Duality (Continued) min f ( x), X R R. Recall, the general primal problem is. The Lagrangian is a function. defined by

Size: px
Start display at page:

Download "Duality (Continued) min f ( x), X R R. Recall, the general primal problem is. The Lagrangian is a function. defined by"

Transcription

1 Duality (Continued) Recall, the general primal problem is min f ( x), xx g( x) 0 n m where X R, f : X R, g : XR ( X). he Lagrangian is a function L: XR R m defined by L( xλ, ) f ( x) λ g( x)

2 Duality (Continued) and the dual function, L : R m R { } is defined by L ( λ) min L( x, λ) xx (where it is understood that max sup and min inf ) heorem 3: he dual function is concave (regardless of the nature of the general primal problem). L 2

3 Duality (Continued) 2 2 Proof: Let λ, λ 0 be such that L ( λ ) and L ( λ ). 2 Let [0,] and consider λ ( ) λ. L 2 2 λ ( ) λ min f ( x) λ ( ) λ g( x) xx 2 min f( ) ( ) ( ) f( ) ( ) x λ g x x λ g x x X 2 min f( x) λ g( x) ( ) min f( x) λ g( x) xx L 2 ( λ ) ( ) L( λ ) xx 3

4 Duality (Continued) 2 If, on the other hand, L ( λ ) or L ( λ ) then, automatically, the concave inequality holds. L L L 2 2 ( λ ( ) λ ) ( λ ) ( ) ( λ ) Alternative Proof: For a fixed x X we see that f ( x) λ g( x) is linear in λ 0 and is therefore concave in λ (for this fixed x ). herefore, G λ λr R x λ x x m (, ),, f ( ) g( ) 4

5 Duality (Continued) is a convex set. But G λ λr R λ L m (, ),, L ( ) m ( λ, ) λ R, R, min L( x, λ) xx λ λr R f x λ g x all xx m (, ),, ( ) ( ) f g xx xx G m ( λ, ) λ R, R, ( x) λ ( x) x But the intersection of any collection of convex sets is also convex; therefore G L is convex L is concave in λ 0. 5

6 Duality (Continued) We now introduce the primal function which may also be called the optimal value function or the perturbation function. Definition: he set of feasible right sides is defined to be m Y yr xx g( x) y X Y : YR (note: ). he primal function is defined as ( y) min f ( x), xx g( x) y. 6

7 Duality (Continued) heorem 4: If X is convex and g is a vector of concave functions then Y is a convex set. If, in addition, f is convex on X then is a convex function on Y. 2 2 Proof: Let y Y, y Y. hen there exist x X, x X 2 2 so that g( x ) y and g( x ) y, and then g( x ) y 2 2 and ( ) g ( x ) ( ) y for [0,]. By concavity of the vector g we have g( x ( ) x ) g( x ) ( ) g( x ) y (y y ( y Y, since 2 x x X (. 7

8 Duality (Continued) 2 Now, also assume f is convex on X. Let y Y, y Y be 2 such that ( y ) and ( y ). hen, by the definition of inf, for all 0 there exist x 2, x X so that g( x ) y g( x ) y 2 2 i i and f( x ) ( y ), i, 2. Also, by concavity of g, x ( ) x F xx g( x) y ( ) y 2 2 8

9 Duality (Continued) and, therefore, y y x x 2 2 ( ( ) ) f ( ( ) ) f x herefore, by letting 0 we get 2 ( ) ( ) f( ) y y x 2 ( ) ( ) ( ) 2 2 ( y ( ) y ) ( y ) ( ) ( y ) HW 46: Complete the proof for the case where 2 or ( y ). ( y ) 9

10 Let f : R R be defined by f( x) = x f ( x) x hen f is a convex function which is not differentiable at x = 0. However, note that at x = 0 we have x x ( xx) or x x 0

11 and this holds for all [,]. Such a function is said to be subdifferentiable at x. Definition: Let X R n be convex and let f : X R. f is said to be subdifferentiable at x X (in convex sense) if there is a vector R n so that x f( x) f( x) ( xx) for all x X. he vector x is called a subgradient or a support at x. x

12 [Note: f is subdifferentiable in concave sense at x if f is subdifferentiable in convex sense at x.] We say f is subdifferentiable on X (in either sense) if it is so at each x X. heorem 5: Let X be convex and let f : X R be subdifferentiable (in convex sense) (in concave sense). hen f is (convex on X ) (concave on X ). 2

13 2 Proof: Let x, x X and let x x ( ) x 2 for [0,]. hen so that R n x Subdifferentiability f f ( x ) ( x ) ( x x ) x f f 2 2 ( x ) ( x ) ( x x ) x f (x ) + ( ) f (x f (x ) x x x x 2-2 ) ( ) ( ) ( ) x x f (x ) // 3

14 HW 47 : Let X be convex and let f : X R be convex. Does this imply f is subdifferentiable, in convex sense, on X? HW 48 : Show that if f is differentiable at x and if x is a support at x then f ( x) x. [Hint : Simply use the notion of directional derivative.] heorem 6: Consider the general primal problem min f ( x) g( x) 0. Let λ 0 and let x X solve min L( xλ, ). hen g( x) is a support (concave sense) for at λ. L xx xx 4

15 Proof: o show L() λ L()- λ g( x) ( λ λ) for all λ 0. Now, L ( λ) inf ( f( x) λ g( x)) f( x) λ g( x) xx f ( x) λ g( x) λ g( x) λ g( x) L ( λ) g( x) ( λλ) [Note: Because of HW 48, if L is differentiable at λ then L ( λ) g( x).] he following is an often useful result. 5

16 heorem 7: Consider the general problem GP: min f ( x), xx g( x) 0 Let λ 0 and let x solve min L( xλ, ). hen x solves xx min f ( x), xx g( x) g( x) ( ) P g ( x ) 6

17 Proof : Let y g( x). he Lagrangian for this perturbed problem is L(, xλ ) f () x λ y ( g () x g ()) x f ( x) λ g( x) λ g( x)) L( xλ, ) λ g( x) L ( λ) min L ( x, λ) min L( x, λ) λ g( x) L( x, λ) λ g( x) y xx y xx 7

18 herefore, (i) x solves Subdifferentiability min L ( xλ, ) xx (ii) x X, g( x) g( x) y (iii) λ ( g( x) g( x)) 0 ( xλ, ) is a saddle-point for the Lagrangian L(, xλ ) P g ( x ) (which is the Lagrangian for.) HW 49 : Corollary: x is optimal for min f ( x), xx g( x) y where y g ( x) if 0, and y g ( x) if 0. i i i i i i y 8

19 We now want to demonstrate the result that if x solves min L( xλ, ) then λ is a support (convex sense) for at g( x). hat is, we want to show ( y) ( g( x)) λ ( yg( x)), for all y Y. herefore, if is differentiable at g( x) then xx ( g( x)) λ he most convenient way to lead up to this important result is through the following which relates the primal function,, with the dual function,. L 9

20 heorem 8: L( λ)= inf ( ( y) λ y). yy Proof: inf ( ( ) L( λ)= f x λ g( x)) inf ( f( x) λ g( x)) xx all yy { xx g( x) y } herefore, L( λ) inf ( ( y) λ y). yy inf ( f ( x) λ y) ( y) λ y { xx g( x) y } It remains to show the opposite inequality. Define Y { y R m xx g ( x ) y }. hen Y Y. Now, let x X and let y g ( x) ( yy ). 20

21 hen, f( x) λ g( x) inf ( f( x) λ g( x)) inf ( f( x) λ y) { xx g( x) y } { xx g( x) y} inf ( f ( x) λ y) ( y) λ y { xx g( x) y } herefore, since x X is arbitrary, we have L ( λ) min ( f ( x) λ g( x)) inf ( ( y) λ y) inf ( ( y) λ y) xx yy yy We can now derive the result dual to that of heorem 6. heorem 9: Let λ 0 and let x X solve min L( xλ, ) xx hen λ is a support (convex sense) for at g( x). 2

22 Proof: o show ( y) ( g( x)) λ ( y g( x)), for all y Y, by heorem 7, we know that ( xλ, ) is a saddle-point for min f ( x) g( x) g( x) xx and, therefore, ( g( x )) ( λ ) ( λ ) λ g( x ) inf ( ( y ) λ y ) λ g( x ) L y L yg( x) yy ( y) λ g( x) λ y all yy ( y) ( g( x)) λ ( y g ( x)), for all y Y Note: If is differentiable at g( x), then ( g( x)) λ 22

23 Let s define the sets of supports for and L, respectively, as and m ( z) { λr ( y) ( z) λ ( y z), forall y Y } m L( γ) { yr L( λ) L( γ) y ( λγ), forall λ 0 } In terms of this notation, heorems 6 and 9 can be summarized as follows. heorem 20: Let λ 0 and let x X solve min L( xλ, ). hen, and g( x) L ( λ) λ ( g( x)) xx 23

24 Moreover is differentiable at and is differentiable at g x, L λ ( ) g( x) L ( λ) and λ ( g( x)) 2 Example : min x, x 0. xr Recall, this problem has no saddle-point. Also, we showed L ( L ( 24

25 that max L( ) has no optimizing vector. Also, note that 0 and, for y Y, we have ( y) y Y { y y 0} y) y y) y And this function has no convex support at the origin ( y 0). 25

26 Example 2 : min x, x 0. xr Subdifferentiability Recall, this problem has no saddle-point. We also showed L ( ) 0, if 0, if 0 herefore, 0 solves max L ( ). Also, note that Y R and 0 ( y) y, if y 0, if y 26

27 y) y Note that has no convex support at the origin ( y 0). Also, note that L( x, ) x and therefore only x 0 solves min L( x, ) and, of course, is not even feasible. Also, note that xr max L( x, ) xr x 0 (so this is no help either). 27

28 Example 3 : min x, x 0 where xx hen L( x, ) ( ) x and x R, if 0 L ( ), if 28

29 * * * herefore, solves max L ( ). Also, note that ( x, ) is a saddle-point, 0 * where x (show this!). However, L( x, ) for all xr * * * and, therefore, x is not the only optimizer for the Lagrangian (parameterized by the optimal dual vector). In particular, the operation * min L( x, ) xr does not automatically provide an optimal primal solution. Note further * that the dual function,, is not differentiable at. L hese examples lead to the following. 29

30 heorem 2: Consider the general primal problem min f ( x), xx g( x) 0 (GP) and assume GP has an optimal vector x. hen, GP has a saddle point if, and only if, the primal function has a nonnegative support (convex sense) at the origin ( y 0). Proof: Suppose ( x, λ ) is a saddle-point. o show λ (0) or to show ( y) (0) λ y, for all yy 30

31 Now, (0) f ( x) L ( λ) inf ( ( y) λ y) yy ( y) λ y, all yy or ( y) (0) λ y, all yy Conversely, suppose λ (0), λ 0. hen, ( y) (0) λ y, all yy L ( λ) inf ( ( y) λ y) (0) yy 3

32 But the Weak Duality heorem states that L ( λ) and, therefore, L ( λ). herefore, λ solves the dual problem and f ( x) L ( λ) implies that ( xλ, ) is a saddle-point. heorem 22: Let λ 0 solve max L ( λ and further assume that L is λ0 differentiable at λ. hen any x * X which solves min L( xλ, ) is also optimal for the general primal GP. xx 32

33 Proof: Since λ is optimal we must have L ( λ) ( λλ) 0, all λ 0 (since { λλ λ 0 } is the set of feasible directions at λ ). By HW48 * and heorem 6 we have L ( λ) g( x ) and therefore * gx ( ) ( λ λ) 0, all λ0 or * * inf λ ( x ) λ ( x ) λ0 g g (*) * herefore, g( x ) 0 since if, say, g ( x * ) 0 * then inf λ g( x ). * * herefore, λ g( x ) 0. But, by setting λ=0 in (*), we have λ g( x ) 0. * Hence λ g( x ) 0. herefore, λ0 33

34 and solves * (i) x X min L( x, λ) xx * * (ii), g( ) x X x 0 * (iii) λ g( x ) 0 * ( x, λ) * is a saddle-point for GP which, in turn, implies x is optimal for GP. HW 50 Consider the problem min xr x x 2 x

35 [ Note: his problem is equivalent to Example.] Show whether this problem has a saddle-point. HW 5: Consider GP and assume there is a vector x X so that (i.e., g( x) 0, g2( x) 0,, g m ( x) 0). Show that the set of " λ " components of saddle-points (if any) is bounded. hat is, show that the set { λ 0 xx ( x, λ is a saddle -point } is a bounded set [Hint: Use the definition of the saddle point.] Is the set for HW 50 bounded? [Note: he proof of heorem 22 is not entirely rigorous since λ may have some zero components (i.e., λ may be on boundary of { λ λ 0} and we have not said what we mean by L being differentiable at a boundary point.] 35

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers Optimization for Communications and Networks Poompat Saengudomlert Session 4 Duality and Lagrange Multipliers P Saengudomlert (2015) Optimization Session 4 1 / 14 24 Dual Problems Consider a primal convex

More information

Lagrange Relaxation and Duality

Lagrange Relaxation and Duality Lagrange Relaxation and Duality As we have already known, constrained optimization problems are harder to solve than unconstrained problems. By relaxation we can solve a more difficult problem by a simpler

More information

Introduction to Optimization Techniques. Nonlinear Programming

Introduction to Optimization Techniques. Nonlinear Programming Introduction to Optiization echniques Nonlinear Prograing Optial Solutions Consider the optiization proble in f ( x) where F R n xf Definition : x F is optial (global iniu) for this proble, if f( x ) f(

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

Lagrange duality. The Lagrangian. We consider an optimization program of the form

Lagrange duality. The Lagrangian. We consider an optimization program of the form Lagrange duality Another way to arrive at the KKT conditions, and one which gives us some insight on solving constrained optimization problems, is through the Lagrange dual. The dual is a maximization

More information

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization MATHEMATICS OF OPERATIONS RESEARCH Vol. 29, No. 3, August 2004, pp. 479 491 issn 0364-765X eissn 1526-5471 04 2903 0479 informs doi 10.1287/moor.1040.0103 2004 INFORMS Some Properties of the Augmented

More information

Primal-dual Subgradient Method for Convex Problems with Functional Constraints

Primal-dual Subgradient Method for Convex Problems with Functional Constraints Primal-dual Subgradient Method for Convex Problems with Functional Constraints Yurii Nesterov, CORE/INMA (UCL) Workshop on embedded optimization EMBOPT2014 September 9, 2014 (Lucca) Yu. Nesterov Primal-dual

More information

CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds

CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds CS 6347 Lecture 8 & 9 Lagrange Multipliers & Varitional Bounds General Optimization subject to: min ff 0() R nn ff ii 0, h ii = 0, ii = 1,, mm ii = 1,, pp 2 General Optimization subject to: min ff 0()

More information

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version Convex Optimization Theory Chapter 5 Exercises and Solutions: Extended Version Dimitri P. Bertsekas Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

Additional Homework Problems

Additional Homework Problems Additional Homework Problems Robert M. Freund April, 2004 2004 Massachusetts Institute of Technology. 1 2 1 Exercises 1. Let IR n + denote the nonnegative orthant, namely IR + n = {x IR n x j ( ) 0,j =1,...,n}.

More information

Practice Exam 1: Continuous Optimisation

Practice Exam 1: Continuous Optimisation Practice Exam : Continuous Optimisation. Let f : R m R be a convex function and let A R m n, b R m be given. Show that the function g(x) := f(ax + b) is a convex function of x on R n. Suppose that f is

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 4. Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 4 Subgradient Shiqian Ma, MAT-258A: Numerical Optimization 2 4.1. Subgradients definition subgradient calculus duality and optimality conditions Shiqian

More information

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings Structural and Multidisciplinary Optimization P. Duysinx and P. Tossings 2018-2019 CONTACTS Pierre Duysinx Institut de Mécanique et du Génie Civil (B52/3) Phone number: 04/366.91.94 Email: P.Duysinx@uliege.be

More information

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Duality Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Lagrangian Consider the optimization problem in standard form

More information

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 7 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Convex Optimization Differentiation Definition: let f : X R N R be a differentiable function,

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

CONSTRAINT QUALIFICATIONS, LAGRANGIAN DUALITY & SADDLE POINT OPTIMALITY CONDITIONS

CONSTRAINT QUALIFICATIONS, LAGRANGIAN DUALITY & SADDLE POINT OPTIMALITY CONDITIONS CONSTRAINT QUALIFICATIONS, LAGRANGIAN DUALITY & SADDLE POINT OPTIMALITY CONDITIONS A Dissertation Submitted For The Award of the Degree of Master of Philosophy in Mathematics Neelam Patel School of Mathematics

More information

Lecture 3 January 28

Lecture 3 January 28 EECS 28B / STAT 24B: Advanced Topics in Statistical LearningSpring 2009 Lecture 3 January 28 Lecturer: Pradeep Ravikumar Scribe: Timothy J. Wheeler Note: These lecture notes are still rough, and have only

More information

Linear Programming. Larry Blume Cornell University, IHS Vienna and SFI. Summer 2016

Linear Programming. Larry Blume Cornell University, IHS Vienna and SFI. Summer 2016 Linear Programming Larry Blume Cornell University, IHS Vienna and SFI Summer 2016 These notes derive basic results in finite-dimensional linear programming using tools of convex analysis. Most sources

More information

Finite Dimensional Optimization Part III: Convex Optimization 1

Finite Dimensional Optimization Part III: Convex Optimization 1 John Nachbar Washington University March 21, 2017 Finite Dimensional Optimization Part III: Convex Optimization 1 1 Saddle points and KKT. These notes cover another important approach to optimization,

More information

subject to (x 2)(x 4) u,

subject to (x 2)(x 4) u, Exercises Basic definitions 5.1 A simple example. Consider the optimization problem with variable x R. minimize x 2 + 1 subject to (x 2)(x 4) 0, (a) Analysis of primal problem. Give the feasible set, the

More information

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra

LP Duality: outline. Duality theory for Linear Programming. alternatives. optimization I Idea: polyhedra LP Duality: outline I Motivation and definition of a dual LP I Weak duality I Separating hyperplane theorem and theorems of the alternatives I Strong duality and complementary slackness I Using duality

More information

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients. strong and weak subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients strong and weak subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE364b, Stanford University Basic inequality recall basic inequality

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

1. f(β) 0 (that is, β is a feasible point for the constraints)

1. f(β) 0 (that is, β is a feasible point for the constraints) xvi 2. The lasso for linear models 2.10 Bibliographic notes Appendix Convex optimization with constraints In this Appendix we present an overview of convex optimization concepts that are particularly useful

More information

Lagrangian Duality and Convex Optimization

Lagrangian Duality and Convex Optimization Lagrangian Duality and Convex Optimization David Rosenberg New York University February 11, 2015 David Rosenberg (New York University) DS-GA 1003 February 11, 2015 1 / 24 Introduction Why Convex Optimization?

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014

Convex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014 Convex Optimization Dani Yogatama School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA February 12, 2014 Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12,

More information

On duality theory of conic linear problems

On duality theory of conic linear problems On duality theory of conic linear problems Alexander Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 3332-25, USA e-mail: ashapiro@isye.gatech.edu

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

EE364b Homework 2. λ i f i ( x) = 0, i=1

EE364b Homework 2. λ i f i ( x) = 0, i=1 EE364b Prof. S. Boyd EE364b Homework 2 1. Subgradient optimality conditions for nondifferentiable inequality constrained optimization. Consider the problem minimize f 0 (x) subject to f i (x) 0, i = 1,...,m,

More information

Math 273a: Optimization Convex Conjugacy

Math 273a: Optimization Convex Conjugacy Math 273a: Optimization Convex Conjugacy Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com Convex conjugate (the Legendre transform) Let f be a closed proper

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m Convex analysts may give one of two

More information

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness. CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity

More information

EE364a Review Session 5

EE364a Review Session 5 EE364a Review Session 5 EE364a Review announcements: homeworks 1 and 2 graded homework 4 solutions (check solution to additional problem 1) scpd phone-in office hours: tuesdays 6-7pm (650-723-1156) 1 Complementary

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Duality Theory and Optimality Conditions 5th lecture, 12.05.2010 Jun.-Prof. Matthias Hein Program of today/next lecture Lagrangian and duality: the Lagrangian the dual

More information

3.10 Lagrangian relaxation

3.10 Lagrangian relaxation 3.10 Lagrangian relaxation Consider a generic ILP problem min {c t x : Ax b, Dx d, x Z n } with integer coefficients. Suppose Dx d are the complicating constraints. Often the linear relaxation and the

More information

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives

Subgradients. subgradients and quasigradients. subgradient calculus. optimality conditions via subgradients. directional derivatives Subgradients subgradients and quasigradients subgradient calculus optimality conditions via subgradients directional derivatives Prof. S. Boyd, EE392o, Stanford University Basic inequality recall basic

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

DUALITY, OPTIMALITY CONDITIONS AND PERTURBATION ANALYSIS

DUALITY, OPTIMALITY CONDITIONS AND PERTURBATION ANALYSIS 1 DUALITY, OPTIMALITY CONDITIONS AND PERTURBATION ANALYSIS Alexander Shapiro 1 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205, USA, E-mail: ashapiro@isye.gatech.edu

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

Maximal Monotone Inclusions and Fitzpatrick Functions

Maximal Monotone Inclusions and Fitzpatrick Functions JOTA manuscript No. (will be inserted by the editor) Maximal Monotone Inclusions and Fitzpatrick Functions J. M. Borwein J. Dutta Communicated by Michel Thera. Abstract In this paper, we study maximal

More information

Lagrangian Duality. Richard Lusby. Department of Management Engineering Technical University of Denmark

Lagrangian Duality. Richard Lusby. Department of Management Engineering Technical University of Denmark Lagrangian Duality Richard Lusby Department of Management Engineering Technical University of Denmark Today s Topics (jg Lagrange Multipliers Lagrangian Relaxation Lagrangian Duality R Lusby (42111) Lagrangian

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

Symmetric and Asymmetric Duality

Symmetric and Asymmetric Duality journal of mathematical analysis and applications 220, 125 131 (1998) article no. AY975824 Symmetric and Asymmetric Duality Massimo Pappalardo Department of Mathematics, Via Buonarroti 2, 56127, Pisa,

More information

EE 227A: Convex Optimization and Applications October 14, 2008

EE 227A: Convex Optimization and Applications October 14, 2008 EE 227A: Convex Optimization and Applications October 14, 2008 Lecture 13: SDP Duality Lecturer: Laurent El Ghaoui Reading assignment: Chapter 5 of BV. 13.1 Direct approach 13.1.1 Primal problem Consider

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 28 (Algebra + Optimization) 02 May, 2013 Suvrit Sra Admin Poster presentation on 10th May mandatory HW, Midterm, Quiz to be reweighted Project final report

More information

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

Lecture 1: Background on Convex Analysis

Lecture 1: Background on Convex Analysis Lecture 1: Background on Convex Analysis John Duchi PCMI 2016 Outline I Convex sets 1.1 Definitions and examples 2.2 Basic properties 3.3 Projections onto convex sets 4.4 Separating and supporting hyperplanes

More information

Generalization to inequality constrained problem. Maximize

Generalization to inequality constrained problem. Maximize Lecture 11. 26 September 2006 Review of Lecture #10: Second order optimality conditions necessary condition, sufficient condition. If the necessary condition is violated the point cannot be a local minimum

More information

w-(h,ω) CONJUGATE DUALITY THEORY IN MULTIOBJECTIVE NONLINEAR OPTIMIZATION 1

w-(h,ω) CONJUGATE DUALITY THEORY IN MULTIOBJECTIVE NONLINEAR OPTIMIZATION 1 Management Science and Engineering Vol.1 No.2 December 2007 w-(h,ω) CONJUGATE DUALITY THEORY IN MULTIOBJECTIVE NONLINEAR OPTIMIZATION 1 Feng Junwen 2 Abstract: The duality in multiobjective optimization

More information

Enhanced Fritz John Optimality Conditions and Sensitivity Analysis

Enhanced Fritz John Optimality Conditions and Sensitivity Analysis Enhanced Fritz John Optimality Conditions and Sensitivity Analysis Dimitri P. Bertsekas Laboratory for Information and Decision Systems Massachusetts Institute of Technology March 2016 1 / 27 Constrained

More information

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus

Subgradient. Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes. definition. subgradient calculus 1/41 Subgradient Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes definition subgradient calculus duality and optimality conditions directional derivative Basic inequality

More information

Lagrange Multipliers

Lagrange Multipliers Optimization with Constraints As long as algebra and geometry have been separated, their progress have been slow and their uses limited; but when these two sciences have been united, they have lent each

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Duality Theory of Constrained Optimization

Duality Theory of Constrained Optimization Duality Theory of Constrained Optimization Robert M. Freund April, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 2 1 The Practical Importance of Duality Duality is pervasive

More information

A notion of Total Dual Integrality for Convex, Semidefinite and Extended Formulations

A notion of Total Dual Integrality for Convex, Semidefinite and Extended Formulations A notion of for Convex, Semidefinite and Extended Formulations Marcel de Carli Silva Levent Tunçel April 26, 2018 A vector in R n is integral if each of its components is an integer, A vector in R n is

More information

Solving Dual Problems

Solving Dual Problems Lecture 20 Solving Dual Problems We consider a constrained problem where, in addition to the constraint set X, there are also inequality and linear equality constraints. Specifically the minimization problem

More information

Franco Giannessi, Giandomenico Mastroeni. Institute of Mathematics University of Verona, Verona, Italy

Franco Giannessi, Giandomenico Mastroeni. Institute of Mathematics University of Verona, Verona, Italy ON THE THEORY OF VECTOR OPTIMIZATION AND VARIATIONAL INEQUALITIES. IMAGE SPACE ANALYSIS AND SEPARATION 1 Franco Giannessi, Giandomenico Mastroeni Department of Mathematics University of Pisa, Pisa, Italy

More information

IE 521 Convex Optimization Homework #1 Solution

IE 521 Convex Optimization Homework #1 Solution IE 521 Convex Optimization Homework #1 Solution your NAME here your NetID here February 13, 2019 Instructions. Homework is due Wednesday, February 6, at 1:00pm; no late homework accepted. Please use the

More information

CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008.

CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008. 1 ECONOMICS 594: LECTURE NOTES CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS W. Erwin Diewert January 31, 2008. 1. Introduction Many economic problems have the following structure: (i) a linear function

More information

Lecture: Duality of LP, SOCP and SDP

Lecture: Duality of LP, SOCP and SDP 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

BASICS OF CONVEX ANALYSIS

BASICS OF CONVEX ANALYSIS BASICS OF CONVEX ANALYSIS MARKUS GRASMAIR 1. Main Definitions We start with providing the central definitions of convex functions and convex sets. Definition 1. A function f : R n R + } is called convex,

More information

Lecture 25: Subgradient Method and Bundle Methods April 24

Lecture 25: Subgradient Method and Bundle Methods April 24 IE 51: Convex Optimization Spring 017, UIUC Lecture 5: Subgradient Method and Bundle Methods April 4 Instructor: Niao He Scribe: Shuanglong Wang Courtesy warning: hese notes do not necessarily cover everything

More information

Lecture 8 Plus properties, merit functions and gap functions. September 28, 2008

Lecture 8 Plus properties, merit functions and gap functions. September 28, 2008 Lecture 8 Plus properties, merit functions and gap functions September 28, 2008 Outline Plus-properties and F-uniqueness Equation reformulations of VI/CPs Merit functions Gap merit functions FP-I book:

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3 MI 6.97 Algebraic techniques and semidefinite optimization February 4, 6 Lecture 3 Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo In this lecture, we will discuss one of the most important applications

More information

Optimization and Optimal Control in Banach Spaces

Optimization and Optimal Control in Banach Spaces Optimization and Optimal Control in Banach Spaces Bernhard Schmitzer October 19, 2017 1 Convex non-smooth optimization with proximal operators Remark 1.1 (Motivation). Convex optimization: easier to solve,

More information

Lecture 2: Linear SVM in the Dual

Lecture 2: Linear SVM in the Dual Lecture 2: Linear SVM in the Dual Stéphane Canu stephane.canu@litislab.eu São Paulo 2015 July 22, 2015 Road map 1 Linear SVM Optimization in 10 slides Equality constraints Inequality constraints Dual formulation

More information

Subgradient Descent. David S. Rosenberg. New York University. February 7, 2018

Subgradient Descent. David S. Rosenberg. New York University. February 7, 2018 Subgradient Descent David S. Rosenberg New York University February 7, 2018 David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 February 7, 2018 1 / 43 Contents 1 Motivation and Review:

More information

A convergence result for an Outer Approximation Scheme

A convergence result for an Outer Approximation Scheme A convergence result for an Outer Approximation Scheme R. S. Burachik Engenharia de Sistemas e Computação, COPPE-UFRJ, CP 68511, Rio de Janeiro, RJ, CEP 21941-972, Brazil regi@cos.ufrj.br J. O. Lopes Departamento

More information

JENSEN S OPERATOR INEQUALITY AND ITS CONVERSES

JENSEN S OPERATOR INEQUALITY AND ITS CONVERSES MAH. SCAND. 100 (007, 61 73 JENSEN S OPERAOR INEQUALIY AND IS CONVERSES FRANK HANSEN, JOSIP PEČARIĆ and IVAN PERIĆ (Dedicated to the memory of Gert K. Pedersen Abstract We give a general formulation of

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course otes for EE7C (Spring 018): Conve Optimization and Approimation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Ma Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

Duality. for The New Palgrave Dictionary of Economics, 2nd ed. Lawrence E. Blume

Duality. for The New Palgrave Dictionary of Economics, 2nd ed. Lawrence E. Blume Duality for The New Palgrave Dictionary of Economics, 2nd ed. Lawrence E. Blume Headwords: CONVEXITY, DUALITY, LAGRANGE MULTIPLIERS, PARETO EFFICIENCY, QUASI-CONCAVITY 1 Introduction The word duality is

More information

Lagrange Relaxation: Introduction and Applications

Lagrange Relaxation: Introduction and Applications 1 / 23 Lagrange Relaxation: Introduction and Applications Operations Research Anthony Papavasiliou 2 / 23 Contents 1 Context 2 Applications Application in Stochastic Programming Unit Commitment 3 / 23

More information

Lecture 8. Strong Duality Results. September 22, 2008

Lecture 8. Strong Duality Results. September 22, 2008 Strong Duality Results September 22, 2008 Outline Lecture 8 Slater Condition and its Variations Convex Objective with Linear Inequality Constraints Quadratic Objective over Quadratic Constraints Representation

More information

106 CHAPTER 3. TOPOLOGY OF THE REAL LINE. 2. The set of limit points of a set S is denoted L (S)

106 CHAPTER 3. TOPOLOGY OF THE REAL LINE. 2. The set of limit points of a set S is denoted L (S) 106 CHAPTER 3. TOPOLOGY OF THE REAL LINE 3.3 Limit Points 3.3.1 Main Definitions Intuitively speaking, a limit point of a set S in a space X is a point of X which can be approximated by points of S other

More information

Research Article Sufficient Optimality and Sensitivity Analysis of a Parameterized Min-Max Programming

Research Article Sufficient Optimality and Sensitivity Analysis of a Parameterized Min-Max Programming Applied Mathematics Volume 2012, Article ID 692325, 9 pages doi:10.1155/2012/692325 Research Article Sufficient Optimality and Sensitivity Analysis of a Parameterized Min-Max Programming Huijuan Xiong,

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma 4-1 Algebra and Duality P. Parrilo and S. Lall 2006.06.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone of valid

More information

ICS-E4030 Kernel Methods in Machine Learning

ICS-E4030 Kernel Methods in Machine Learning ICS-E4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This

More information

Lagrangian Duality Theory

Lagrangian Duality Theory Lagrangian Duality Theory Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapter 14.1-4 1 Recall Primal and Dual

More information

Iteration-complexity of first-order penalty methods for convex programming

Iteration-complexity of first-order penalty methods for convex programming Iteration-complexity of first-order penalty methods for convex programming Guanghui Lan Renato D.C. Monteiro July 24, 2008 Abstract This paper considers a special but broad class of convex programing CP)

More information

Lagrangian Duality. Evelien van der Hurk. DTU Management Engineering

Lagrangian Duality. Evelien van der Hurk. DTU Management Engineering Lagrangian Duality Evelien van der Hurk DTU Management Engineering Topics Lagrange Multipliers Lagrangian Relaxation Lagrangian Duality 2 DTU Management Engineering 42111: Static and Dynamic Optimization

More information

A SET OF LECTURE NOTES ON CONVEX OPTIMIZATION WITH SOME APPLICATIONS TO PROBABILITY THEORY INCOMPLETE DRAFT. MAY 06

A SET OF LECTURE NOTES ON CONVEX OPTIMIZATION WITH SOME APPLICATIONS TO PROBABILITY THEORY INCOMPLETE DRAFT. MAY 06 A SET OF LECTURE NOTES ON CONVEX OPTIMIZATION WITH SOME APPLICATIONS TO PROBABILITY THEORY INCOMPLETE DRAFT. MAY 06 CHRISTIAN LÉONARD Contents Preliminaries 1 1. Convexity without topology 1 2. Convexity

More information

Optimization Theory. Lectures 4-6

Optimization Theory. Lectures 4-6 Optimization Theory Lectures 4-6 Unconstrained Maximization Problem: Maximize a function f:ú n 6 ú within a set A f ú n. Typically, A is ú n, or the non-negative orthant {x0ú n x$0} Existence of a maximum:

More information

INVEX FUNCTIONS AND CONSTRAINED LOCAL MINIMA

INVEX FUNCTIONS AND CONSTRAINED LOCAL MINIMA BULL. AUSRAL. MAH. SOC. VOL. 24 (1981), 357-366. 9C3 INVEX FUNCIONS AND CONSRAINED LOCAL MINIMA B.D. CRAVEN If a certain weakening of convexity holds for the objective and all constraint functions in a

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Duality in Nonlinear Optimization ) Tamás TERLAKY Computing and Software McMaster University Hamilton, January 2004 terlaky@mcmaster.ca Tel: 27780 Optimality

More information

Lecture 2: Convex Sets and Functions

Lecture 2: Convex Sets and Functions Lecture 2: Convex Sets and Functions Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Network Optimization, Fall 2015 1 / 22 Optimization Problems Optimization problems are

More information

Victoria Martín-Márquez

Victoria Martín-Márquez A NEW APPROACH FOR THE CONVEX FEASIBILITY PROBLEM VIA MONOTROPIC PROGRAMMING Victoria Martín-Márquez Dep. of Mathematical Analysis University of Seville Spain XIII Encuentro Red de Análisis Funcional y

More information

Robust Duality in Parametric Convex Optimization

Robust Duality in Parametric Convex Optimization Robust Duality in Parametric Convex Optimization R.I. Boţ V. Jeyakumar G.Y. Li Revised Version: June 20, 2012 Abstract Modelling of convex optimization in the face of data uncertainty often gives rise

More information

Primal Solutions and Rate Analysis for Subgradient Methods

Primal Solutions and Rate Analysis for Subgradient Methods Primal Solutions and Rate Analysis for Subgradient Methods Asu Ozdaglar Joint work with Angelia Nedić, UIUC Conference on Information Sciences and Systems (CISS) March, 2008 Department of Electrical Engineering

More information

Support Vector Machines for Regression

Support Vector Machines for Regression COMP-566 Rohan Shah (1) Support Vector Machines for Regression Provided with n training data points {(x 1, y 1 ), (x 2, y 2 ),, (x n, y n )} R s R we seek a function f for a fixed ɛ > 0 such that: f(x

More information

A New Fenchel Dual Problem in Vector Optimization

A New Fenchel Dual Problem in Vector Optimization A New Fenchel Dual Problem in Vector Optimization Radu Ioan Boţ Anca Dumitru Gert Wanka Abstract We introduce a new Fenchel dual for vector optimization problems inspired by the form of the Fenchel dual

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming E5295/5B5749 Convex optimization with engineering applications Lecture 5 Convex programming and semidefinite programming A. Forsgren, KTH 1 Lecture 5 Convex optimization 2006/2007 Convex quadratic program

More information