, finite volume method, flux conservation, finite element method

High order, finite volume method, flux conservation, finite element method FLUX-CONSERVING FINITE ELEMENT METHODS SHANGYOU ZHANG, ZHIMIN ZHANG, AND QINGSONG ZOU Abstract. We analyze the flux conservation property of the finite element method. It is shown that the finite element

More information

On the approximation of the principal eigenvalue for a class of nonlinear elliptic operators

On the approximation of the principal eigenvalue for a class of nonlinear elliptic operators On the approximation of the principal eigenvalue for a class of nonlinear elliptic operators Fabio Camilli ("Sapienza" Università di Roma) joint work with I.Birindelli ("Sapienza") I.Capuzzo Dolcetta ("Sapienza")

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

Ultraconvergence of ZZ Patch Recovery at Mesh Symmetry Points

Ultraconvergence of ZZ Patch Recovery at Mesh Symmetry Points Ultraconvergence of ZZ Patch Recovery at Mesh Symmetry Points Zhimin Zhang and Runchang Lin Department of Mathematics, Wayne State University Abstract. The ultraconvergence property of the Zienkiewicz-Zhu

More information

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University A Posteriori Error Estimation Techniques for Finite Element Methods Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 16, 2017 Books Ainsworth & Oden, A posteriori

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

NUMERICAL ANALYSIS OF FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS WITH NONSMOOTH DATA. A Dissertation ZHI ZHOU

NUMERICAL ANALYSIS OF FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS WITH NONSMOOTH DATA. A Dissertation ZHI ZHOU NUMERICAL ANALYSIS OF FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS WITH NONSMOOTH DATA A Dissertation by ZHI ZHOU Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial

More information

VARIATIONAL AND NON-VARIATIONAL MULTIGRID ALGORITHMS FOR THE LAPLACE-BELTRAMI OPERATOR.

VARIATIONAL AND NON-VARIATIONAL MULTIGRID ALGORITHMS FOR THE LAPLACE-BELTRAMI OPERATOR. VARIATIONAL AND NON-VARIATIONAL MULTIGRID ALGORITHMS FOR THE LAPLACE-BELTRAMI OPERATOR. ANDREA BONITO AND JOSEPH E. PASCIAK Abstract. We design and analyze variational and non-variational multigrid algorithms

More information

Spline Element Method for Partial Differential Equations

Spline Element Method for Partial Differential Equations for Partial Differential Equations Department of Mathematical Sciences Northern Illinois University 2009 Multivariate Splines Summer School, Summer 2009 Outline 1 Why multivariate splines for PDEs? Motivation

More information