Space time finite element methods in biomedical applications

Size: px
Start display at page:

Download "Space time finite element methods in biomedical applications"

Transcription

1 Space time finite element methods in biomedical applications Olaf Steinbach Institut für Angewandte Mathematik, TU Graz SFB Mathematical Optimization and Applications in Biomedical Sciences LEAD Project Mechanics, Modeling and Simulation in Aortic Disscetion Subproject Parallel Space Time Finite Element Methods 1 / 23

2 FETI Domain Decomposition Methods for the Simulation of Biological Tissues [C. Augustin 214; C. Augustin, G. Holzapfel, OS 214] 2 / 23

3 Cardiac Electromechanics [E. Karabelas 215] Active stress T a 3 / 23

4 Optimal control of Blood Flow in an Artery with Aneurysm [L. John 214] Wall shear stress distribution [L. John, P. Pustejovska, OS 217] 4 / 23

5 Lobe Pumpe [M. Neumüller 213] 5 / 23

6 Space Time Finite Element Methods Formulation in Bochner spaces Formulation in anisotropic Sobolev spaces standard lowest order (piecewise linear) finite elements Heat equation [with M. Zank] Bidomain system [with H. Yang] (Navier ) Stokes [with D. Pacheco] Wave equation [with M. Zank] The aim is to provide an adaptive simulation, simultaneously in space and time, which allows an accurate resolution of wave type solutions, and which allows, i.e. requires, the use of parallel solvers. 6 / 23

7 Dirichlet boundary value problem for the heat equation α t u(x,t) x u(x,t) = f(x,t) for (x,t) Q := Ω (,T), u(x,t) = for (x,t) Σ := Γ (,T), u(x,) = for x Ω. 7 / 23

8 Dirichlet boundary value problem for the heat equation α t u(x,t) x u(x,t) = f(x,t) u(x,t) = u(x,) = for x Ω. Find u L 2 (,T;H 1 (Ω)) H1, (,T;H 1 (Ω)) such that Ω [ ] α t u(x,t)v(x,t)+ x u(x,t) x v(x,t) dxdt = is satisfied for all v L 2 (,T;H 1 (Ω)). for (x,t) Q := Ω (,T), for (x,t) Σ := Γ (,T), Ω f(x,t)v(x,t)dxdt 7 / 23

9 Dirichlet boundary value problem for the heat equation α t u(x,t) x u(x,t) = f(x,t) u(x,t) = u(x,) = for x Ω. Find u L 2 (,T;H 1 (Ω)) H1, (,T;H 1 (Ω)) such that Ω [ ] α t u(x,t)v(x,t)+ x u(x,t) x v(x,t) dxdt = is satisfied for all v L 2 (,T;H 1 (Ω)). for (x,t) Q := Ω (,T), for (x,t) Σ := Γ (,T), Ω f(x,t)v(x,t)dxdt Bilinear form a(u,v) = = Ω Ω [ ] α t u(x,t)v(x,t)+ x u(x,t) x v(x,t) dxdt [ ] α t u(x,t) x u(x,t) v(x,t)dxdt 7 / 23

10 Quasi static Dirichlet problem for u L 2 (,T;H 1 (Ω)) H1, (,T;H 1 (Ω)) x w(x,t) = α t u(x,t) x u(x,t) for (x,t) Q, w(x,t) = for (x,t) Σ. 8 / 23

11 Quasi static Dirichlet problem for u L 2 (,T;H 1 (Ω)) H1, (,T;H 1 (Ω)) x w(x,t) = α t u(x,t) x u(x,t) for (x,t) Q, w(x,t) = for (x,t) Σ. Find w L 2 (,T;H 1 (Ω)) such that x w(x,t) x v(x,t)dxdt = Ω is satisfied for all v L 2 (,T;H 1 (Ω)). Ω [ ] α t u(x,t) x u(x,t) v(x,t)dxdt 8 / 23

12 Quasi static Dirichlet problem for u L 2 (,T;H 1 (Ω)) H1, (,T;H 1 (Ω)) x w(x,t) = α t u(x,t) x u(x,t) for (x,t) Q, w(x,t) = for (x,t) Σ. Find w L 2 (,T;H 1 (Ω)) such that x w(x,t) x v(x,t)dxdt = Ω is satisfied for all v L 2 (,T;H 1 (Ω)). Lemma Corollary Ω [ ] α t u(x,t) x u(x,t) v(x,t)dxdt α t u x u 2 L 2 (,T;H 1 (Ω)) = w 2 L 2 (,T;H 1 (Ω)) = a(u,w) α t u x u L 2 (,T;H 1 (Ω)) sup v L 2 (,T;H 1 (Ω)) a(u,v) v L 2 (,T;H 1 (Ω)) 8 / 23

13 Norm equivalence 1 ] [ α t u 2 L 2 2 (,T;H 1 (Ω)) + u 2L 2(,T;H 1(Ω)) α t u x u 2 L 2 (,T;H 1 (Ω)) ] 2 [ α t u 2 L 2 (,T;H 1 (Ω)) + u 2L 2(,T;H 1(Ω)) Lemma 1 α t u 2 2 L 2 (,T;H 1 (Ω)) + u 2 sup L 2 (,T;H 1 (Ω)) v L 2 (,T;H 1(Ω)) a(u,v) v L 2 (,T;H 1 (Ω)) [Schwab, Stevenson 29; Urban, Patera 214; Andreev 213; Mollet 214; OS 215;...] 9 / 23

14 Adjoint variational formulation to find u L 2 (,T;H 1 (Ω)) such that [ ] u(x,t)α t v(x,t)+ x u(x,t) x v(x,t) dxdt = f(x,t)v(x,t)dxdt Ω is satisfied for all v L 2 (,T;H 1 (Ω)) H1, (,T;H 1 (Ω)). Ω 1 / 23

15 Adjoint variational formulation to find u L 2 (,T;H 1 (Ω)) such that [ ] u(x,t)α t v(x,t)+ x u(x,t) x v(x,t) dxdt = f(x,t)v(x,t)dxdt Ω is satisfied for all v L 2 (,T;H 1 (Ω)) H1, (,T;H 1 (Ω)). Operator adjoint formulation L : L 2 (,T;H 1 (Ω)) [L 2 (,T;H 1 (Ω)) H 1,(,T;H 1 (Ω))] Operator primal formulation L : L 2 (,T;H 1 (Ω)) H 1,(,T;H 1 (Ω)) [L 2 (,T;H 1 (Ω))] Ω 1 / 23

16 Adjoint variational formulation to find u L 2 (,T;H 1 (Ω)) such that [ ] u(x,t)α t v(x,t)+ x u(x,t) x v(x,t) dxdt = f(x,t)v(x,t)dxdt Ω is satisfied for all v L 2 (,T;H 1 (Ω)) H1, (,T;H 1 (Ω)). Operator adjoint formulation L : L 2 (,T;H 1 (Ω)) [L 2 (,T;H 1 (Ω)) H 1,(,T;H 1 (Ω))] Operator primal formulation Can we define L : L 2 (,T;H 1 (Ω)) H 1,(,T;H 1 (Ω)) [L 2 (,T;H 1 (Ω))] L : L 2 (,T;H 1 (Ω)) H 1/2, (,T;L 2 (Ω)) [L 2 (,T;H 1 (Ω)) H 1/2, (,T;L2 (Ω))] Ω 1 / 23

17 Model problem u (t) = f(t) for t (,T), u() = Primal variational formulation: Find u H, 1 (,T) such that a(u,v) = u (t)v(t)dt = Solution operator B 1 : H,(,T) 1 L 2 (,T) f(t)v(t)dt for all v L 2 (,T) 11 / 23

18 Model problem u (t) = f(t) for t (,T), u() = Primal variational formulation: Find u H, 1 (,T) such that a(u,v) = u (t)v(t)dt = Solution operator B 1 : H,(,T) 1 L 2 (,T) f(t)v(t)dt for all v L 2 (,T) Dual variational formulation: Find u L 2 (,T) such that u(t)v (t)dt = f(t)v(t)dt for all v H 1,(,T) Solution operator B : L 2 (,T) [H,(,T)] 1 11 / 23

19 Model problem u (t) = f(t) for t (,T), u() = Primal variational formulation: Find u H, 1 (,T) such that a(u,v) = u (t)v(t)dt = Solution operator B 1 : H,(,T) 1 L 2 (,T) f(t)v(t)dt for all v L 2 (,T) Dual variational formulation: Find u L 2 (,T) such that u(t)v (t)dt = f(t)v(t)dt for all v H 1,(,T) Solution operator B : L 2 (,T) [H,(,T)] 1 Question B s : [L 2 (,T),H,(,T)] 1 s [[H,(,T)] 1,L 2 (,T)] s for s (,1),s = 1 2 Related work: [Fontes 1996; Langer, Wolfmayr 213; Larsson, Schwab 215] 11 / 23

20 Solution operator Adjoint operator B 1 : H 1,(,T) L 2 (,T) B 1 : L 2 (,T) [H 1,(,T)] u,b 1v L2 (,T) = B 1 u,v L2 (,T) for all u H 1,(,T),v L 2 (,T) 12 / 23

21 Solution operator Adjoint operator B 1 : H 1,(,T) L 2 (,T) B 1 : L 2 (,T) [H 1,(,T)] u,b 1v L2 (,T) = B 1 u,v L2 (,T) for all u H 1,(,T),v L 2 (,T) Define Eigenvalue problem A := B 1B 1 : H 1,(,T) [H 1,(,T)] Au = λu 12 / 23

22 Solution operator Adjoint operator B 1 : H 1,(,T) L 2 (,T) B 1 : L 2 (,T) [H 1,(,T)] Define u,b 1v L2 (,T) = B 1 u,v L2 (,T) for all u H 1,(,T),v L 2 (,T) Eigenvalue problem Au,v L2 (,T) = B 1 u,b 1 v L2 (,T) = A := B 1B 1 : H 1,(,T) [H 1,(,T)] Au = λu t u(t) t v(t)dt = λ u(t)v(t)dt u (t) = λu(t) for t (,T), u() =, u (T) = ( π ) t v k (t) = sin 2 +kπ T, λ k = 1 ( π ) 2, T 2 2 +kπ k =,1,2,3, / 23

23 u H, 1(,T) ( π ) t u(t) = u k sin 2 +kπ T, u k = 2 π ) t u(t)sin( T 2 +kπ T dt k= 13 / 23

24 u H, 1(,T) ( π ) t u(t) = u k sin 2 +kπ T, u k = 2 π ) t u(t)sin( T 2 +kπ T dt k= Time derivative (B 1 u)(t) = u (t) = 1 T k= ( π ( π ) t u k )cos 2 +kπ 2 +kπ T 13 / 23

25 u H, 1(,T) ( π ) t u(t) = u k sin 2 +kπ T, u k = 2 π ) t u(t)sin( T 2 +kπ T dt k= Time derivative (B 1 u)(t) = u (t) = 1 T B 1 u,v L 2 (,T) = 1 T = 1 T = 1 2 if we choose k= l= k= k= ( π ( π ) t u k )cos 2 +kπ 2 +kπ T ( π )cos( π ) t u k 2 +kπ 2 +kπ T v(t)dt k= ( π ) π ) t ( π ) t u k u l cos( 2 +kπ 2 +kπ T cos 2 +lπ T dt u 2 k ( π 2 +kπ ) = u 2 H 1/2, (,T) π ) t v(t) = u l cos( 2 +lπ T, l= 13 / 23

26 Transformation operator ( π ) t (H T u)(t) = u k cos 2 +kπ T, u(t) = π ) t u k sin( 2 +kπ T, k= k= 14 / 23

27 Transformation operator ( π ) t (H T u)(t) = u k cos 2 +kπ T, u(t) = π ) t u k sin( 2 +kπ T, k= k= Lemma H T : H s,(,t) H ș (,T), H T u H ș (,T) = u H s, (,T) 14 / 23

28 Transformation operator (H T u)(t) = Lemma ( π ) t u k cos 2 +kπ T, u(t) = π ) t u k sin( 2 +kπ T, k= k= H T : H s,(,t) H ș (,T), H T u H ș (,T) = u H s, (,T) Inverse transformation operator T v)(t) = ( π ) t v k sin 2 +kπ T, v(t) = ( π ) t v k cos 2 +kπ T (H 1 k= k= 14 / 23

29 Transformation operator (H T u)(t) = Lemma ( π ) t u k cos 2 +kπ T, u(t) = π ) t u k sin( 2 +kπ T, k= k= H T : H s,(,t) H ș (,T), H T u H ș (,T) = u H s, (,T) Inverse transformation operator (H 1 Lemma T v)(t) = ( π ) t v k sin 2 +kπ T, v(t) = ( π ) t v k cos 2 +kπ T k= t H T u = H 1 T tu k= 14 / 23

30 Transformation operator (H T u)(t) = Lemma ( π ) t u k cos 2 +kπ T, u(t) = π ) t u k sin( 2 +kπ T, k= k= H T : H s,(,t) H ș (,T), H T u H ș (,T) = u H s, (,T) Inverse transformation operator T v)(t) = ( π ) t v k sin 2 +kπ T, v(t) = ( π ) t v k cos 2 +kπ T (H 1 Lemma k= t H T u = H 1 T tu k= Lemma: For u H 1/2, (,T) and w H 1/2, (,T) we have H T u,w L2 (,T) = u,h 1 T w L 2 (,T) 14 / 23

31 Corollary t u,h T v (,T) = H T u, t v (,T) 15 / 23

32 Corollary t u,h T v (,T) = H T u, t v (,T) Lemma v,h T v L2 (,T) > for all v H 1/2, (,T) 15 / 23

33 Corollary t u,h T v (,T) = H T u, t v (,T) Lemma Lemma v,h T v L2 (,T) > for all v H 1/2, (,T) (H T u)(t) = 1 [ T 2T 1 sin ( π 2 ) s t + T 1 sin ( π 2 ) s+t T ] u(s) ds 15 / 23

34 Corollary t u,h T v (,T) = H T u, t v (,T) Lemma Lemma v,h T v L2 (,T) > for all v H 1/2, (,T) (H T u)(t) = 1 [ T 2T 1 sin ( π 2 ) s t + T 1 sin ( π 2 ) s+t T ] u(s) ds Corollary: For T (H u)(t) = 1 π u(s) s t 2s s +t ds Hilbert transformation Construction of optimal test functions [Demkowicz, Gopalakrishnan 211] 15 / 23

35 Model problem u (t) = f(t) for t (,T), u() = Variational formulation: Find u H 1/2, (,T) such that t u,v (,T) = f,v (,T) for all v H 1/2, (,T) 16 / 23

36 Model problem u (t) = f(t) for t (,T), u() = Variational formulation: Find u H 1/2, (,T) such that t u,v (,T) = f,v (,T) for all v H 1/2, (,T) Variational formulation: Find u H 1/2, (,T) such that t u,h T v (,T) = f,h T v (,T) for all v H 1/2, (,T) 16 / 23

37 Model problem u (t) = f(t) for t (,T), u() = Variational formulation: Find u H 1/2, (,T) such that t u,v (,T) = f,v (,T) for all v H 1/2, (,T) Variational formulation: Find u H 1/2, (,T) such that Theorem t u,h T v (,T) = f,h T v (,T) for all v H 1/2, (,T) t u,h T u (,T) = u 2 H 1/2, (,T) for all u H 1/2, (,T) Corollary u 1/2 H, (,T) sup t u,v (,T) for all u H 1/2, (,T) v v H 1/2, (,T) 1/2 H, (,T) 16 / 23

38 Galerkin FEM: Find u h V h := S 1 h (,T) H1/2, (,T) such that t u h,h T v h (,T) = f,h T v h (,T) for all v h V h Linear system K h u = f, K h = K h > Numerical example: u(t) = 8t 3 8t 2 +2t, t (,1) L N u u h L 2 eoc u u h L 2 eoc λ min λ max κ / 23

39 Dirichlet boundary value problem for the heat equation α t u(x,t) x u(x,t) = f(x,t) u(x,t) = u(x,) = for x Ω. for (x,t) Q := Ω (,T), for (x,t) Σ := Γ (,T), Find u H 1,1/2 ;, := L 2 (,T;H 1 (Ω)) H1/2, (,T;L 2 (Ω)) such that Ω [ ] α t u(x,t)v(x,t)+ x u(x,t) x v(x,t) dxdt = f(x,t)v(x,t)dxdt Ω is satisfied for all v H 1,1/2 ;, := L 2 (,T;H 1 (Ω)) H1/2, (,T;L2 (Ω)). 18 / 23

40 Dirichlet boundary value problem for the heat equation α t u(x,t) x u(x,t) = f(x,t) u(x,t) = u(x,) = for x Ω. for (x,t) Q := Ω (,T), for (x,t) Σ := Γ (,T), Find u H 1,1/2 ;, := L 2 (,T;H 1 (Ω)) H1/2, (,T;L 2 (Ω)) such that Ω [ ] α t u(x,t)v(x,t)+ x u(x,t) x v(x,t) dxdt = f(x,t)v(x,t)dxdt Ω is satisfied for all v H 1,1/2 ;, := L 2 (,T;H 1 (Ω)) H1/2, (,T;L2 (Ω)). Theorem 1 2 u H 1,1/2 ;, (Q) sup v H 1,1/2 ;, (Q) a(u,v) v H 1,1/2 ;, (Q) 18 / 23

41 Galerkin FEM: Find u h V h := Q 1 h (Q) H1,1/2 ;, (Q) such that t u h,h T v h Q + x u h, x H T v h L 2 (Q) = f,h T v h Q for all v h V h Numerical example u(x,t) = sin 5π 4 t sinπx for (x,t) (,1) (,2), α = 1 N x N t dof h x h t u u h L 2 eoc u u h H 1 eoc / 23

42 Heat equation with nonlinear reaction term e.g. Schlögl model, Nagumo equation, Monodomain equation t u x u + 1 ε (u3 u) =, Q = (17,19) (17,19) (,5), u(x 1,x 2,t) = 1 2 ( 1 tanh x ) 1 st 2, ε =.38, s = 3/( 2ε) 2ε #Dofs u u h L2(,T;H 1(Ω)) eoc / 23

43 Convergence history Figure: uniform ( + ), octasection ( ), bisection ( ), ideal ( ) 21 / 23

44 Adaptive refinement in space time Figure: Adaptive meshes: octasection (left) and bisection (right). 22 / 23

45 References 1. M. Neumüller, O. Steinbach: Refinement of flexible space time finite element meshes and discontinuous Galerkin methods. Comput. Visual. Sci. 14 (211) O. Steinbach: Space time finite element methods for parabolic problems. Comput. Meth. Appl. Math. 15 (215) O. Steinbach, H. Yang: An algebraic multigrid method for an adaptive space time finite element discretization. Lecture Notes in Comput. Sci., 1665, Springer, Cham, pp , O. Steinbach, H. Yang: Comparison of algebraic multigrid methods for an adaptive space time finite element discretization of the heat equation in 3D and 4D. Numer. Linear Algebra Appl. 25 (218), no. 3, e2143, 17 pp. 5. O. Steinbach, H. Yang: A space time finite element method for the linear bidomain equations, submitted, O. Steinbach, M. Zank: A stabilized space time finite element method for the wave equation, accepted, O. Steinbach, H. Yang: Space time finite element methods for parabolic evolution equations: Discretization, a posteriori error estimation, adaptivity and solution, submitted, O. Steinbach, M. Zank: Coercive space time finite element methods for initial boundary value problems, to be submitted. 23 / 23

Space time finite and boundary element methods

Space time finite and boundary element methods Space time finite and boundary element methods Olaf Steinbach Institut für Numerische Mathematik, TU Graz http://www.numerik.math.tu-graz.ac.at based on joint work with M. Neumüller, H. Yang, M. Fleischhacker,

More information

Technische Universität Graz

Technische Universität Graz echnische Universität Graz Coercive space time finite element methods for initial boundary value problems O. Steinbach, M. Zank Berichte aus dem Institut für Angewandte Mathematik Bericht 18/7 echnische

More information

Technische Universität Graz

Technische Universität Graz echnische Universität Graz A Stabilized Space ime Finite Element Method for the Wave Equation Olaf Steinbach and Marco Zank Berichte aus dem Institut für Angewandte Mathematik Bericht 18/5 echnische Universität

More information

Space-time Finite Element Methods for Parabolic Evolution Problems

Space-time Finite Element Methods for Parabolic Evolution Problems Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients Ulrich Langer, Martin Neumüller, Andreas Schafelner Johannes Kepler University, Linz Doctoral Program Computational

More information

Preconditioned space-time boundary element methods for the heat equation

Preconditioned space-time boundary element methods for the heat equation W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods

More information

Space-time isogeometric analysis of parabolic evolution equations

Space-time isogeometric analysis of parabolic evolution equations www.oeaw.ac.at Space-time isogeometric analysis of parabolic evolution equations U. Langer, S.E. Moore, M. Neumüller RICAM-Report 2015-19 www.ricam.oeaw.ac.at SPACE-TIME ISOGEOMETRIC ANALYSIS OF PARABOLIC

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

Space-time sparse discretization of linear parabolic equations

Space-time sparse discretization of linear parabolic equations Space-time sparse discretization of linear parabolic equations Roman Andreev August 2, 200 Seminar for Applied Mathematics, ETH Zürich, Switzerland Support by SNF Grant No. PDFMP2-27034/ Part of PhD thesis

More information

FETI Methods for the Simulation of Biological Tissues

FETI Methods for the Simulation of Biological Tissues SpezialForschungsBereich F 32 Karl Franzens Universita t Graz Technische Universita t Graz Medizinische Universita t Graz FETI Methods for the Simulation of Biological Tissues Ch. Augustin O. Steinbach

More information

Parallel Multipatch Space-Time IGA Solvers for Parabloic Initial-Boundary Value Problems

Parallel Multipatch Space-Time IGA Solvers for Parabloic Initial-Boundary Value Problems Parallel Multipatch Space-Time IGA Solvers for Parabloic Initial-Boundary Value Problems Ulrich Langer Institute of Computational Mathematics (NuMa) Johannes Kepler University Linz (RICAM) Austrian Academy

More information

Multigrid and Iterative Strategies for Optimal Control Problems

Multigrid and Iterative Strategies for Optimal Control Problems Multigrid and Iterative Strategies for Optimal Control Problems John Pearson 1, Stefan Takacs 1 1 Mathematical Institute, 24 29 St. Giles, Oxford, OX1 3LB e-mail: john.pearson@worc.ox.ac.uk, takacs@maths.ox.ac.uk

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz A note on the stable coupling of finite and boundary elements O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2009/4 Technische Universität Graz A

More information

An Adaptive Space-Time Boundary Element Method for the Wave Equation

An Adaptive Space-Time Boundary Element Method for the Wave Equation W I S S E N T E C H N I K L E I D E N S C H A F T An Adaptive Space-Time Boundary Element Method for the Wave Equation Marco Zank and Olaf Steinbach Institut für Numerische Mathematik AANMPDE(JS)-9-16,

More information

Theoretical and numerical results for a chemo-repulsion model with quadratic production

Theoretical and numerical results for a chemo-repulsion model with quadratic production Theoretical and numerical results for a chemo-repulsion model with quadratic production F. Guillén-Gonzalez, M. A. Rodríguez-Bellido & and D. A. Rueda-Gómez Dpto. Ecuaciones Diferenciales y Análisis Numérico

More information

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Department of Mathematics and Institute for Physical Science and Technology University of Maryland, USA www.math.umd.edu/ rhn 7th

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Stability of the Laplace single layer boundary integral operator in Sobolev spaces O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2016/2 Technische

More information

Two-Scale Composite Finite Element Method for Dirichlet Problems on Complicated Domains

Two-Scale Composite Finite Element Method for Dirichlet Problems on Complicated Domains Numerische Mathematik manuscript No. will be inserted by the editor) Two-Scale Composite Finite Element Method for Dirichlet Problems on Complicated Domains M. Rech, S. Sauter, A. Smolianski Institut für

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Robust boundary element domain decomposition solvers in acoustics O. Steinbach, M. Windisch Berichte aus dem Institut für Numerische Mathematik Bericht 2009/9 Technische Universität

More information

Multiscale methods for time-harmonic acoustic and elastic wave propagation

Multiscale methods for time-harmonic acoustic and elastic wave propagation Multiscale methods for time-harmonic acoustic and elastic wave propagation Dietmar Gallistl (joint work with D. Brown and D. Peterseim) Institut für Angewandte und Numerische Mathematik Karlsruher Institut

More information

Research Article A Two-Grid Method for Finite Element Solutions of Nonlinear Parabolic Equations

Research Article A Two-Grid Method for Finite Element Solutions of Nonlinear Parabolic Equations Abstract and Applied Analysis Volume 212, Article ID 391918, 11 pages doi:1.1155/212/391918 Research Article A Two-Grid Method for Finite Element Solutions of Nonlinear Parabolic Equations Chuanjun Chen

More information

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes Dylan Copeland 1, Ulrich Langer 2, and David Pusch 3 1 Institute of Computational Mathematics,

More information

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems.

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems. Robust A Posteriori Error Estimates for Stabilized Finite Element s of Non-Stationary Convection-Diffusion Problems L. Tobiska and R. Verfürth Universität Magdeburg Ruhr-Universität Bochum www.ruhr-uni-bochum.de/num

More information

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS Proceedings of ALGORITMY 2009 pp. 1 10 SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS MILOSLAV VLASÁK Abstract. We deal with a numerical solution of a scalar

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

1. Introduction. We consider the model problem that seeks an unknown function u = u(x) satisfying

1. Introduction. We consider the model problem that seeks an unknown function u = u(x) satisfying A SIMPLE FINITE ELEMENT METHOD FOR LINEAR HYPERBOLIC PROBLEMS LIN MU AND XIU YE Abstract. In this paper, we introduce a simple finite element method for solving first order hyperbolic equations with easy

More information

POD for Parametric PDEs and for Optimality Systems

POD for Parametric PDEs and for Optimality Systems POD for Parametric PDEs and for Optimality Systems M. Kahlbacher, K. Kunisch, H. Müller and S. Volkwein Institute for Mathematics and Scientific Computing University of Graz, Austria DMV-Jahrestagung 26,

More information

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Christian Waluga 1 advised by Prof. Herbert Egger 2 Prof. Wolfgang Dahmen 3 1 Aachen Institute for Advanced Study in Computational

More information

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

The Mortar Boundary Element Method

The Mortar Boundary Element Method The Mortar Boundary Element Method A Thesis submitted for the degree of Doctor of Philosophy by Martin Healey School of Information Systems, Computing and Mathematics Brunel University March 2010 Abstract

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 25: Introduction to Discontinuous Galerkin Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods

More information

Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems. Ulrich Langer, Martin Neumüller, Ioannis Toulopoulos. G+S Report No.

Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems. Ulrich Langer, Martin Neumüller, Ioannis Toulopoulos. G+S Report No. Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems Ulrich Langer, Martin Neumüller, Ioannis Toulopoulos G+S Report No. 56 May 017 Multipatch Space-Time Isogeometric Analysis of

More information

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS CHARALAMBOS MAKRIDAKIS AND RICARDO H. NOCHETTO Abstract. It is known that the energy technique for a posteriori error analysis

More information

Key words. optimal control, heat equation, control constraints, state constraints, finite elements, a priori error estimates

Key words. optimal control, heat equation, control constraints, state constraints, finite elements, a priori error estimates A PRIORI ERROR ESTIMATES FOR FINITE ELEMENT DISCRETIZATIONS OF PARABOLIC OPTIMIZATION PROBLEMS WITH POINTWISE STATE CONSTRAINTS IN TIME DOMINIK MEIDNER, ROLF RANNACHER, AND BORIS VEXLER Abstract. In this

More information

Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients

Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients Superconvergence of discontinuous Galerkin methods for -D linear hyperbolic equations with degenerate variable coefficients Waixiang Cao Chi-Wang Shu Zhimin Zhang Abstract In this paper, we study the superconvergence

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

The Discontinuous Galerkin Finite Element Method

The Discontinuous Galerkin Finite Element Method The Discontinuous Galerkin Finite Element Method Michael A. Saum msaum@math.utk.edu Department of Mathematics University of Tennessee, Knoxville The Discontinuous Galerkin Finite Element Method p.1/41

More information

Projection Methods for Rotating Flow

Projection Methods for Rotating Flow Projection Methods for Rotating Flow Daniel Arndt Gert Lube Georg-August-Universität Göttingen Institute for Numerical and Applied Mathematics IACM - ECCOMAS 2014 Computational Modeling of Turbulent and

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

A Space-Time Boundary Element Method for the Wave Equation

A Space-Time Boundary Element Method for the Wave Equation W I S S E N T E C H N I K L E I D E N S C H A F T A Space-Time Boundary Element Method for the Wave Equation Marco Zank and Olaf Steinbach Institut für Numerische Mathematik Space-Time Methods for PDEs,

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY 11, USA Dan Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations

Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations Christoph Hofer and Ulrich Langer Doctoral Program Computational Mathematics Numerical

More information

WEAK GALERKIN FINITE ELEMENT METHOD FOR SECOND ORDER PARABOLIC EQUATIONS

WEAK GALERKIN FINITE ELEMENT METHOD FOR SECOND ORDER PARABOLIC EQUATIONS INERNAIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 13, Number 4, Pages 525 544 c 216 Institute for Scientific Computing and Information WEAK GALERKIN FINIE ELEMEN MEHOD FOR SECOND ORDER PARABOLIC

More information

A posteriori error estimation of approximate boundary fluxes

A posteriori error estimation of approximate boundary fluxes COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2008; 24:421 434 Published online 24 May 2007 in Wiley InterScience (www.interscience.wiley.com)..1014 A posteriori error estimation

More information

AN EXTENSION OF THE LAX-MILGRAM THEOREM AND ITS APPLICATION TO FRACTIONAL DIFFERENTIAL EQUATIONS

AN EXTENSION OF THE LAX-MILGRAM THEOREM AND ITS APPLICATION TO FRACTIONAL DIFFERENTIAL EQUATIONS Electronic Journal of Differential Equations, Vol. 215 (215), No. 95, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu AN EXTENSION OF THE

More information

GALERKIN TIME STEPPING METHODS FOR NONLINEAR PARABOLIC EQUATIONS

GALERKIN TIME STEPPING METHODS FOR NONLINEAR PARABOLIC EQUATIONS GALERKIN TIME STEPPING METHODS FOR NONLINEAR PARABOLIC EQUATIONS GEORGIOS AKRIVIS AND CHARALAMBOS MAKRIDAKIS Abstract. We consider discontinuous as well as continuous Galerkin methods for the time discretization

More information

Numerical Solution of PDEs: Bounds for Functional Outputs and Certificates

Numerical Solution of PDEs: Bounds for Functional Outputs and Certificates Numerical Solution of PDEs: Bounds for Functional Outputs and Certificates J. Peraire Massachusetts Institute of Technology, USA ASC Workshop, 22-23 August 2005, Stanford University People MIT: A.T. Patera,

More information

Past, present and space-time

Past, present and space-time Past, present and space-time Arnold Reusken Chair for Numerical Mathematics RWTH Aachen Utrecht, 12.11.2015 Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 1 / 20 Outline Past. Past

More information

A MIN-MAX THEOREM AND ITS APPLICATIONS TO NONCONSERVATIVE SYSTEMS

A MIN-MAX THEOREM AND ITS APPLICATIONS TO NONCONSERVATIVE SYSTEMS IJMMS 3:7, PII. S6738 http://ijmms.hindawi.com Hindawi Publishing Corp. A MIN-MAX THEOREM AND ITS APPLICATIONS TO NONCONSERVATIVE SYSTEMS LI WEIGUO and LI HONGJIE Received August and in revised form 4

More information

Domain decomposition methods via boundary integral equations

Domain decomposition methods via boundary integral equations Domain decomposition methods via boundary integral equations G. C. Hsiao a O. Steinbach b W. L. Wendland b a Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716, USA. E

More information

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes Vincent Heuveline Friedhelm Schieweck Abstract We propose a Scott-Zhang type interpolation

More information

Lecture Notes on PDEs

Lecture Notes on PDEs Lecture Notes on PDEs Alberto Bressan February 26, 2012 1 Elliptic equations Let IR n be a bounded open set Given measurable functions a ij, b i, c : IR, consider the linear, second order differential

More information

High Order Unfitted Finite Element Methods for Interface Problems and PDEs on Surfaces

High Order Unfitted Finite Element Methods for Interface Problems and PDEs on Surfaces N O V E M B E R 2 0 1 6 P R E P R I N T 4 5 9 High Order Unfitted Finite Element Methods for Interface Problems and PDEs on Surfaces Christoph Lehrenfeld and Arnold Reusken Institut für Geometrie und Praktische

More information

An Equal-order DG Method for the Incompressible Navier-Stokes Equations

An Equal-order DG Method for the Incompressible Navier-Stokes Equations An Equal-order DG Method for the Incompressible Navier-Stokes Equations Bernardo Cockburn Guido anschat Dominik Schötzau Journal of Scientific Computing, vol. 40, pp. 188 10, 009 Abstract We introduce

More information

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements W I S S E N T E C H N I K L E I D E N S C H A F T A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements Matthias Gsell and Olaf Steinbach Institute of Computational Mathematics

More information

ANALYSIS OF THE FEM AND DGM FOR AN ELLIPTIC PROBLEM WITH A NONLINEAR NEWTON BOUNDARY CONDITION

ANALYSIS OF THE FEM AND DGM FOR AN ELLIPTIC PROBLEM WITH A NONLINEAR NEWTON BOUNDARY CONDITION Proceedings of EQUADIFF 2017 pp. 127 136 ANALYSIS OF THE FEM AND DGM FOR AN ELLIPTIC PROBLEM WITH A NONLINEAR NEWTON BOUNDARY CONDITION MILOSLAV FEISTAUER, ONDŘEJ BARTOŠ, FILIP ROSKOVEC, AND ANNA-MARGARETE

More information

An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl) elliptic partial differential equations

An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl) elliptic partial differential equations IMA Journal of Numerical Analysis 005) Page of 7 doi: 0.093/imanum/ An a posteriori error indicator for discontinuous Galerkin discretizations of Hcurl) elliptic partial differential equations PAUL HOUSTON

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY, USA. Dan_Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

THE STOKES SYSTEM R.E. SHOWALTER

THE STOKES SYSTEM R.E. SHOWALTER THE STOKES SYSTEM R.E. SHOWALTER Contents 1. Stokes System 1 Stokes System 2 2. The Weak Solution of the Stokes System 3 3. The Strong Solution 4 4. The Normal Trace 6 5. The Mixed Problem 7 6. The Navier-Stokes

More information

NUMERICAL STUDIES OF VARIATIONAL-TYPE TIME-DISCRETIZATION TECHNIQUES FOR TRANSIENT OSEEN PROBLEM

NUMERICAL STUDIES OF VARIATIONAL-TYPE TIME-DISCRETIZATION TECHNIQUES FOR TRANSIENT OSEEN PROBLEM Proceedings of ALGORITMY 212 pp. 44 415 NUMERICAL STUDIES OF VARIATIONAL-TYPE TIME-DISCRETIZATION TECHNIQUES FOR TRANSIENT OSEEN PROBLEM NAVEED AHMED AND GUNAR MATTHIES Abstract. In this paper, we combine

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems Finite Element Clifford Algebra: A New Toolkit for Evolution Problems Andrew Gillette joint work with Michael Holst Department of Mathematics University of California, San Diego http://ccom.ucsd.edu/ agillette/

More information

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM Finite Elements February 22, 2019 In the previous sections, we introduced the concept of finite element spaces, which contain certain functions defined on a domain. Finite element spaces are examples of

More information

Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems

Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems Elliptic boundary value problems often occur as the Euler equations of variational problems the latter

More information

One-dimensional and nonlinear problems

One-dimensional and nonlinear problems Solving PDE s with FEniCS One-dimensional and nonlinear problems L. Ridgway Scott The Institute for Biophysical Dynamics, The Computation Institute, and the Departments of Computer Science and Mathematics,

More information

Numerical Analysis and Computation of Fluid/Fluid and Fluid/Structure Interaction Problems Jason S. Howell

Numerical Analysis and Computation of Fluid/Fluid and Fluid/Structure Interaction Problems Jason S. Howell J.S.Howell Research Statement 1 Numerical Analysis and Computation of Fluid/Fluid and Fluid/Structure Interaction Problems Jason S. Howell Fig. 1. Plot of the magnitude of the velocity (upper left) and

More information

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying A DISCRETE DIVERGENCE FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU, JUNPING WANG, AND XIU YE Abstract. A discrete divergence free weak Galerkin finite element method is developed

More information

AN OPTIMAL UNIFORM A PRIORI ERROR ESTIMATE FOR AN UNSTEADY SINGULARLY PERTURBED PROBLEM

AN OPTIMAL UNIFORM A PRIORI ERROR ESTIMATE FOR AN UNSTEADY SINGULARLY PERTURBED PROBLEM INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 11, Number 1, Pages 24 33 c 2014 Institute for Scientific Computing and Information AN OPTIMAL UNIFORM A PRIORI ERROR ESTIMATE FOR AN UNSTEADY

More information

Numerical Approximation Methods for Elliptic Boundary Value Problems

Numerical Approximation Methods for Elliptic Boundary Value Problems Numerical Approximation Methods for Elliptic Boundary Value Problems Olaf Steinbach Numerical Approximation Methods for Elliptic Boundary Value Problems Finite and Boundary Elements Olaf Steinbach Institute

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES

A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES P. HANSBO Department of Applied Mechanics, Chalmers University of Technology, S-4 96 Göteborg, Sweden E-mail: hansbo@solid.chalmers.se

More information

On a Discontinuous Galerkin Method for Surface PDEs

On a Discontinuous Galerkin Method for Surface PDEs On a Discontinuous Galerkin Method for Surface PDEs Pravin Madhavan (joint work with Andreas Dedner and Bjo rn Stinner) Mathematics and Statistics Centre for Doctoral Training University of Warwick Applied

More information

Université de Metz. Master 2 Recherche de Mathématiques 2ème semestre. par Ralph Chill Laboratoire de Mathématiques et Applications de Metz

Université de Metz. Master 2 Recherche de Mathématiques 2ème semestre. par Ralph Chill Laboratoire de Mathématiques et Applications de Metz Université de Metz Master 2 Recherche de Mathématiques 2ème semestre Systèmes gradients par Ralph Chill Laboratoire de Mathématiques et Applications de Metz Année 26/7 1 Contents Chapter 1. Introduction

More information

Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods

Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods Contents Ralf Hartmann Institute of Aerodynamics and Flow Technology DLR (German Aerospace Center) Lilienthalplatz 7, 3808

More information

From Completing the Squares and Orthogonal Projection to Finite Element Methods

From Completing the Squares and Orthogonal Projection to Finite Element Methods From Completing the Squares and Orthogonal Projection to Finite Element Methods Mo MU Background In scientific computing, it is important to start with an appropriate model in order to design effective

More information

Weak Formulation of Elliptic BVP s

Weak Formulation of Elliptic BVP s Weak Formulation of Elliptic BVP s There are a large number of problems of physical interest that can be formulated in the abstract setting in which the Lax-Milgram lemma is applied to an equation expressed

More information

Discontinuous Petrov-Galerkin Methods

Discontinuous Petrov-Galerkin Methods Discontinuous Petrov-Galerkin Methods Friederike Hellwig 1st CENTRAL School on Analysis and Numerics for Partial Differential Equations, November 12, 2015 Motivation discontinuous Petrov-Galerkin (dpg)

More information

Institut für Mathematik

Institut für Mathematik U n i v e r s i t ä t A u g s b u r g Institut für Mathematik Dietrich Braess, Carsten Carstensen, and Ronald H.W. Hoppe Convergence Analysis of a Conforming Adaptive Finite Element Method for an Obstacle

More information

Controllability of the linear 1D wave equation with inner moving for

Controllability of the linear 1D wave equation with inner moving for Controllability of the linear D wave equation with inner moving forces ARNAUD MÜNCH Université Blaise Pascal - Clermont-Ferrand - France Toulouse, May 7, 4 joint work with CARLOS CASTRO (Madrid) and NICOLAE

More information

Finite volume method for nonlinear transmission problems

Finite volume method for nonlinear transmission problems Finite volume method for nonlinear transmission problems Franck Boyer, Florence Hubert To cite this version: Franck Boyer, Florence Hubert. Finite volume method for nonlinear transmission problems. Proceedings

More information

ON WEAK SOLUTION OF A HYPERBOLIC DIFFERENTIAL INCLUSION WITH NONMONOTONE DISCONTINUOUS NONLINEAR TERM

ON WEAK SOLUTION OF A HYPERBOLIC DIFFERENTIAL INCLUSION WITH NONMONOTONE DISCONTINUOUS NONLINEAR TERM Internat. J. Math. & Math. Sci. Vol. 22, No. 3 (999 587 595 S 6-72 9922587-2 Electronic Publishing House ON WEAK SOLUTION OF A HYPERBOLIC DIFFERENTIAL INCLUSION WITH NONMONOTONE DISCONTINUOUS NONLINEAR

More information

Approximation of fluid-structure interaction problems with Lagrange multiplier

Approximation of fluid-structure interaction problems with Lagrange multiplier Approximation of fluid-structure interaction problems with Lagrange multiplier Daniele Boffi Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/boffi May 30, 2016 Outline

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

PhD dissertation defense

PhD dissertation defense Isogeometric mortar methods with applications in contact mechanics PhD dissertation defense Brivadis Ericka Supervisor: Annalisa Buffa Doctor of Philosophy in Computational Mechanics and Advanced Materials,

More information

Multigrid Methods for Saddle Point Problems

Multigrid Methods for Saddle Point Problems Multigrid Methods for Saddle Point Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University Advances in Mathematics of Finite Elements (In

More information

Juan Vicente Gutiérrez Santacreu Rafael Rodríguez Galván. Departamento de Matemática Aplicada I Universidad de Sevilla

Juan Vicente Gutiérrez Santacreu Rafael Rodríguez Galván. Departamento de Matemática Aplicada I Universidad de Sevilla Doc-Course: Partial Differential Equations: Analysis, Numerics and Control Research Unit 3: Numerical Methods for PDEs Part I: Finite Element Method: Elliptic and Parabolic Equations Juan Vicente Gutiérrez

More information

Finite element approximation of the stochastic heat equation with additive noise

Finite element approximation of the stochastic heat equation with additive noise p. 1/32 Finite element approximation of the stochastic heat equation with additive noise Stig Larsson p. 2/32 Outline Stochastic heat equation with additive noise du u dt = dw, x D, t > u =, x D, t > u()

More information

A Finite Element Method for the Surface Stokes Problem

A Finite Element Method for the Surface Stokes Problem J A N U A R Y 2 0 1 8 P R E P R I N T 4 7 5 A Finite Element Method for the Surface Stokes Problem Maxim A. Olshanskii *, Annalisa Quaini, Arnold Reusken and Vladimir Yushutin Institut für Geometrie und

More information

On the discrete boundary value problem for anisotropic equation

On the discrete boundary value problem for anisotropic equation On the discrete boundary value problem for anisotropic equation Marek Galewski, Szymon G l ab August 4, 0 Abstract In this paper we consider the discrete anisotropic boundary value problem using critical

More information

Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media

Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Raytcho Lazarov & Aziz Takhirov Texas A&M May 3-4, 2016 R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 1 / 30 Outline

More information

arxiv: v1 [math.na] 19 Nov 2018

arxiv: v1 [math.na] 19 Nov 2018 QUASINORMS IN SEMILINEAR ELLIPTIC PROBLEMS JAMES JACKAMAN AND TRISTAN PRYER arxiv:1811.07816v1 [math.na] 19 Nov 2018 (1.1) Abstract. In this note we examine the a priori and a posteriori analysis of discontinuous

More information

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications)

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications) Chapter 6 Finite Element Method Literature: (tiny selection from an enormous number of publications) K.J. Bathe, Finite Element procedures, 2nd edition, Pearson 2014 (1043 pages, comprehensive). Available

More information

Minimal periods of semilinear evolution equations with Lipschitz nonlinearity

Minimal periods of semilinear evolution equations with Lipschitz nonlinearity Minimal periods of semilinear evolution equations with Lipschitz nonlinearity James C. Robinson a Alejandro Vidal-López b a Mathematics Institute, University of Warwick, Coventry, CV4 7AL, U.K. b Departamento

More information

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni Relaxation methods and finite element schemes for the equations of visco-elastodynamics Chiara Simeoni Department of Information Engineering, Computer Science and Mathematics University of L Aquila (Italy)

More information

Electronic Transactions on Numerical Analysis Volume 49, 2018

Electronic Transactions on Numerical Analysis Volume 49, 2018 Electronic Transactions on Numerical Analysis Volume 49, 2018 Contents 1 Adaptive FETI-DP and BDDC methods with a generalized transformation of basis for heterogeneous problems. Axel Klawonn, Martin Kühn,

More information

Equations paraboliques: comportement qualitatif

Equations paraboliques: comportement qualitatif Université de Metz Master 2 Recherche de Mathématiques 2ème semestre Equations paraboliques: comportement qualitatif par Ralph Chill Laboratoire de Mathématiques et Applications de Metz Année 25/6 1 Contents

More information

WELL POSEDNESS OF PROBLEMS I

WELL POSEDNESS OF PROBLEMS I Finite Element Method 85 WELL POSEDNESS OF PROBLEMS I Consider the following generic problem Lu = f, where L : X Y, u X, f Y and X, Y are two Banach spaces We say that the above problem is well-posed (according

More information

Navier-Stokes equations in thin domains with Navier friction boundary conditions

Navier-Stokes equations in thin domains with Navier friction boundary conditions Navier-Stokes equations in thin domains with Navier friction boundary conditions Luan Thach Hoang Department of Mathematics and Statistics, Texas Tech University www.math.umn.edu/ lhoang/ luan.hoang@ttu.edu

More information