Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media

Size: px
Start display at page:

Download "Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media"

Transcription

1 Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Raytcho Lazarov & Aziz Takhirov Texas A&M May 3-4, 2016 R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

2 Outline 1 Outline 2 Motivation 3 Related work 4 The continuous problem 5 The discrete problem 6 References R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

3 Motivation Brinkman equation ν u + νk 1 u + p = f in Ω, u = 0 in Ω, u = 0 on Ω, where - u is the fluid velocity. - p is the pressure. - ν is the viscosity. We assume ν = 1. - ν is the effective viscosity. We assume ν = 1. - f is the external forcing term. - 0 < K(x) < is the permeability of the medium. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

4 Motivation Brinkman equation Brinkman can be used to model flows in: Pebble Bed Reactors, filtration, biological flows, oil/water reservoirs. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

5 Motivation Flows in highly heterogeneous media Figure: SPE10 3 dimensional permeability distributions, logscale. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

6 Motivation Flows in highly heterogeneous media When permeability field K(x) has large variations and jumps, the problem becomes more challenging. Contrast of the media: κ Ω = max K(x) x Ω min K(x). x Ω Exact solution has low regularity when κ Ω 1. The known iterative methods, converge very slowly or practically do not converge when κ Ω 1, due to the dependence of the condition number of the linear system on κ Ω. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

7 Motivation Preconditioners X - real, separable, Hilbert space, inner product on X is (, ), norm on X is, X be the dual of X,, be the duality pairing. Given A L (X, X ), symmetric and f X, find x X such that Ax = f a(x, y) := Ax, y = f, y y X. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

8 Motivation Preconditioners cont-d Definition [3, Mardal & Winther (2011)] B L (X, X ) is a preconditioner for A L (X, X ) if B is symmetric and positive definite in the sense that is inner product on X. B is a Riesz operator: Given f X, B (Bf, y) = f, y y X. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

9 Motivation Preconditioned system Usually Ax = f is preconditioned as BAx = Bf. Condition number of the system cond (BA) := BA L(X,X ) (BA) 1 L(X,X ) Letting a := sup x,y X a(x, y) x y, inf x X sup y Y cond (BA) a γ. a(x, y) x y γ R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

10 Motivation Condition number of the Brinkman problem Let Brinkman system: A = ( ) + IK 1. 0 A ( ) u = p If X = ( H 1 0, ), Q = ( L 2 0, ), then Condition number of the system ( ( ) 1 B = ( ) f I ). cond (BA) O (κ Ω ). R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

11 Motivation Question Is it possible to establish well-posedness of the Brinkman problem, such that cond (BA) is independent of the media contrast κ Ω? R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

12 Related work Singularly perturbed Stokes system In [2, Mardal & Winther (2004)], authors consider ε u + u + p = f in Ω, u = 0 in Ω, u = 0 on Ω. Authors establish well-posedness in ε-dependent norms, both in continuous and discrete cases. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

13 The continuous problem Intersection and sum of Hilbert spaces If X and Y are Hilbert spaces, then X + Y and X Y are also Hilbert spaces [1, Bergh, Löfström], with the following norms: z X Y = z 2 X + z 2 Y max ( z X, z Y ), z X +Y = If X Y is dense in both X and Y, then inf x 2 z=x+y X + y 2 Y. x X,y Y (X Y ) = X + Y, and (X + Y ) = X Y. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

14 The continuous problem The continuous, weak formulation a(u, v) + b(p, v) = (f, v) b(q, u) = 0, a(u, v) := ( u, v) + (u, v) α, b(p, v) := (p, v), where α = K 1. The natural space for the velocity field is X := ( H 1 0 L 2 α) d, u X := u 2 + u 2 α. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

15 The continuous problem The pressure norm Q should be chosen, so that the Brezzi theory for well posedness holds: a(u, v) a u X v X, a(u, u) a 0 u 2 X, b(p, v) b p Q v X, inf sup b(p,v) p Q p Q v X β. v X For our applications, we need to ensure that cond (BA) is independent of κ Ω. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

16 The continuous problem The pressure norm Let Q := L H 1 K L2 0 = { q L 2 0 : q = q 1 + q 2, q 1 L 2 0, q 2 H 1 K L2 0}, with the associated norm q Q = inf q=q 1 +q 2 q 1 L 2 0,q 2 H 1 K L2 0 q q 2 2 K. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

17 The continuous problem The pressure norm Lemma Given q L 2 0, let q 2 HK 1 L2 0 be the solution of the following elliptic problem: { (K q 2 ) + q 2 = q in Ω, Then K q 2 n = 0 on Ω. q L 2 0 +H q K 1 = L q 2 2 K = q q q 2 2 K = q 2 q 2 2 HK 0. 1 L2 R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

18 The continuous problem Well-posedness: Continuity of b(, ) Lemma The bilinear form b(, ) : Q X R is continuous. Proof. q Q, let q = q 1 + q 2 with q 1 L 2 0 and q 2 H 1 K L2 0. Then b (q, v) = b (q 1, v) + b (q 2, v) = (q 1, v) + ( q 2, v) ) = (q 1, v) + (K 1 2 q2, α 1 2 v d q 1 v + q 2 K v α d q q 2 2 K v X. Taking infimum over all q 1, q 2 gives b (q, v) d q Q v X. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

19 The continuous problem Well-posedness: Coercivity of b(, ) Lemma There exists a constant β > 0, independent of 0 < K(x) <, such that inf sup b (q, v) β. q Q v X q Q v X R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

20 The continuous problem Proof of the coercivity of b(, ) Proof. The result of Ne cas: q L 2 0 (Ω) : q H 1 (Ω) q. q Q with q = q 1 + q 2 and q i = 0. Assuming that the duality pairing Ω, X X is an extension of the L2 inner product, one obtains that: b (q, v) sup = q X = q v X v H 1 +L 2 X K = inf q q q=q 1 +q 2 H K q 1 H 1, q 2 L 2 K C inf q=q 1 +q 2 q 1 L 2 0,q 2 H 1 K L2 0 = C q Q. q q 2 2 K R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

21 The discrete problem Assumption Assumption. The mesh has resolved the heterogeniety of the medium so that elementwise contrast κ E = is a moderate constant. We will also set max K(x) x E min K(x) x E κ Th = max E T h κ E. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

22 The discrete problem Inf-sup with conforming subspaces Fortin s Lemma for Mini-element: Π h = Π b h (I C h) + C h. Π b h satisfies ( Π b h v, q h) = ( v, qh ). C h is Clement or Scott-Zhang (quasilocal) interpolant. In particular need, C h v α c v α, with c independent of κ Ω. For any E T h : C h v 2 α,e max α(x) C hv 2 E C max x E x E α(x) v 2 Ω E max α(x) x E C min α(x) v 2 α,ω E. x Ω E R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

23 The discrete problem Non-conforming velocity space X h := J (u h, v h ) : = ( ) Pk d xp k H 0 (div, Ω), Q h := P k 1 H 1 (Ω). e Γ h Γ σ e e e [u h ][v h ], a h (u h, v h ) : = E T h ( u h, v h ) E + (αu h, v h ) + J (u h, v h ) e Γ h Γ e { u h n} [v h ] b h (p h, v h ) : = E T h (p h, v h ) E e Γ h Γ e { v h n} [u h ], R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

24 The discrete problem Discrete weak formulation q h Q := a h (u h, v h ) + b h (p h, v h ) = (f, v h ) b h (q h, u h ) = 0. u h Xh := u h 2 E + u h 2 α + J (u h, u h ), E T h inf q q 2 2 q h =q 1 +q K q = h q q 2 2 K. 2 R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

25 The discrete problem Discrete inf-sup Lemma The following inf-sup condition holds: There exists a constant β h > 0, independent of κ Ω and h, such that inf q h Q h b h (q h, v h ) sup β h. v h X h q h Q v h Xh R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

26 The discrete problem Proof of discrete inf-sup Proof. Let q h Q h. By continuous inf-sup condition, there exists v X such that b (q h, v) β q h Q v X. Let v h = π h v X h be the Raviart-Thomas interpolant of v. By definition of the Raviart-Thomas interpolant: b h (q h, v h ) = ( v h, q h ) E = ( v, q h ) E E T h E T h = b (q h, v) β q h Q v X. One can show that v h α Cκ Th v α v h X C (κ Th ) v X. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

27 The discrete problem Continuous vs. discrete pressure norms Recall that for p h L 2 0, where p h Q = p h 2 p 2 2 H 1 K L2 0, (K p 2, q) + (p 2, q) = (p h, q) q H 1 K L2 0. So in general, p 2 / Q h, and therefore p h Q is not computable. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

28 The discrete problem Continuous vs. discrete pressure norms Let p h Qh = p h 2 p 2,h 2 H 1 K L2 0, where (K p 2,h, q h ) + (p 2,h, q h ) = (p h, q h ) q h Q h, Then p 2,h H 1 K L 2 0 p 2 H 1 K L 2 0 p h Qh p h Q. R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

29 The discrete problem The end THANK YOU! R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

30 References References J. Bergh, J. Löfström, Interpolation Spaces: An Introduction, Springer Berlin Heidelberg, K-A Mardal, R. Winther, Uniform preconditioners for the time dependent Stokes problem, Numerische Mathematik 98 (2), K-A Mardal, R. Winther, Preconditioning discretizations of systems of partial differential equations, Numer. Linear Algebra Appl. (18) 2011, R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, / 30

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION JOHNNY GUZMÁN, ABNER J. SALGADO, AND FRANCISCO-JAVIER SAYAS Abstract. The analysis of finite-element-like Galerkin discretization techniques for the

More information

2.3 Variational form of boundary value problems

2.3 Variational form of boundary value problems 2.3. VARIATIONAL FORM OF BOUNDARY VALUE PROBLEMS 21 2.3 Variational form of boundary value problems Let X be a separable Hilbert space with an inner product (, ) and norm. We identify X with its dual X.

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2003) 94: 195 202 Digital Object Identifier (DOI) 10.1007/s002110100308 Numerische Mathematik Some observations on Babuška and Brezzi theories Jinchao Xu, Ludmil Zikatanov Department of Mathematics,

More information

arxiv: v1 [math.na] 31 Oct 2014

arxiv: v1 [math.na] 31 Oct 2014 arxiv:1411.0634v1 [math.na] 31 Oct 014 A NOTE ON STABILITY AND OPTIMAL APPROXIMATION ESTIMATES FOR SYMMETRIC SADDLE POINT SYSTEMS CONSTANTIN BACUTA Abstract. We establish sharp well-posedness and approximation

More information

A Finite Element Method for the Surface Stokes Problem

A Finite Element Method for the Surface Stokes Problem J A N U A R Y 2 0 1 8 P R E P R I N T 4 7 5 A Finite Element Method for the Surface Stokes Problem Maxim A. Olshanskii *, Annalisa Quaini, Arnold Reusken and Vladimir Yushutin Institut für Geometrie und

More information

Schur Complements on Hilbert Spaces and Saddle Point Systems

Schur Complements on Hilbert Spaces and Saddle Point Systems Schur Complements on Hilbert Spaces and Saddle Point Systems Constantin Bacuta Mathematical Sciences, University of Delaware, 5 Ewing Hall 976 Abstract For any continuous bilinear form defined on a pair

More information

Numerical Simulation of Flows in Highly Heterogeneous Porous Media

Numerical Simulation of Flows in Highly Heterogeneous Porous Media Numerical Simulation of Flows in Highly Heterogeneous Porous Media R. Lazarov, Y. Efendiev, J. Galvis, K. Shi, J. Willems The Second International Conference on Engineering and Computational Mathematics

More information

INF-SUP CONDITION FOR OPERATOR EQUATIONS

INF-SUP CONDITION FOR OPERATOR EQUATIONS INF-SUP CONDITION FOR OPERATOR EQUATIONS LONG CHEN We study the well-posedness of the operator equation (1) T u = f. where T is a linear and bounded operator between two linear vector spaces. We give equivalent

More information

UNIFORM PRECONDITIONERS FOR A PARAMETER DEPENDENT SADDLE POINT PROBLEM WITH APPLICATION TO GENERALIZED STOKES INTERFACE EQUATIONS

UNIFORM PRECONDITIONERS FOR A PARAMETER DEPENDENT SADDLE POINT PROBLEM WITH APPLICATION TO GENERALIZED STOKES INTERFACE EQUATIONS UNIFORM PRECONDITIONERS FOR A PARAMETER DEPENDENT SADDLE POINT PROBLEM WITH APPLICATION TO GENERALIZED STOKES INTERFACE EQUATIONS MAXIM A. OLSHANSKII, JÖRG PETERS, AND ARNOLD REUSKEN Abstract. We consider

More information

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday.

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday. MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* DOUGLAS N ARNOLD, RICHARD S FALK, and RAGNAR WINTHER Dedicated to Professor Jim Douglas, Jr on the occasion of his seventieth birthday Abstract

More information

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations A Least-Squares Finite Element Approximation for the Compressible Stokes Equations Zhiqiang Cai, 1 Xiu Ye 1 Department of Mathematics, Purdue University, 1395 Mathematical Science Building, West Lafayette,

More information

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires MIXED FINITE ELEMENTS FOR PLATES Ricardo G. Durán Universidad de Buenos Aires - Necessity of 2D models. - Reissner-Mindlin Equations. - Finite Element Approximations. - Locking. - Mixed interpolation or

More information

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements W I S S E N T E C H N I K L E I D E N S C H A F T A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements Matthias Gsell and Olaf Steinbach Institute of Computational Mathematics

More information

Multigrid Methods for Saddle Point Problems

Multigrid Methods for Saddle Point Problems Multigrid Methods for Saddle Point Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University Advances in Mathematics of Finite Elements (In

More information

Yongdeok Kim and Seki Kim

Yongdeok Kim and Seki Kim J. Korean Math. Soc. 39 (00), No. 3, pp. 363 376 STABLE LOW ORDER NONCONFORMING QUADRILATERAL FINITE ELEMENTS FOR THE STOKES PROBLEM Yongdeok Kim and Seki Kim Abstract. Stability result is obtained for

More information

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT HUOYUAN DUAN, SHA LI, ROGER C. E. TAN, AND WEIYING ZHENG Abstract. To deal with the divergence-free

More information

NONSTANDARD NONCONFORMING APPROXIMATION OF THE STOKES PROBLEM, I: PERIODIC BOUNDARY CONDITIONS

NONSTANDARD NONCONFORMING APPROXIMATION OF THE STOKES PROBLEM, I: PERIODIC BOUNDARY CONDITIONS NONSTANDARD NONCONFORMING APPROXIMATION OF THE STOKES PROBLEM, I: PERIODIC BOUNDARY CONDITIONS J.-L. GUERMOND 1, Abstract. This paper analyzes a nonstandard form of the Stokes problem where the mass conservation

More information

On the interplay between discretization and preconditioning of Krylov subspace methods

On the interplay between discretization and preconditioning of Krylov subspace methods On the interplay between discretization and preconditioning of Krylov subspace methods Josef Málek and Zdeněk Strakoš Nečas Center for Mathematical Modeling Charles University in Prague and Czech Academy

More information

FEM for Stokes Equations

FEM for Stokes Equations FEM for Stokes Equations Kanglin Chen 15. Dezember 2009 Outline 1 Saddle point problem 2 Mixed FEM for Stokes equations 3 Numerical Results 2 / 21 Stokes equations Given (f, g). Find (u, p) s.t. u + p

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (006) 105:159 191 DOI 10.1007/s0011-006-0031-4 Numerische Mathematik Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface

More information

Fast Iterative Solution of Saddle Point Problems

Fast Iterative Solution of Saddle Point Problems Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA Acknowledgments NSF (Computational Mathematics) Maxim Olshanskii (Mech-Math, Moscow State U.) Zhen Wang (PhD student,

More information

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS PARTITION OF UNITY FOR THE STOES PROBLEM ON NONMATCHING GRIDS CONSTANTIN BACUTA AND JINCHAO XU Abstract. We consider the Stokes Problem on a plane polygonal domain Ω R 2. We propose a finite element method

More information

A mixed finite element approximation of the Stokes equations with the boundary condition of type (D+N)

A mixed finite element approximation of the Stokes equations with the boundary condition of type (D+N) wwwijmercom Vol2, Issue1, Jan-Feb 2012 pp-464-472 ISSN: 2249-6645 A mixed finite element approximation of the Stokes equations with the boundary condition of type (D+N) Jaouad El-Mekkaoui 1, Abdeslam Elakkad

More information

Weak Galerkin Finite Element Scheme and Its Applications

Weak Galerkin Finite Element Scheme and Its Applications Weak Galerkin Finite Element Scheme and Its Applications Ran Zhang Department of Mathematics Jilin University, China IMS, Singapore February 6, 2015 Talk Outline Motivation WG FEMs: Weak Operators + Stabilizer

More information

A SADDLE POINT LEAST SQUARES METHOD FOR SYSTEMS OF LINEAR PDES. Klajdi Qirko

A SADDLE POINT LEAST SQUARES METHOD FOR SYSTEMS OF LINEAR PDES. Klajdi Qirko A SADDLE POINT LEAST SQUARES METHOD FOR SYSTEMS OF LINEAR PDES by Klajdi Qirko A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree

More information

arxiv: v2 [math.na] 20 May 2016

arxiv: v2 [math.na] 20 May 2016 GEOMETRIC MULTIGRID FOR DARCY AND BRINKMAN MODELS OF FLOWS IN HIGHLY HETEROGENEOUS POROUS MEDIA: A NUMERICAL STUDY arxiv:1602.04858v2 [math.na] 20 May 2016 GUIDO KANSCHAT, RAYTCHO LAZAROV, AND YOULI MAO

More information

A Sobolev trust-region method for numerical solution of the Ginz

A Sobolev trust-region method for numerical solution of the Ginz A Sobolev trust-region method for numerical solution of the Ginzburg-Landau equations Robert J. Renka Parimah Kazemi Department of Computer Science & Engineering University of North Texas June 6, 2012

More information

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION Proceedings of ALGORITMY pp. 9 3 FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION JAN STEBEL Abstract. The paper deals with the numerical simulations of steady flows

More information

Research Article A Stabilized Low Order Finite-Volume Method for the Three-Dimensional Stationary Navier-Stokes Equations

Research Article A Stabilized Low Order Finite-Volume Method for the Three-Dimensional Stationary Navier-Stokes Equations Mathematical Problems in Engineering Volume 212, Article ID 297269, 14 pages doi:1.1155/212/297269 Research Article A Stabilized Low Order Finite-Volume Method for the Three-Dimensional Stationary Navier-Stokes

More information

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Timo Heister, Texas A&M University 2013-02-28 SIAM CSE 2 Setting Stationary, incompressible flow problems

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS CARLO LOVADINA AND ROLF STENBERG Abstract The paper deals with the a-posteriori error analysis of mixed finite element methods

More information

Discontinuous Petrov-Galerkin Methods

Discontinuous Petrov-Galerkin Methods Discontinuous Petrov-Galerkin Methods Friederike Hellwig 1st CENTRAL School on Analysis and Numerics for Partial Differential Equations, November 12, 2015 Motivation discontinuous Petrov-Galerkin (dpg)

More information

STOPPING CRITERIA FOR MIXED FINITE ELEMENT PROBLEMS

STOPPING CRITERIA FOR MIXED FINITE ELEMENT PROBLEMS STOPPING CRITERIA FOR MIXED FINITE ELEMENT PROBLEMS M. ARIOLI 1,3 AND D. LOGHIN 2 Abstract. We study stopping criteria that are suitable in the solution by Krylov space based methods of linear and non

More information

Traces and Duality Lemma

Traces and Duality Lemma Traces and Duality Lemma Recall the duality lemma with H / ( ) := γ 0 (H ()) defined as the trace space of H () endowed with minimal extension norm; i.e., for w H / ( ) L ( ), w H / ( ) = min{ ŵ H () ŵ

More information

WELL POSEDNESS OF PROBLEMS I

WELL POSEDNESS OF PROBLEMS I Finite Element Method 85 WELL POSEDNESS OF PROBLEMS I Consider the following generic problem Lu = f, where L : X Y, u X, f Y and X, Y are two Banach spaces We say that the above problem is well-posed (according

More information

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Ernst P. Stephan 1, Matthias Maischak 2, and Thanh Tran 3 1 Institut für Angewandte Mathematik, Leibniz

More information

Preconditioned space-time boundary element methods for the heat equation

Preconditioned space-time boundary element methods for the heat equation W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods

More information

MATH 676. Finite element methods in scientific computing

MATH 676. Finite element methods in scientific computing MATH 676 Finite element methods in scientific computing Wolfgang Bangerth, Texas A&M University Lecture 33.25: Which element to use Part 2: Saddle point problems Consider the stationary Stokes equations:

More information

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems Atle Loneland 1, Leszek Marcinkowski 2, and Talal Rahman 3 1 Introduction In this paper

More information

b i (x) u + c(x)u = f in Ω,

b i (x) u + c(x)u = f in Ω, SIAM J. NUMER. ANAL. Vol. 39, No. 6, pp. 1938 1953 c 2002 Society for Industrial and Applied Mathematics SUBOPTIMAL AND OPTIMAL CONVERGENCE IN MIXED FINITE ELEMENT METHODS ALAN DEMLOW Abstract. An elliptic

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

Preconditioners for the incompressible Navier Stokes equations

Preconditioners for the incompressible Navier Stokes equations Preconditioners for the incompressible Navier Stokes equations C. Vuik M. ur Rehman A. Segal Delft Institute of Applied Mathematics, TU Delft, The Netherlands SIAM Conference on Computational Science and

More information

ICES REPORT A Generalized Mimetic Finite Difference Method and Two-Point Flux Schemes over Voronoi Diagrams

ICES REPORT A Generalized Mimetic Finite Difference Method and Two-Point Flux Schemes over Voronoi Diagrams ICS RPORT 15-17 July 2015 A Generalized Mimetic Finite Difference Method and Two-Point Flux Schemes over Voronoi Diagrams by Omar Al-Hinai, Mary F. Wheeler, Ivan Yotov The Institute for Computational ngineering

More information

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU Preconditioning Techniques for Solving Large Sparse Linear Systems Arnold Reusken Institut für Geometrie und Praktische Mathematik RWTH-Aachen OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative

More information

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM Finite Elements February 22, 2019 In the previous sections, we introduced the concept of finite element spaces, which contain certain functions defined on a domain. Finite element spaces are examples of

More information

Chapter 2 Finite Element Spaces for Linear Saddle Point Problems

Chapter 2 Finite Element Spaces for Linear Saddle Point Problems Chapter 2 Finite Element Spaces for Linear Saddle Point Problems Remark 2.1. Motivation. This chapter deals with the first difficulty inherent to the incompressible Navier Stokes equations, see Remark

More information

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms www.oeaw.ac.at Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms Y. Efendiev, J. Galvis, R. Lazarov, J. Willems RICAM-Report 2011-05 www.ricam.oeaw.ac.at

More information

Solutions of Selected Problems

Solutions of Selected Problems 1 Solutions of Selected Problems October 16, 2015 Chapter I 1.9 Consider the potential equation in the disk := {(x, y) R 2 ; x 2 +y 2 < 1}, with the boundary condition u(x) = g(x) r for x on the derivative

More information

Matrix square root and interpolation spaces

Matrix square root and interpolation spaces Matrix square root and interpolation spaces Mario Arioli and Daniel Loghin m.arioli@rl.ac.uk STFC-Rutherford Appleton Laboratory, and University of Birmingham Sparse Days,CERFACS, Toulouse, 2008 p.1/30

More information

1. Introduction. We consider the model problem: seeking an unknown function u satisfying

1. Introduction. We consider the model problem: seeking an unknown function u satisfying A DISCONTINUOUS LEAST-SQUARES FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC EQUATIONS XIU YE AND SHANGYOU ZHANG Abstract In tis paper, a discontinuous least-squares (DLS) finite element metod is introduced

More information

A LEAST-SQUARES APPROACH BASED ON A DISCRETE MINUS ONE INNER PRODUCT FOR FIRST ORDER SYSTEMS

A LEAST-SQUARES APPROACH BASED ON A DISCRETE MINUS ONE INNER PRODUCT FOR FIRST ORDER SYSTEMS MATHEMATICS OF COMPUTATION Volume 66, Number 219, July 1997, Pages 935 955 S 0025-5718(97)00848-X A LEAST-SQUARES APPROACH BASED ON A DISCRETE MINUS ONE INNER PRODUCT FOR FIRST ORDER SYSTEMS JAMES H BRAMBLE,

More information

Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems

Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems Elliptic boundary value problems often occur as the Euler equations of variational problems the latter

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

Appendix A Functional Analysis

Appendix A Functional Analysis Appendix A Functional Analysis A.1 Metric Spaces, Banach Spaces, and Hilbert Spaces Definition A.1. Metric space. Let X be a set. A map d : X X R is called metric on X if for all x,y,z X it is i) d(x,y)

More information

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016 Mixed Finite Element Methods Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016 Linear elasticity Given the load f : Ω R n, find the displacement u : Ω R n and the

More information

A Robust Approach to Minimizing H(div)-Dominated Functionals in an H 1 -Conforming Finite Element Space

A Robust Approach to Minimizing H(div)-Dominated Functionals in an H 1 -Conforming Finite Element Space NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2000; 00:1 23 [Version: 2002/09/18 v1.02] A Robust Approach to Minimizing H(div)-Dominated Functionals in an H 1 -Conforming Finite

More information

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO PREPRINT 2010:23 A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

Generalized Newtonian Fluid Flow through a Porous Medium

Generalized Newtonian Fluid Flow through a Porous Medium Generalized Newtonian Fluid Flow through a Porous Medium V.J. Ervin Hyesuk Lee A.J. Salgado April 24, 204 Abstract We present a model for generalized Newtonian fluid flow through a porous medium. In the

More information

Least-squares Finite Element Approximations for the Reissner Mindlin Plate

Least-squares Finite Element Approximations for the Reissner Mindlin Plate NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl., 6, 479 496 999 Least-squares Finite Element Approximations for the Reissner Mindlin Plate Zhiqiang Cai, Xiu Ye 2 and Huilong Zhang

More information

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM ERIK BURMAN AND BENJAMIN STAMM Abstract. We propose a low order discontinuous Galerkin method for incompressible flows. Stability of the

More information

MORTAR MULTISCALE FINITE ELEMENT METHODS FOR STOKES-DARCY FLOWS

MORTAR MULTISCALE FINITE ELEMENT METHODS FOR STOKES-DARCY FLOWS MORTAR MULTISCALE FINITE ELEMENT METHODS FOR STOKES-DARCY FLOWS VIVETTE GIRAULT, DANAIL VASSILEV, AND IVAN YOTOV Abstract. We investigate mortar multiscale numerical methods for coupled Stokes and Darcy

More information

Multiscale methods for time-harmonic acoustic and elastic wave propagation

Multiscale methods for time-harmonic acoustic and elastic wave propagation Multiscale methods for time-harmonic acoustic and elastic wave propagation Dietmar Gallistl (joint work with D. Brown and D. Peterseim) Institut für Angewandte und Numerische Mathematik Karlsruher Institut

More information

Robust preconditioning for XFEM applied to time-dependent Stokes problems

Robust preconditioning for XFEM applied to time-dependent Stokes problems Numerical Analysis and Scientific Computing Preprint Seria Robust preconditioning for XFEM applied to time-dependent Stokes problems S. Gross T. Ludescher M.A. Olshanskii A. Reusken Preprint #40 Department

More information

A mixed formulation for the approximation of the HUM control for the wave equation

A mixed formulation for the approximation of the HUM control for the wave equation Nicolae Cîndea Approimation of the HUM control for the wave equation / 6 A mied formulation for the approimation of the HUM control for the wave equation Nicolae Cîndea joint work with Arnaud Münch Université

More information

with Applications to Elasticity and Compressible Flow Daoqi Yang March 20, 1997 Abstract

with Applications to Elasticity and Compressible Flow Daoqi Yang March 20, 1997 Abstract Stabilized Schemes for Mixed Finite Element Methods with Applications to Elasticity and Compressible Flow Problems Daoqi Yang March 20, 1997 Abstract Stabilized iterative schemes for mixed nite element

More information

7.4 The Saddle Point Stokes Problem

7.4 The Saddle Point Stokes Problem 346 CHAPTER 7. APPLIED FOURIER ANALYSIS 7.4 The Saddle Point Stokes Problem So far the matrix C has been diagonal no trouble to invert. This section jumps to a fluid flow problem that is still linear (simpler

More information

A Review of Preconditioning Techniques for Steady Incompressible Flow

A Review of Preconditioning Techniques for Steady Incompressible Flow Zeist 2009 p. 1/43 A Review of Preconditioning Techniques for Steady Incompressible Flow David Silvester School of Mathematics University of Manchester Zeist 2009 p. 2/43 PDEs Review : 1984 2005 Update

More information

Unique continuation for the Helmholtz equation using a stabilized finite element method

Unique continuation for the Helmholtz equation using a stabilized finite element method Unique continuation for the Helmholtz equation using a stabilized finite element method Lauri Oksanen University College London Based on a joint work with Erik Burman and Mihai Nechita Motivation: recovering

More information

Space-time Finite Element Methods for Parabolic Evolution Problems

Space-time Finite Element Methods for Parabolic Evolution Problems Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients Ulrich Langer, Martin Neumüller, Andreas Schafelner Johannes Kepler University, Linz Doctoral Program Computational

More information

MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS JUHO KÖNNÖ, DOMINIK SCHÖTZAU, AND ROLF STENBERG Abstract. We derive new a-priori and a-posteriori error estimates for mixed nite

More information

DISCRETE EXTENSION OPERATORS FOR MIXED FINITE ELEMENT SPACES ON LOCALLY REFINED MESHES

DISCRETE EXTENSION OPERATORS FOR MIXED FINITE ELEMENT SPACES ON LOCALLY REFINED MESHES DISCRETE EXTENSION OPERATORS FOR MIXED FINITE ELEMENT SPACES ON LOCALLY REFINED MESHES MAR AINSWORTH, JOHNNY GUZMÁN, AND FRANCISCO JAVIER SAYAS Abstract. The existence of uniformly bounded discrete extension

More information

EXISTENCE AND REGULARITY OF SOLUTIONS FOR STOKES SYSTEMS WITH NON-SMOOTH BOUNDARY DATA IN A POLYHEDRON

EXISTENCE AND REGULARITY OF SOLUTIONS FOR STOKES SYSTEMS WITH NON-SMOOTH BOUNDARY DATA IN A POLYHEDRON Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 147, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE AND REGULARITY OF SOLUTIONS FOR

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes Vincent Heuveline Friedhelm Schieweck Abstract We propose a Scott-Zhang type interpolation

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Sobolev Embedding Theorems Embedding Operators and the Sobolev Embedding Theorem

More information

L p Theory for the div-curl System

L p Theory for the div-curl System Int. Journal of Math. Analysis, Vol. 8, 2014, no. 6, 259-271 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.4112 L p Theory for the div-curl System Junichi Aramaki Division of Science,

More information

A STOKES INTERFACE PROBLEM: STABILITY, FINITE ELEMENT ANALYSIS AND A ROBUST SOLVER

A STOKES INTERFACE PROBLEM: STABILITY, FINITE ELEMENT ANALYSIS AND A ROBUST SOLVER European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004 P. Neittaanmäki, T. Rossi, K. Majava, and O. Pironneau (eds.) O. Nevanlinna and R. Rannacher (assoc. eds.) Jyväskylä,

More information

Discontinuous Galerkin Time Discretization Methods for Parabolic Problems with Linear Constraints

Discontinuous Galerkin Time Discretization Methods for Parabolic Problems with Linear Constraints J A N U A R Y 0 1 8 P R E P R N T 4 7 4 Discontinuous Galerkin Time Discretization Methods for Parabolic Problems with Linear Constraints gor Voulis * and Arnold Reusken nstitut für Geometrie und Praktische

More information

PRECONDITIONED SOLUTION OF STATE GRADIENT CONSTRAINED ELLIPTIC OPTIMAL CONTROL PROBLEMS

PRECONDITIONED SOLUTION OF STATE GRADIENT CONSTRAINED ELLIPTIC OPTIMAL CONTROL PROBLEMS PRECONDITIONED SOLUTION OF STATE GRADIENT CONSTRAINED ELLIPTIC OPTIMAL CONTROL PROBLEMS Roland Herzog Susann Mach January 30, 206 Elliptic optimal control problems with pointwise state gradient constraints

More information

Virtual Element Methods for general second order elliptic problems

Virtual Element Methods for general second order elliptic problems Virtual Element Methods for general second order elliptic problems Alessandro Russo Department of Mathematics and Applications University of Milano-Bicocca, Milan, Italy and IMATI-CNR, Pavia, Italy Workshop

More information

Stochastic multiscale modeling of subsurface and surface flows. Part III: Multiscale mortar finite elements for coupled Stokes-Darcy flows

Stochastic multiscale modeling of subsurface and surface flows. Part III: Multiscale mortar finite elements for coupled Stokes-Darcy flows Stochastic multiscale modeling of subsurface and surface flows. Part III: Multiscale mortar finite elements for coupled Stokes-Darcy flows Ivan otov Department of Mathematics, University of Pittsburgh

More information

Various ways to use a second level preconditioner

Various ways to use a second level preconditioner Various ways to use a second level preconditioner C. Vuik 1, J.M. Tang 1, R. Nabben 2, and Y. Erlangga 3 1 Delft University of Technology Delft Institute of Applied Mathematics 2 Technische Universität

More information

STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS

STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS RAYTCHO LAZAROV AND XIU YE Abstract. In this paper, we derive two stabilized discontinuous finite element formulations, symmetric

More information

The Kuratowski Ryll-Nardzewski Theorem and semismooth Newton methods for Hamilton Jacobi Bellman equations

The Kuratowski Ryll-Nardzewski Theorem and semismooth Newton methods for Hamilton Jacobi Bellman equations The Kuratowski Ryll-Nardzewski Theorem and semismooth Newton methods for Hamilton Jacobi Bellman equations Iain Smears INRIA Paris Linz, November 2016 joint work with Endre Süli, University of Oxford Overview

More information

An Equal-order DG Method for the Incompressible Navier-Stokes Equations

An Equal-order DG Method for the Incompressible Navier-Stokes Equations An Equal-order DG Method for the Incompressible Navier-Stokes Equations Bernardo Cockburn Guido anschat Dominik Schötzau Journal of Scientific Computing, vol. 40, pp. 188 10, 009 Abstract We introduce

More information

AMG for a Peta-scale Navier Stokes Code

AMG for a Peta-scale Navier Stokes Code AMG for a Peta-scale Navier Stokes Code James Lottes Argonne National Laboratory October 18, 2007 The Challenge Develop an AMG iterative method to solve Poisson 2 u = f discretized on highly irregular

More information

A Stable Mixed Finite Element Scheme for the Second Order Elliptic Problems

A Stable Mixed Finite Element Scheme for the Second Order Elliptic Problems A Stable Mixed Finite Element Scheme for the Second Order Elliptic Problems Miaochan Zhao, Hongbo Guan, Pei Yin Abstract A stable mixed finite element method (MFEM) for the second order elliptic problems,

More information

Approximation of fluid-structure interaction problems with Lagrange multiplier

Approximation of fluid-structure interaction problems with Lagrange multiplier Approximation of fluid-structure interaction problems with Lagrange multiplier Daniele Boffi Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/boffi May 30, 2016 Outline

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Nonconformity and the Consistency Error First Strang Lemma Abstract Error Estimate

More information

The Role of the Pressure in Finite Element Methods for Incompressible Flow Problems

The Role of the Pressure in Finite Element Methods for Incompressible Flow Problems Weierstrass Institute for Applied Analysis and Stochastics The Role of the Pressure in Finite Element Methods for Incompressible Flow Problems Volker John Mohrenstrasse 39 10117 Berlin Germany Tel. +49

More information

IMPROVED LEAST-SQUARES ERROR ESTIMATES FOR SCALAR HYPERBOLIC PROBLEMS, 1

IMPROVED LEAST-SQUARES ERROR ESTIMATES FOR SCALAR HYPERBOLIC PROBLEMS, 1 Computational Methods in Applied Mathematics Vol. 1, No. 1(2001) 1 8 c Institute of Mathematics IMPROVED LEAST-SQUARES ERROR ESTIMATES FOR SCALAR HYPERBOLIC PROBLEMS, 1 P.B. BOCHEV E-mail: bochev@uta.edu

More information

A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations

A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations Bernardo Cockburn Guido anschat Dominik Schötzau June 1, 2007 Journal of Scientific Computing, Vol. 31, 2007, pp.

More information

The Dirichlet-to-Neumann operator

The Dirichlet-to-Neumann operator Lecture 8 The Dirichlet-to-Neumann operator The Dirichlet-to-Neumann operator plays an important role in the theory of inverse problems. In fact, from measurements of electrical currents at the surface

More information

MEYERS TYPE ESTIMATES FOR APPROXIMATE SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS AND THEIR APPLICATIONS. Yalchin Efendiev.

MEYERS TYPE ESTIMATES FOR APPROXIMATE SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS AND THEIR APPLICATIONS. Yalchin Efendiev. Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 200X Website: http://aimsciences.org pp. X XX MEYERS TYPE ESTIMATES FOR APPROXIMATE SOLUTIONS OF NONLINEAR ELLIPTIC EUATIONS AND THEIR APPLICATIONS

More information

INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR GRIDS. 1. Introduction

INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR GRIDS. 1. Introduction Trends in Mathematics Information Center for Mathematical Sciences Volume 9 Number 2 December 2006 Pages 0 INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR

More information

Key words. inf-sup constant, iterative solvers, preconditioning, saddle point problems

Key words. inf-sup constant, iterative solvers, preconditioning, saddle point problems NATURAL PRECONDITIONING AND ITERATIVE METHODS FOR SADDLE POINT SYSTEMS JENNIFER PESTANA AND ANDREW J. WATHEN Abstract. The solution of quadratic or locally quadratic extremum problems subject to linear(ized)

More information

A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATIONS

A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATIONS A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATIONS LIN MU, JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This article introduces and analyzes a weak Galerkin mixed finite element method

More information