A mixed formulation for the approximation of the HUM control for the wave equation

Size: px
Start display at page:

Download "A mixed formulation for the approximation of the HUM control for the wave equation"

Transcription

1 Nicolae Cîndea Approimation of the HUM control for the wave equation / 6 A mied formulation for the approimation of the HUM control for the wave equation Nicolae Cîndea joint work with Arnaud Münch Université Blaise Pascal Clermont-Ferrand Benasque, 3/8/3

2 The wave equation with boundary control We consider the following wave equation: y tt (c()y ) + d(, t)y =, (, t) (, ) (, T ) y(, t) =, y(, t) = v(t), t (, T ) y(, ) = y (), y t (, ) = y (), (, ). c C 3 ([, ]) with c() c > in [, ] d L ((, ) (, T )) y L (, ) and y H (, ) We search a control v = v(t) such that y(t ) =, y t (T ) =. () Aim For a controllability time T > large enough and for every y, y, give a numerical approimation of the control v of minimal L -norm. Nicolae Cîndea Approimation of the HUM control for the wave equation / 6

3 Nicolae Cîndea Approimation of the HUM control for the wave equation 3/ 6 Hilbert Uniqueness Method - a brief recall T Minimize J(y, v) = v(t) dt Subject to (y, v) C(y, y ; T ) where C(y, y ; T ) denotes the linear manifold { (y, v) : v L C(y, y ; T ) = (, T ), y solves the wave equation and satisfies y(t ) = y t (T ) = () }. min (ϕ,ϕ ) H (,) L (,) J (ϕ, ϕ ) J (ϕ, ϕ ) = T ϕ (, t) dt + ϕ t(, )d, ϕ(, ) H,H

4 Nicolae Cîndea Approimation of the HUM control for the wave equation 3/ 6 Hilbert Uniqueness Method - a brief recall T Minimize J(y, v) = v(t) dt Subject to (y, v) C(y, y ; T ) where C(y, y ; T ) denotes the linear manifold { (y, v) : v L C(y, y ; T ) = (, T ), y solves the wave equation and satisfies y(t ) = y t (T ) = By duality arguments this minimization problem is equivalent to the following one min (ϕ,ϕ ) H (,) L (,) J (ϕ, ϕ ) J (ϕ, ϕ ) = T ϕ (, t) dt + y ()ϕ t (, )d y, ϕ(, ) H,H () }.

5 Nicolae Cîndea Approimation of the HUM control for the wave equation 3/ 6 Hilbert Uniqueness Method - a brief recall Dual minimization problem reads as : J (ϕ, ϕ ) = min (ϕ,ϕ ) H (,) L (,) J (ϕ, ϕ ) T ϕ (, t) dt + y ()ϕ t (, )d y, ϕ(, ) H,H Lϕ = in Q T, ϕ = on Σ T (ϕ(, T ), ϕ t (, T )) = (ϕ, ϕ ), in Ω.

6 Nicolae Cîndea Approimation of the HUM control for the wave equation 3/ 6 Hilbert Uniqueness Method - a brief recall J (ϕ, ϕ ) = min (ϕ,ϕ ) H (,) L (,) J (ϕ, ϕ ) T ϕ (, t) dt + y ()ϕ t (, )d y, ϕ(, ) H,H Lϕ = in Q T, ϕ = on Σ T (ϕ(, T ), ϕ t (, T )) = (ϕ, ϕ ), in Ω. The coercivity of J is the consequence of the following observability estimate : there eists a constant k T > such that ϕ(, ), ϕ t (, ) V k T ϕ (, ) L (,T ), (ϕ, ϕ ) V, () where V = H (, ) L (, ).

7 Nicolae Cîndea Approimation of the HUM control for the wave equation 4/ 6 Hilbert Uniqueness Method - a reformulation Since ϕ is completely and uniquely determined by (ϕ, ϕ ), we consider the following etremal problem: min Ĵ (ϕ), subject to Lϕ =, ϕ Φ where { Φ = ϕ L (Q T ), ϕ = on Σ T such that Lϕ L (Q T ) ϕ (, ) L (, T ) }. Remark Φ is an Hilbert space endowed with the inner product (ϕ, ϕ) Φ = T for any fied η >. c()ϕ (, t)ϕ (, t) dt + η LϕLϕ d dt. Q T

8 Nicolae Cîndea Approimation of the HUM control for the wave equation 5/ 6 Hilbert Uniqueness Method - a mied reformulation We consider the following mied formulation : find (ϕ, λ) Φ L (Q T ) solution of { a(ϕ, ϕ) + b(ϕ, λ) = l(ϕ), ϕ Φ b(ϕ, λ) =, λ L (Q T ), (3) where T a : Φ Φ R, a(ϕ, ϕ) = c()ϕ (, t)ϕ (, t)dt b : Φ L (Q T ) R, b(ϕ, λ) = Lϕ(, t)λ(, t)ddt Q T l : Φ R, l(ϕ) = y () ϕ t (, )d + y, ϕ(, ),.

9 Nicolae Cîndea Approimation of the HUM control for the wave equation 6/ 6 { a(ϕ, ϕ) + b(ϕ, λ) = l(ϕ), ϕ Φ b(ϕ, λ) =, λ L (Q T ), (3) Theorem. The mied formulation (3) is well-posed.. The unique solution (ϕ, λ) Φ L (Q T ) is the unique saddle-point of the Lagrangian L : Φ L (Q T ) R defined by L(ϕ, λ) = a(ϕ, ϕ) + b(ϕ, λ) l(ϕ). (4) 3. The optimal function ϕ is the minimizer of Ĵ over Φ while the optimal function λ L (Q T ) is the state of the controlled wave equation in the weak sense.

10 Nicolae Cîndea Approimation of the HUM control for the wave equation 6/ 6 { a(ϕ, ϕ) + b(ϕ, λ) = l(ϕ), ϕ Φ b(ϕ, λ) =, λ L (Q T ), (3) Theorem. The mied formulation (3) is well-posed.. The unique solution (ϕ, λ) Φ L (Q T ) is the unique saddle-point of the Lagrangian L r : Φ L (Q T ) R defined by L r (ϕ, λ) = a r(ϕ, ϕ) + b(ϕ, λ) l(ϕ). (4) 3. The optimal function ϕ is the minimizer of Ĵ over Φ while the optimal function λ L (Q T ) is the state of the controlled wave equation in the weak sense.

11 Nicolae Cîndea Approimation of the HUM control for the wave equation 7/ 6 Ingredients of the proof We easily check that : a is continuous over Φ Φ, symmetric and positive b is continuous over Φ L (Q T ) assuming c A and T > T (c), l is continuous over Φ (as a direct consequence of an apropriate Carleman estimate see it ) The well-posedness of the mied formulation is a consequence of the following two properties (see Brezzi and Fortin 99 book): a is coercive on N (b), where: N (b) = {ϕ Φ such that b(ϕ, λ) = for every λ L (Q T )}. b satisfies the usual inf-sup condition over Φ L (Q T ): inf sup λ L (Q T ) ϕ Φ b(ϕ, λ) ϕ Φ λ L (Q T ) δ.

12 Nicolae Cîndea Approimation of the HUM control for the wave equation 8/ 6 Numerical approimation Let Φ h and M h be two finite dimensional spaces parametrized by the variable h such that Φ h Φ, M h L (Q T ), h >. We introduce the following approimated problems : find (ϕ h, λ h ) Φ h M h solution of { ar (ϕ h, ϕ h ) + b(ϕ h, λ h ) = l(ϕ h ), ϕ h Φ h b(ϕ h, λ h ) =, λ h, M h. where for any given r >. a r (ϕ, ϕ) = a(ϕ, ϕ) + r Lϕ d dt Q T

13 We introduce a triangulation T h such that Q T = K Th K and we assume that {T h } h> is a regular family. We define t t Nicolae Cîndea Approimation of the HUM control for the wave equation 9/ 6 t Φ h = {ϕ h C (Q T ) : ϕ h K P(K) K T h, ϕ h = on Σ T } where P(K) may be chosen as The Bogner-Fo-Schmit (BFS for short) C element defined for rectangles. The reduced Hsieh-Clough-Tocher (HCT for short) C element defined for triangles. M h = {λ h C (Q T ) : λ h K Q(K) K T h },

14 Nicolae Cîndea Approimation of the HUM control for the wave equation / 6 Mied formulation as a linear system Let n h = dim Φ h, m h = dim M h and let the real matrices A r,h R n h,n h, B h R m h,n h and L h R n h be defined by a r (ϕ h, ϕ h ) =< A r,h {ϕ h }, {ϕ h } > R n h,r n h, ϕ h, ϕ h Φ h, b(ϕ h, λ h ) =< B h {ϕ h }, {λ h } > R m h,r m h, ϕ h Φ h, λ h M h, l(ϕ h ) =< L h, {ϕ h } >, ϕ h Φ h With these notations, the finite dimensional mied problem reads as follows : find {ϕ h } R n h and {λ h } R m h such that ( Ar,h B T h B h ) R n h +m h,n h +m h ( {ϕh } {λ h } ) R n h +m h = ( Lh ) R n h +m h. v h (t) = c()π t (φ h, (, )).

15 Nicolae Cîndea Approimation of the HUM control for the wave equation / 6 A numerical eample y () = 4 (,/) (), y () =, T =.4. The control of minimal L -norm is known eactly : v(t) = ( t) /, 3/ (t).

16 Nicolae Cîndea Approimation of the HUM control for the wave equation / 6 A numerical eample v h (t) v(t) t Figure: Control of minimal L -norm v and its approimation v h on (, T ).

17 Nicolae Cîndea Approimation of the HUM control for the wave equation / 6 A numerical eample λ(, t).5 t.5.5 Figure: The primal variable λ h in Q T ; h =.46 ; r =.

18 Nicolae Cîndea Approimation of the HUM control for the wave equation / 6 A numerical eample BFS HCT uniform HCT non uniform.5 h Figure: Evolution of v v h L (,T ) w.r.t. h for BFS finite element ( ), HCT-uniform mesh ( ) and HCT- non uniform mesh ( ); r =.

19 t t t Nicolae Cîndea Approimation of the HUM control for the wave equation / 6 t t A numerical eample - mesh adaptation Figure: Iterative refinement of the triangular mesh over Q T with respect to the variable λ h : 4, 4, 54, 556, 4 75 triangles; r = 3.

20 Nicolae Cîndea Approimation of the HUM control for the wave equation / 6 A numerical eample - mesh adaptation 3 λ(, t).5.5 t.5.5 Figure: Primal variable λ h in Q T.

21 Nicolae Cîndea Approimation of the HUM control for the wave equation 3/ 6 Another numerical eample - distributed control case y () = e 5(.), y () = T =., ω = (.,.4) and a non-constant function c = c() C ([, ]) with. [,.45] c() = [., 5.] (c () > ), (.45,.55) 5. [.55, ]. (5)

22 Nicolae Cîndea Approimation of the HUM control for the wave equation 3/ 6 Another numerical eample - distributed control case t.5.5 λ(, t) t.5.5 Figure: Left : Triangular mesh of q T and of Q T. Right : The primal variable λ h in Q T.

23 t t Some perspectives Optimization in spacetime of the support of the control inf-sup condition is uniform with respect to h? Nicolae Cîndea Approimation of the HUM control for the wave equation 4/ 6

24 Nicolae Cîndea Approimation of the HUM control for the wave equation 4/ 6 Some perspectives inf λ h M h b(ϕ h, λ h ) sup δ h. ϕ h Φ h ϕ h Φh λ h Mh Optimization in spacetime of the support of the control inf-sup condition is uniform with respect to h? Figure: BFS finite element - Evolution of the inf-sup constante δ h with respect to h for r = 4 (<), r = 3 ( ), r = ( ) and r = ( ).

25 Nicolae Cîndea Approimation of the HUM control for the wave equation 5/ 6 N. Cîndea, A. Munch, A mied formulation for the direct approimation of the control of minimal L -norm for linear type wave equations, submitted August 3. Thank you for the attention!

26 Nicolae BackCîndea Approimation of the HUM control for the wave equation 6/ 6 Proposition (C, Fernandez-Cara, Münch, ESAIM COCV 3) Let <, c > and c A(, c ). Let β > and let us consider the function φ(, t) := βt + M and g(, t) := e λφ(,t). Finally, let us assume that T > β ma [,] c() / ( ). Then there eist positive constants s and M, such that, for all s > s, one has s T T M e sg ( w t + w ) d dt + s 3 T T T e sg Lw d dt + Ms { A(, c ) = c C 3 ([, ]) : c() c >, ( ) min c() + ( )c () [,] T T T < min [,] e sg w d dt e sg w (, t) dt. ( c() + ( )c ()) },

Controllability of the linear 1D wave equation with inner moving for

Controllability of the linear 1D wave equation with inner moving for Controllability of the linear D wave equation with inner moving forces ARNAUD MÜNCH Université Blaise Pascal - Clermont-Ferrand - France Toulouse, May 7, 4 joint work with CARLOS CASTRO (Madrid) and NICOLAE

More information

Inverse problems for linear hyperbolic equations via a mixed formulation

Inverse problems for linear hyperbolic equations via a mixed formulation Inverse problems for linear hyperbolic equations via a mixed formulation Nicolae Cindea, Arnaud Münch To cite this version: Nicolae Cindea, Arnaud Münch. Inverse problems for linear hyperbolic equations

More information

A mixed formulation for the direct approximation of L 2 -weighted controls for the linear heat equation

A mixed formulation for the direct approximation of L 2 -weighted controls for the linear heat equation A mixed formulation for the direct approximation of L 2 -weighted controls for the linear heat equation Arnaud Munch, Souza Diego A. To cite this version: Arnaud Munch, Souza Diego A.. A mixed formulation

More information

Numerical estimations of the cost of boundary controls for the equation y t εy xx + My x = 0 with respect to ε

Numerical estimations of the cost of boundary controls for the equation y t εy xx + My x = 0 with respect to ε Numerical estimations of the cost of boundary controls for the equation y t εy xx + My x = with respect to ε Arnaud Münch To cite this version: Arnaud Münch. Numerical estimations of the cost of boundary

More information

Global Carleman inequalities and theoretical and numerical control results for systems governed by PDEs

Global Carleman inequalities and theoretical and numerical control results for systems governed by PDEs Global Carleman inequalities and theoretical and numerical control results for systems governed by PDEs Enrique FERNÁNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla joint work with A. MÜNCH Lab. Mathématiques,

More information

Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media

Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Raytcho Lazarov & Aziz Takhirov Texas A&M May 3-4, 2016 R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 1 / 30 Outline

More information

Numerical control and inverse problems and Carleman estimates

Numerical control and inverse problems and Carleman estimates Numerical control and inverse problems and Carleman estimates Enrique FERNÁNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla from some joint works with A. MÜNCH Lab. Mathématiques, Univ. Blaise Pascal, C-F 2,

More information

Some recent results on controllability of coupled parabolic systems: Towards a Kalman condition

Some recent results on controllability of coupled parabolic systems: Towards a Kalman condition Some recent results on controllability of coupled parabolic systems: Towards a Kalman condition F. Ammar Khodja Clermont-Ferrand, June 2011 GOAL: 1 Show the important differences between scalar and non

More information

FEM for Stokes Equations

FEM for Stokes Equations FEM for Stokes Equations Kanglin Chen 15. Dezember 2009 Outline 1 Saddle point problem 2 Mixed FEM for Stokes equations 3 Numerical Results 2 / 21 Stokes equations Given (f, g). Find (u, p) s.t. u + p

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course otes for EE7C (Spring 018): Conve Optimization and Approimation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Ma Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

b i (x) u + c(x)u = f in Ω,

b i (x) u + c(x)u = f in Ω, SIAM J. NUMER. ANAL. Vol. 39, No. 6, pp. 1938 1953 c 2002 Society for Industrial and Applied Mathematics SUBOPTIMAL AND OPTIMAL CONVERGENCE IN MIXED FINITE ELEMENT METHODS ALAN DEMLOW Abstract. An elliptic

More information

Numerical null controllability of semi-linear 1-D heat equations: fixed point, least squares and Newton methods

Numerical null controllability of semi-linear 1-D heat equations: fixed point, least squares and Newton methods Numerical null controllability of semi-linear 1-D heat equations: fixed point, least squares and Newton methods Enrique Fernández-Cara and Arnaud Münch May 22, 211 Abstract This paper deals with the numerical

More information

A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations

A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations Songul Kaya and Béatrice Rivière Abstract We formulate a subgrid eddy viscosity method for solving the steady-state

More information

STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY CONDITIONS IN AN EXTERIOR DOMAIN

STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY CONDITIONS IN AN EXTERIOR DOMAIN Electronic Journal of Differential Equations, Vol. 2013 2013, No. 196, pp. 1 28. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu STOKES PROBLEM

More information

Chapter 2 Finite Element Spaces for Linear Saddle Point Problems

Chapter 2 Finite Element Spaces for Linear Saddle Point Problems Chapter 2 Finite Element Spaces for Linear Saddle Point Problems Remark 2.1. Motivation. This chapter deals with the first difficulty inherent to the incompressible Navier Stokes equations, see Remark

More information

Discontinuous Petrov-Galerkin Methods

Discontinuous Petrov-Galerkin Methods Discontinuous Petrov-Galerkin Methods Friederike Hellwig 1st CENTRAL School on Analysis and Numerics for Partial Differential Equations, November 12, 2015 Motivation discontinuous Petrov-Galerkin (dpg)

More information

Some New Elements for the Reissner Mindlin Plate Model

Some New Elements for the Reissner Mindlin Plate Model Boundary Value Problems for Partial Differential Equations and Applications, J.-L. Lions and C. Baiocchi, eds., Masson, 1993, pp. 287 292. Some New Elements for the Reissner Mindlin Plate Model Douglas

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

INF-SUP CONDITION FOR OPERATOR EQUATIONS

INF-SUP CONDITION FOR OPERATOR EQUATIONS INF-SUP CONDITION FOR OPERATOR EQUATIONS LONG CHEN We study the well-posedness of the operator equation (1) T u = f. where T is a linear and bounded operator between two linear vector spaces. We give equivalent

More information

2.3 Variational form of boundary value problems

2.3 Variational form of boundary value problems 2.3. VARIATIONAL FORM OF BOUNDARY VALUE PROBLEMS 21 2.3 Variational form of boundary value problems Let X be a separable Hilbert space with an inner product (, ) and norm. We identify X with its dual X.

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2012) 122:61 99 DOI 10.1007/s00211-012-0456-x Numerische Mathematik C 0 elements for generalized indefinite Maxwell equations Huoyuan Duan Ping Lin Roger C. E. Tan Received: 31 July 2010

More information

10701 Recitation 5 Duality and SVM. Ahmed Hefny

10701 Recitation 5 Duality and SVM. Ahmed Hefny 10701 Recitation 5 Duality and SVM Ahmed Hefny Outline Langrangian and Duality The Lagrangian Duality Eamples Support Vector Machines Primal Formulation Dual Formulation Soft Margin and Hinge Loss Lagrangian

More information

arxiv: v1 [math.na] 27 Jan 2016

arxiv: v1 [math.na] 27 Jan 2016 Virtual Element Method for fourth order problems: L 2 estimates Claudia Chinosi a, L. Donatella Marini b arxiv:1601.07484v1 [math.na] 27 Jan 2016 a Dipartimento di Scienze e Innovazione Tecnologica, Università

More information

About the method of characteristics

About the method of characteristics About the method of characteristics Francis Nier, IRMAR, Univ. Rennes 1 and INRIA project-team MICMAC. Joint work with Z. Ammari about bosonic mean-field dynamics June 3, 2013 Outline The problem An example

More information

A CAUCHY PROBLEM OF SINE-GORDON EQUATIONS WITH NON-HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS 1. INTRODUCTION

A CAUCHY PROBLEM OF SINE-GORDON EQUATIONS WITH NON-HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS 1. INTRODUCTION Trends in Mathematics Information Center for Mathematical Sciences Volume 4, Number 2, December 21, Pages 39 44 A CAUCHY PROBLEM OF SINE-GORDON EQUATIONS WITH NON-HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Multigrid Methods for Saddle Point Problems

Multigrid Methods for Saddle Point Problems Multigrid Methods for Saddle Point Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University Advances in Mathematics of Finite Elements (In

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2003) 94: 195 202 Digital Object Identifier (DOI) 10.1007/s002110100308 Numerische Mathematik Some observations on Babuška and Brezzi theories Jinchao Xu, Ludmil Zikatanov Department of Mathematics,

More information

Multiobjective PDE-constrained optimization using the reduced basis method

Multiobjective PDE-constrained optimization using the reduced basis method Multiobjective PDE-constrained optimization using the reduced basis method Laura Iapichino1, Stefan Ulbrich2, Stefan Volkwein1 1 Universita t 2 Konstanz - Fachbereich Mathematik und Statistik Technischen

More information

Limits and the derivative function. Limits and the derivative function

Limits and the derivative function. Limits and the derivative function The Velocity Problem A particle is moving in a straight line. t is the time that has passed from the start of motion (which corresponds to t = 0) s(t) is the distance from the particle to the initial position

More information

A DECOMPOSITION RESULT FOR BIHARMONIC PROBLEMS AND THE HELLAN-HERRMANN-JOHNSON METHOD

A DECOMPOSITION RESULT FOR BIHARMONIC PROBLEMS AND THE HELLAN-HERRMANN-JOHNSON METHOD Electronic ransactions on Numerical Analysis. Volume 45, pp. 257 282, 2016. Copyright c 2016,. ISSN 1068 9613. ENA A DECOMPOSIION RESUL FOR BIHARMONIC PROBLEMS AND HE HELLAN-HERRMANN-JOHNSON MEHOD WOLFGANG

More information

Optimal shape and position of the support for the internal exact control of a string

Optimal shape and position of the support for the internal exact control of a string Optimal shape and position of the support for the internal exact control of a string Francisco Periago Abstract In this paper, we consider the problem of optimizing the shape and position of the support

More information

On Non-Coercive Variational Inequalities

On Non-Coercive Variational Inequalities On Non-Coercive Variational Inequalities Silke Glas und Karsten Urban Preprint Series: 213-4 Fakultät für Mathematik und Wirtschaftswissenschaften UNIVERSITÄT ULM ON NON-COERCIVE VARIATIONAL INEQUALITIES

More information

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016 Mixed Finite Element Methods Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016 Linear elasticity Given the load f : Ω R n, find the displacement u : Ω R n and the

More information

Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition (POD) Intro Results Problem etras Proper Orthogonal Decomposition () Advisor: Dr. Sorensen CAAM699 Department of Computational and Applied Mathematics Rice University September 5, 28 Outline Intro Results Problem

More information

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT HUOYUAN DUAN, SHA LI, ROGER C. E. TAN, AND WEIYING ZHENG Abstract. To deal with the divergence-free

More information

Stabilization of Heat Equation

Stabilization of Heat Equation Stabilization of Heat Equation Mythily Ramaswamy TIFR Centre for Applicable Mathematics, Bangalore, India CIMPA Pre-School, I.I.T Bombay 22 June - July 4, 215 Mythily Ramaswamy Stabilization of Heat Equation

More information

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires MIXED FINITE ELEMENTS FOR PLATES Ricardo G. Durán Universidad de Buenos Aires - Necessity of 2D models. - Reissner-Mindlin Equations. - Finite Element Approximations. - Locking. - Mixed interpolation or

More information

Numerical algorithms for one and two target optimal controls

Numerical algorithms for one and two target optimal controls Numerical algorithms for one and two target optimal controls Sung-Sik Kwon Department of Mathematics and Computer Science, North Carolina Central University 80 Fayetteville St. Durham, NC 27707 Email:

More information

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM Finite Elements February 22, 2019 In the previous sections, we introduced the concept of finite element spaces, which contain certain functions defined on a domain. Finite element spaces are examples of

More information

Duality revisited. Javier Peña Convex Optimization /36-725

Duality revisited. Javier Peña Convex Optimization /36-725 Duality revisited Javier Peña Conve Optimization 10-725/36-725 1 Last time: barrier method Main idea: approimate the problem f() + I C () with the barrier problem f() + 1 t φ() tf() + φ() where t > 0 and

More information

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS PARTITION OF UNITY FOR THE STOES PROBLEM ON NONMATCHING GRIDS CONSTANTIN BACUTA AND JINCHAO XU Abstract. We consider the Stokes Problem on a plane polygonal domain Ω R 2. We propose a finite element method

More information

Greedy control. Martin Lazar University of Dubrovnik. Opatija, th Najman Conference. Joint work with E: Zuazua, UAM, Madrid

Greedy control. Martin Lazar University of Dubrovnik. Opatija, th Najman Conference. Joint work with E: Zuazua, UAM, Madrid Greedy control Martin Lazar University of Dubrovnik Opatija, 2015 4th Najman Conference Joint work with E: Zuazua, UAM, Madrid Outline Parametric dependent systems Reduced basis methods Greedy control

More information

On convergence rate of the augmented Lagrangian algorithm for nonsymmetric saddle point problems

On convergence rate of the augmented Lagrangian algorithm for nonsymmetric saddle point problems Applied Numerical athematics 54 2005) 122 134 wwwelseviercom/locate/apnum On convergence rate of the augmented Lagrangian algorithm for nonsymmetric saddle point problems G Awanou a,,jlai b a Institute

More information

Unique continuation for the Helmholtz equation using a stabilized finite element method

Unique continuation for the Helmholtz equation using a stabilized finite element method Unique continuation for the Helmholtz equation using a stabilized finite element method Lauri Oksanen University College London Based on a joint work with Erik Burman and Mihai Nechita Motivation: recovering

More information

Duality (Continued) min f ( x), X R R. Recall, the general primal problem is. The Lagrangian is a function. defined by

Duality (Continued) min f ( x), X R R. Recall, the general primal problem is. The Lagrangian is a function. defined by Duality (Continued) Recall, the general primal problem is min f ( x), xx g( x) 0 n m where X R, f : X R, g : XR ( X). he Lagrangian is a function L: XR R m defined by L( xλ, ) f ( x) λ g( x) Duality (Continued)

More information

Approximation in Banach Spaces by Galerkin Methods

Approximation in Banach Spaces by Galerkin Methods 2 Approximation in Banach Spaces by Galerkin Methods In this chapter, we consider an abstract linear problem which serves as a generic model for engineering applications. Our first goal is to specify the

More information

Junhong Ha and Shin-ichi Nakagiri

Junhong Ha and Shin-ichi Nakagiri J. Korean Math. Soc. 39 (22), No. 4, pp. 59 524 IDENTIFICATION PROBLEMS OF DAMPED SINE-GORDON EQUATIONS WITH CONSTANT PARAMETERS Junhong Ha and Shin-ichi Nakagiri Abstract. We study the problems of identification

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method L. Vandenberghe EE236C (Spring 2016) 1. Gradient method gradient method, first-order methods quadratic bounds on convex functions analysis of gradient method 1-1 Approximate course outline First-order

More information

MOL 410/510: Introduction to Biological Dynamics Fall 2012 Problem Set #4, Nonlinear Dynamical Systems (due 10/19/2012) 6 MUST DO Questions, 1

MOL 410/510: Introduction to Biological Dynamics Fall 2012 Problem Set #4, Nonlinear Dynamical Systems (due 10/19/2012) 6 MUST DO Questions, 1 MOL 410/510: Introduction to Biological Dynamics Fall 2012 Problem Set #4, Nonlinear Dynamical Systems (due 10/19/2012) 6 MUST DO Questions, 1 OPTIONAL question 1. Below, several phase portraits are shown.

More information

ICES REPORT Construction of DPG Fortin Operators for Second Order Problems

ICES REPORT Construction of DPG Fortin Operators for Second Order Problems ICES REPORT 15-22 October 2015 Construction of DPG Fortin Operators for Second Order Problems by Sriram Nagaraj, Socratis Petrides, and Leszek F. Demkowicz The Institute for Computational Engineering and

More information

Chapter 9. Derivatives. Josef Leydold Mathematical Methods WS 2018/19 9 Derivatives 1 / 51. f x. (x 0, f (x 0 ))

Chapter 9. Derivatives. Josef Leydold Mathematical Methods WS 2018/19 9 Derivatives 1 / 51. f x. (x 0, f (x 0 )) Chapter 9 Derivatives Josef Leydold Mathematical Methods WS 208/9 9 Derivatives / 5 Difference Quotient Let f : R R be some function. The the ratio f = f ( 0 + ) f ( 0 ) = f ( 0) 0 is called difference

More information

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer.

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer. Problem Sheet,. i) Draw the graphs for [] and {}. ii) Show that for α R, α+ α [t] dt = α and α+ α {t} dt =. Hint Split these integrals at the integer which must lie in any interval of length, such as [α,

More information

Konstantinos Chrysafinos 1 and L. Steven Hou Introduction

Konstantinos Chrysafinos 1 and L. Steven Hou Introduction Mathematical Modelling and Numerical Analysis Modélisation Mathématique et Analyse Numérique Will be set by the publisher ANALYSIS AND APPROXIMATIONS OF THE EVOLUTIONARY STOKES EQUATIONS WITH INHOMOGENEOUS

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS CARLO LOVADINA AND ROLF STENBERG Abstract The paper deals with the a-posteriori error analysis of mixed finite element methods

More information

JOHANNES KEPLER UNIVERSITY LINZ. Institute of Computational Mathematics

JOHANNES KEPLER UNIVERSITY LINZ. Institute of Computational Mathematics JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Schur Complement Preconditioners for Multiple Saddle Point Problems of Block Tridiagonal Form with Application to Optimization Problems

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Nonconformity and the Consistency Error First Strang Lemma Abstract Error Estimate

More information

Lecture 24 November 27

Lecture 24 November 27 EE 381V: Large Scale Optimization Fall 01 Lecture 4 November 7 Lecturer: Caramanis & Sanghavi Scribe: Jahshan Bhatti and Ken Pesyna 4.1 Mirror Descent Earlier, we motivated mirror descent as a way to improve

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

POISSON EQUATIONS JEONGHUN LEE (1)

POISSON EQUATIONS JEONGHUN LEE (1) POISSON EQUATIONS JEONGHUN LEE Throughout this note the symbol X À Y stands for an inequality X CY with some constant C 0 which is independent of mesh sizes h. However, we will use X CY when we want to

More information

arxiv: v1 [math.na] 27 Jan 2016

arxiv: v1 [math.na] 27 Jan 2016 Virtual Element Method for fourth order problems: L 2 estimates Claudia Chinosi a, L. Donatella Marini b arxiv:1601.07484v1 [math.na] 27 Jan 2016 a Dipartimento di Scienze e Innovazione Tecnologica, Università

More information

1 Constrained Optimization

1 Constrained Optimization 1 Constrained Optimization Let B be an M N matrix, a linear operator from the space IR N to IR M with adjoint B T. For (column vectors) x IR N and y IR M we have x B T y = Bx y. This vanishes for all y

More information

ON THE ANALYSIS OF A VISCOPLASTIC CONTACT PROBLEM WITH TIME DEPENDENT TRESCA S FRIC- TION LAW

ON THE ANALYSIS OF A VISCOPLASTIC CONTACT PROBLEM WITH TIME DEPENDENT TRESCA S FRIC- TION LAW Electron. J. M ath. Phys. Sci. 22, 1, 1,47 71 Electronic Journal of Mathematical and Physical Sciences EJMAPS ISSN: 1538-263X www.ejmaps.org ON THE ANALYSIS OF A VISCOPLASTIC CONTACT PROBLEM WITH TIME

More information

Math 19, Homework-1 Solutions

Math 19, Homework-1 Solutions SSEA Summer 207 Math 9, Homework- Solutions. Consider the graph of function f shown below. Find the following its or eplain why they do not eist: (a) t 2 f(t). = 0. (b) t f(t). =. (c) t 0 f(t). (d) Does

More information

Discontinuous Galerkin Time Discretization Methods for Parabolic Problems with Linear Constraints

Discontinuous Galerkin Time Discretization Methods for Parabolic Problems with Linear Constraints J A N U A R Y 0 1 8 P R E P R N T 4 7 4 Discontinuous Galerkin Time Discretization Methods for Parabolic Problems with Linear Constraints gor Voulis * and Arnold Reusken nstitut für Geometrie und Praktische

More information

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION Proceedings of ALGORITMY pp. 9 3 FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION JAN STEBEL Abstract. The paper deals with the numerical simulations of steady flows

More information

In applications, we encounter many constrained optimization problems. Examples Basis pursuit: exact sparse recovery problem

In applications, we encounter many constrained optimization problems. Examples Basis pursuit: exact sparse recovery problem 1 Conve Analsis Main references: Vandenberghe UCLA): EECS236C - Optimiation methods for large scale sstems, http://www.seas.ucla.edu/ vandenbe/ee236c.html Parikh and Bod, Proimal algorithms, slides and

More information

1 The Projection Theorem

1 The Projection Theorem Several Important Theorems by Francis J. Narcowich November, 14 1 The Projection Theorem Let H be a Hilbert space. When V is a finite dimensional subspace of H and f H, we can always find a unique p V

More information

A Posteriori Error Estimation for Reduced Order Solutions of Parametrized Parabolic Optimal Control Problems

A Posteriori Error Estimation for Reduced Order Solutions of Parametrized Parabolic Optimal Control Problems A Posteriori Error Estimation for Reduced Order Solutions of Parametrized Parabolic Optimal Control Problems Mark Kärcher 1 and Martin A. Grepl Bericht r. 361 April 013 Keywords: Optimal control, reduced

More information

A primer on Numerical methods for elasticity

A primer on Numerical methods for elasticity A primer on Numerical methods for elasticity Douglas N. Arnold, University of Minnesota Complex materials: Mathematical models and numerical methods Oslo, June 10 12, 2015 One has to resort to the indignity

More information

Mixed Finite Elements Method

Mixed Finite Elements Method Mixed Finite Elements Method A. Ratnani 34, E. Sonnendrücker 34 3 Max-Planck Institut für Plasmaphysik, Garching, Germany 4 Technische Universität München, Garching, Germany Contents Introduction 2. Notations.....................................

More information

u = f in Ω, u = q on Γ. (1.2)

u = f in Ω, u = q on Γ. (1.2) ERROR ANALYSIS FOR A FINITE ELEMENT APPROXIMATION OF ELLIPTIC DIRICHLET BOUNDARY CONTROL PROBLEMS S. MAY, R. RANNACHER, AND B. VEXLER Abstract. We consider the Galerkin finite element approximation of

More information

A NEW CLASS OF MIXED FINITE ELEMENT METHODS FOR REISSNER MINDLIN PLATES

A NEW CLASS OF MIXED FINITE ELEMENT METHODS FOR REISSNER MINDLIN PLATES A NEW CLASS OF IXED FINITE ELEENT ETHODS FOR REISSNER INDLIN PLATES C. LOVADINA Abstract. A new class of finite elements for Reissner indlin plate problem is presented. The family is based on a modified

More information

A Multiscale DG Method for Convection Diffusion Problems

A Multiscale DG Method for Convection Diffusion Problems A Multiscale DG Method for Convection Diffusion Problems Annalisa Buffa Istituto di Matematica Applicata e ecnologie Informatiche - Pavia National Research Council Italy Joint project with h. J.R. Hughes,

More information

CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds

CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds CS 6347 Lecture 8 & 9 Lagrange Multipliers & Varitional Bounds General Optimization subject to: min ff 0() R nn ff ii 0, h ii = 0, ii = 1,, mm ii = 1,, pp 2 General Optimization subject to: min ff 0()

More information

Decouplings and applications

Decouplings and applications April 27, 2018 Let Ξ be a collection of frequency points ξ on some curved, compact manifold S of diameter 1 in R n (e.g. the unit sphere S n 1 ) Let B R = B(c, R) be a ball with radius R 1. Let also a

More information

Prox-Diagonal Method: Caracterization of the Limit

Prox-Diagonal Method: Caracterization of the Limit International Journal of Mathematical Analysis Vol. 12, 2018, no. 9, 403-412 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2018.8639 Prox-Diagonal Method: Caracterization of the Limit M. Amin

More information

Duality Uses and Correspondences. Ryan Tibshirani Convex Optimization

Duality Uses and Correspondences. Ryan Tibshirani Convex Optimization Duality Uses and Correspondences Ryan Tibshirani Conve Optimization 10-725 Recall that for the problem Last time: KKT conditions subject to f() h i () 0, i = 1,... m l j () = 0, j = 1,... r the KKT conditions

More information

MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS JUHO KÖNNÖ, DOMINIK SCHÖTZAU, AND ROLF STENBERG Abstract. We derive new a-priori and a-posteriori error estimates for mixed nite

More information

On positive maps in quantum information.

On positive maps in quantum information. On positive maps in quantum information. Wladyslaw Adam Majewski Instytut Fizyki Teoretycznej i Astrofizyki, UG ul. Wita Stwosza 57, 80-952 Gdańsk, Poland e-mail: fizwam@univ.gda.pl IFTiA Gdańsk University

More information

Massera-type theorem for the existence of C (n) -almost-periodic solutions for partial functional differential equations with infinite delay

Massera-type theorem for the existence of C (n) -almost-periodic solutions for partial functional differential equations with infinite delay Nonlinear Analysis 69 (2008) 1413 1424 www.elsevier.com/locate/na Massera-type theorem for the existence of C (n) -almost-periodic solutions for partial functional differential equations with infinite

More information

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan Wir müssen wissen, wir werden wissen. David Hilbert We now continue to study a special class of Banach spaces,

More information

A FAMILY OF MULTISCALE HYBRID-MIXED FINITE ELEMENT METHODS FOR THE DARCY EQUATION WITH ROUGH COEFFICIENTS. 1. Introduction

A FAMILY OF MULTISCALE HYBRID-MIXED FINITE ELEMENT METHODS FOR THE DARCY EQUATION WITH ROUGH COEFFICIENTS. 1. Introduction A FAMILY OF MULTISCALE HYBRID-MIXED FINITE ELEMENT METHODS FOR THE DARCY EQUATION WITH ROUGH COEFFICIENTS CHRISTOPHER HARDER, DIEGO PAREDES 2, AND FRÉDÉRIC VALENTIN Abstract. We aim at proposing novel

More information

Controllability of linear PDEs (I): The wave equation

Controllability of linear PDEs (I): The wave equation Controllability of linear PDEs (I): The wave equation M. González-Burgos IMUS, Universidad de Sevilla Doc Course, Course 2, Sevilla, 2018 Contents 1 Introduction. Statement of the problem 2 Distributed

More information

A SYNOPSIS OF HILBERT SPACE THEORY

A SYNOPSIS OF HILBERT SPACE THEORY A SYNOPSIS OF HILBERT SPACE THEORY Below is a summary of Hilbert space theory that you find in more detail in any book on functional analysis, like the one Akhiezer and Glazman, the one by Kreiszig or

More information

PDE Constrained Optimization selected Proofs

PDE Constrained Optimization selected Proofs PDE Constrained Optimization selected Proofs Jeff Snider jeff@snider.com George Mason University Department of Mathematical Sciences April, 214 Outline 1 Prelim 2 Thms 3.9 3.11 3 Thm 3.12 4 Thm 3.13 5

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

Contents: 1. Minimization. 2. The theorem of Lions-Stampacchia for variational inequalities. 3. Γ -Convergence. 4. Duality mapping.

Contents: 1. Minimization. 2. The theorem of Lions-Stampacchia for variational inequalities. 3. Γ -Convergence. 4. Duality mapping. Minimization Contents: 1. Minimization. 2. The theorem of Lions-Stampacchia for variational inequalities. 3. Γ -Convergence. 4. Duality mapping. 1 Minimization A Topological Result. Let S be a topological

More information

Stability of an abstract wave equation with delay and a Kelvin Voigt damping

Stability of an abstract wave equation with delay and a Kelvin Voigt damping Stability of an abstract wave equation with delay and a Kelvin Voigt damping University of Monastir/UPSAY/LMV-UVSQ Joint work with Serge Nicaise and Cristina Pignotti Outline 1 Problem The idea Stability

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Residual and Error of Finite Element Solutions Mixed BVP of Poisson Equation

More information

Analysis of discontinuous Galerkin methods using mesh-dependent norms and applications to problems with rough data

Analysis of discontinuous Galerkin methods using mesh-dependent norms and applications to problems with rough data Calcolo 2017 54:1533 1551 https://doi.org/10.1007/s10092-017-0240-5 Analysis of discontinuous Galerkin methods using mesh-dependent norms and applications to problems with rough data Emmanuil H. Georgoulis

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information

Lecture 8 Plus properties, merit functions and gap functions. September 28, 2008

Lecture 8 Plus properties, merit functions and gap functions. September 28, 2008 Lecture 8 Plus properties, merit functions and gap functions September 28, 2008 Outline Plus-properties and F-uniqueness Equation reformulations of VI/CPs Merit functions Gap merit functions FP-I book:

More information

arxiv: v1 [math.ap] 11 Jun 2007

arxiv: v1 [math.ap] 11 Jun 2007 Inverse Conductivity Problem for a Parabolic Equation using a Carleman Estimate with One Observation arxiv:0706.1422v1 [math.ap 11 Jun 2007 November 15, 2018 Patricia Gaitan Laboratoire d Analyse, Topologie,

More information

A Finite Element Method for the Surface Stokes Problem

A Finite Element Method for the Surface Stokes Problem J A N U A R Y 2 0 1 8 P R E P R I N T 4 7 5 A Finite Element Method for the Surface Stokes Problem Maxim A. Olshanskii *, Annalisa Quaini, Arnold Reusken and Vladimir Yushutin Institut für Geometrie und

More information

Time domain boundary elements for dynamic contact problems

Time domain boundary elements for dynamic contact problems Time domain boundary elements for dynamic contact problems Heiko Gimperlein (joint with F. Meyer 3, C. Özdemir 4, D. Stark, E. P. Stephan 4 ) : Heriot Watt University, Edinburgh, UK 2: Universität Paderborn,

More information

Projection Theorem 1

Projection Theorem 1 Projection Theorem 1 Cauchy-Schwarz Inequality Lemma. (Cauchy-Schwarz Inequality) For all x, y in an inner product space, [ xy, ] x y. Equality holds if and only if x y or y θ. Proof. If y θ, the inequality

More information

Lecture Notes on PDEs

Lecture Notes on PDEs Lecture Notes on PDEs Alberto Bressan February 26, 2012 1 Elliptic equations Let IR n be a bounded open set Given measurable functions a ij, b i, c : IR, consider the linear, second order differential

More information