MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires

Size: px
Start display at page:

Download "MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires"

Transcription

1 MIXED FINITE ELEMENTS FOR PLATES Ricardo G. Durán Universidad de Buenos Aires - Necessity of 2D models. - Reissner-Mindlin Equations. - Finite Element Approximations. - Locking. - Mixed interpolation or reduced integration. - General Error Analysis. - L 2 Error estimates - Examples. 1

2 2 Why do we need to use 2D models if 3D elasticity can be solved by FE? 3D ELASTICITY EQUATIONS D IR 3 Initial configuration of elastic solid. u = (u 1, u 2, u 3 ) Displacement. ε ij (u) = 2( 1 ui x + u ) j j x Strain tensor. i 2µ D ε(u) : ε(v)+λ D div udiv v = v V H 1 (D) 3 D f v+ g v Γ Coercivity of this bilinear form follows from Korn s inequality : u 1 K ε(u) 0 Under appropriate boundary conditions.

3 3 Remark 1. : The constant K depends on the geometry of D. RECALL CEA S LEMMA: If u is the exact solution and u h the FE approximation then, u u h 1 M α u v h 1 v h V h where M and α are the continuity and coercivity constants of the bilinear form. In our problem α depends on the Korn s constant K. If K is too large then α is too small and the constant in Cea s Lemma is large.

4 Consider a PLATE of thickness t: 4 D = Ω ( t/2, t/2) where Ω IR 2 and t > 0, with t small in comparison with the dimensions of Ω. In this case: CONSEQUENCE: K = O(t 1 ) THE METHOD IS NOT EFFICIENT: VERY SMALL MESH SIZE WILL BE NEEDED! This is a serious computational drawback specially in 3D. SOLUTION: USE 2D MODELS!

5 REISSNER-MINDLIN EQUATIONS 5 Ω IR 2 D = Ω ( t/2, t/2) Displacements are approximated by u 1 (x, y, z) zθ 1 (x, y) u 2 (x, y, z) zθ 2 (x, y) u 3 (x, y, z) w(x, y) θ 1, θ 2 rotations, w transverse displacement. Assuming a transverse load of the form t 3 f(x, y) and a that the plate is clamped, θ = (θ 1, θ 2 ) and w satisfy the system of equations:

6 6 a(θ, η) + κt 2 ( w θ, v η) = (f, v) η H 1 0 (Ω)2, v H 1 0 (Ω). E a(θ, η) := 12(1 ν 2 [(1 ν)ε(θ)ε(η) ) Ω +νdiv θdiv η], E Young modulus, ν Poisson ratio, κ := Ek/2(1 + ν) shear modulus, k correction factor usually taken as 5/6. We change notation and keep only the parameter t. So, our equations are a(θ, η) + t 2 ( w θ, v η) = (f, v) For our purposes, the only important fact about a is that it is coercive in H0 1 (which follows from the 2D Korn inequality). We will not make other use of the explicit form o a.

7 The deformation energy is given by 1 t 2 a(θ, θ) + w θ 2 fw 2 2 Ω Ω It can be shown that the second term remains bounded when t 0. In particular, 7 t 0 w θ 0 For the limit problem: w = θ Kirchkoff constraint THIS IS A PROBLEM FOR THE NUMER- ICAL SOLUTION! If t is small the problem is close to a constrained minimization problem. FOR EXAMPLE: If we use standard P 1 finite elements for θ and w, the restriction of the limit problem is too strong.

8 Indeed, if 8 w h = θ h then, w h piecewise constant and continuous But, w h constant θ h H 1 0 (Ω)2 w h = θ h = 0 CONSEQUENCE: For t small θ h, w h 0. This is called LOCKING Remark 2. : Indeed, now the continuity constant of the bilinear form is too large. It seems that we have a problem similar to the original 3D problem! AND SO, WHAT IS THE ADVANTAGE OF USING THE 2D MODEL?

9 9 SOLUTION: Mixed Interpolation or Reduced Integration. IDEA: Relax the restriction of the limit problem. w θ = 0 replaced by Π( w θ) = 0 Π is some interpolation or projection onto some space Γ h. So, in the discrete problem, the restriction is verified only at some points or in some average sense. FINITE ELEMENT APPROXIMATION: θ h H h H0 1 (Ω)2, w h W h H0 1 (Ω) are such that a(θ h, η)+t 2 (Π( w h θ h ), Π( v η)) = (f, v) η H h, v W h

10 In the usual methods 10 So, W h Γ h a(θ h, η)+t 2 ( w h Πθ h, v Πη) = (f, v) η H h, v W h MIXED FORM: Introducing the shear stress γ = t 2 ( w θ) { a(θh, η) + (γ h, v Πη) = (f, v) γ h = t 2 ( w h Πθ h ) η H h, v W h

11 11 MAIN PROBLEM: How to choose the spaces H h, W h, Γ h and the operator Π? EXAMPLE: The Bathe-Dvorkin MITC4 rectangular elements (Mixed Interpolation Tensorial Components). H h and W h are the standard Q 1 elements and Γ h is locally defined by (a + by, c + dx) (is a rotated Raviart-Thomas space). The operator Π is defined by Πη t l = η t l l for all side l of an element, where t l is the unit tangent vector on l. l

12 GENERAL ERROR ANALYSIS Continuous problem: 12 { a(θ, η) + (γ, v Πη) = (f, v) + (γ, η Πη) γ = t 2 ( w θ) η H 1 0 (Ω)2, v H 1 0 (Ω) Discrete Problem: { a(θh, η) + (γ h, v Πη) = (f, v) γ h = t 2 ( w h Πθ h ) η H h, v W h Error equation: a(θ θ h, η) + (γ γ h, v Πη) = (γ, η Πη) η H h, v W h

13 13 Lemma 1. Let θ I H h, w I W h and γ I = t 2 ( w I Πθ I ) Γ h. Suppose and γ Πγ 0 Ch γ 1 (γ Πγ, η) = 0 η P 2 k 2 Let P be the L 2 projection into P 2 k 2. Then, θ θ h 1 + t γ γ h 0 C( θ I θ 1 +t γ I γ 0 +h γ Pγ 0 Proof. a(θ I θ h, η) + (γ I γ h, v Πη) = a(θ I θ, η)+(γ I γ, v Πη)+(γ, η Πη) η H h, v W h Take η = θ I θ h and v = w I w h. So, γ I γ h = t 2 ( v Πη) Using the coercivity of a we obtain θ I θ h t2 γ I γ h 2 0

14 = a(θ I θ, θ I θ h ) + t 2 (γ I γ, γ I γ h ) +(γ P γ, θ I θ h Π(θ I θ h )) and the lemma follows. To apply the Lemma we need to find approximations θ I and w I such that the associated γ I be also a good approximation. This will follow from the existence of approximations satisfying the following property 14 and w I Πθ I = Π( w θ) θ θ I 1 Ch k θ k+1 γ Πγ 0 Ch k γ k This property can be seen as a generalization of the known Fortin property basic in the analysis of mixed methods. In fact, introducing the operators I(θ, w) = (θ I, w I ) B(θ, w) = w θ

15 and B h (θ h, w h ) = w h Πθ the property can be summarized by the following commutative diagram: 15 (H0 1)2 H0 1 I B (L 2 ) 2 Π H h W h B h Γ h When Π is an L 2 projection, this is exactly the Fortin property, which is known to be equivalent to the inf-sup condition. This will be the case in one of our examples (the Arnold-Falk elements). In that case error estimates for the shear stress γ can also be obtained. Remark 3. Indeed it is enough to have the commutative diagram with Π replaced by some operator with good approximation properties.

16 16 If approximations satisfying the properties above (i.e, commutative diagram + approximation properties) exist, then it follows from the Lemma: ERROR ESTIMATES θ θ h 1 + t γ γ h 0 + w w h 1 Ch k ( θ k+1 + t γ k + γ k 1 ) With constant C independent of h and t. EXAMPLES Example 1: MITC3 or DL element: H h : P 2 1 {λ 2λ 3 t 1, λ 3 λ 1 t 2, λ 1 λ 2 t 3 }, C 0 Degrees of freedom: θ(v i ), l i θ t i W h : P 1 C 0 Γ h : (a by, c + bx) C 0 t. c. Degrees of freedom: l i γ t i Π defined by

17 17 l Πγ t = l γ t Example 2: Arnold-Falk element: H h : P1 2 {λ 1λ 2 λ 3 }, C 0 Degrees of freedom: θ(v i ), T θ W h : P 1 Non Conforming Degrees of freedom: l w Γ h : P 2 0 Π defined by L 2 -projection! T Πγ = T γ Error estimates for Examples 1 and 2: θ θ h 1 + w w h 1 Ch Example 3: Bathe-Brezzi second order rectangular elements:

18 H h : Q 2, C 0 W h : Q r 2 : {1, x, y, xy, x2, y 2, x 2 y, xy 2 }, C 0 Γ h : {1, x, y, xy, y 2 } {1, x, y, xy, x 2 } Π defined by { l Πγ tp 1 = l γ tp 1 R Πγ = R γ Error estimates: 18 θ θ h 1 + w w h 1 Ch 2 Remark 4. Here the constant C is NOT independent of t because the right hand side involves higher order norms of the solution which depend on t.

19 L 2 - ERROR ESTIMATES 19 θ θ h 0 + w w h 0 Ch 2 Recall the error equation a(θ θ h, η)+(γ γ h, v Rη) = (γ, η Rη) (η, v) H h W h, Duality argument: (ϕ, u) H 1 0 (Ω)2 H 1 0 (Ω) solution of a(η, ϕ) + ( v η, δ) = (v, w w h ) + (η, θ θ h ) δ = t 2 ( u ϕ). (η, v) H 1 0 (Ω)2 H 1 0 (Ω), A priori estimate (we assume Ω is convex) ϕ 2 + u 2 + δ 0 + t δ 1 C( θ θ h 0 + w w h 0 ),

20 20 Take v = w w h and η = θ θ h in the dual problem and use the error equation with (η, v) = (ϕ I, u I ): w w h θ θ h 2 0 = a(θ θ h, ϕ ϕ I ) + t 2 (γ γ h, δ Πδ) + (θ h Rθ h, δ) + (γ, ϕ I Πϕ I ), where we have used the commutative diagram property Πδ = t 2 ( u I Πϕ I ). PROBLEM: The last two terms. For the MITC3 elements we have: Lemma 2. If γ H(div, Ω), ψ H 1 0 (Ω) and ψ A is a piecewise-linear average interpolant: (γ, ψ A Πψ A ) Ch 2 div γ 0 ψ 1

21 ISOPARAMETRIC ELEMENTS 21 F K : ˆK K ˆK = (0, 1) (0, 1): reference element K: shape regular quadrilateral F K : Q 2 1 transformation W h : Standard isoparametric Q 1 elements: v F K = (a + bˆx + cŷ + dˆxŷ) Γ h : Rotated Raviart-Thomas elements: η F K = DF T K (a + bŷ, c + dˆx) The operator Π is defined by Πη t l = η t l l for all side l of an element, where t l is the unit tangent vector on l. For H h we consider two cases: l

22 MITC4: Standard Q 2 1 isoparametric elements DL4: Q 2 1 p 1, p 2, p 3, p 4 p i = (ˆp i F 1 K )t i ˆp i is a cubic polynomial vanishing on ˆl j, j i. ERROR ESTIMATES 22 θ θ h 1 + t γ γ h 0 + w w h 1 Ch( θ 2 + t γ 1 + γ 0 ) ASSUMPTIONS: For DL4 general shape regular meshes. For MITC4 the mesh T h is a refinement of a coarser T 2h obtained by joining the edge midpoints and T 2h is obtained in the same way from T 4h. L 2 - ERROR ESTIMATES θ θ h 0 + w w h 0 Ch 2 ASSUMPTION: Asymptotically parallelogram meshes.

Some New Elements for the Reissner Mindlin Plate Model

Some New Elements for the Reissner Mindlin Plate Model Boundary Value Problems for Partial Differential Equations and Applications, J.-L. Lions and C. Baiocchi, eds., Masson, 1993, pp. 287 292. Some New Elements for the Reissner Mindlin Plate Model Douglas

More information

Two Nonconforming Quadrilateral Elements for the Reissner-Mindlin Plate

Two Nonconforming Quadrilateral Elements for the Reissner-Mindlin Plate Two Nonconforming Quadrilateral Elements for the Reissner-Mindlin Plate Pingbing Ming and Zhong-ci Shi Institute of Computational Mathematics & Scientific/Engineering Computing, AMSS, Chinese Academy of

More information

ANALYSIS OF A MIXED-SHEAR-PROJECTED QUADRILATERAL ELEMENT METHOD FOR REISSNER-MINDLIN PLATES

ANALYSIS OF A MIXED-SHEAR-PROJECTED QUADRILATERAL ELEMENT METHOD FOR REISSNER-MINDLIN PLATES INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 14, Number 1, Pages 48 62 c 2017 Institute for Scientific Computing and Information ANALYSIS OF A MIXED-SHEAR-PROJECTED QUADRILATERAL ELEMENT

More information

Locking phenomena in Computational Mechanics: nearly incompressible materials and plate problems

Locking phenomena in Computational Mechanics: nearly incompressible materials and plate problems Locking phenomena in Computational Mechanics: nearly incompressible materials and plate problems C. Lovadina Dipartimento di Matematica Univ. di Pavia IMATI-CNR, Pavia Bologna, September, the 18th 2006

More information

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO PREPRINT 2010:23 A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

Finite Elements for Elastic Shell Models in

Finite Elements for Elastic Shell Models in Elastic s in Advisor: Matthias Heinkenschloss Computational and Applied Mathematics Rice University 13 April 2007 Outline Elasticity in Differential Geometry of Shell Geometry and Equations The Plate Model

More information

ANALYSIS OF A LINEAR LINEAR FINITE ELEMENT FOR THE REISSNER MINDLIN PLATE MODEL

ANALYSIS OF A LINEAR LINEAR FINITE ELEMENT FOR THE REISSNER MINDLIN PLATE MODEL Mathematical Models and Methods in Applied Sciences c World Scientific Publishing Company ANALYSIS OF A LINEAR LINEAR FINITE ELEMENT FOR THE REISSNER MINDLIN PLATE MODEL DOUGLAS N. ARNOLD Department of

More information

ANALYSIS OF SOME LOW ORDER QUADRILATERAL REISSNER-MINDLIN PLATE ELEMENTS

ANALYSIS OF SOME LOW ORDER QUADRILATERAL REISSNER-MINDLIN PLATE ELEMENTS MATHEMATICS OF COMPUTATION Volume 00, Number 0, Pages 000 000 S 0025-5718(XX)0000-0 ANALYSIS OF SOME LOW ORDER QUADRILATERAL REISSNER-MINDLIN PLATE ELEMENTS PINGBING MING AND ZHONG-CI SHI Abstract. Four

More information

ANALYSIS OF MIXED FINITE ELEMENTS FOR LAMINATED COMPOSITE PLATES

ANALYSIS OF MIXED FINITE ELEMENTS FOR LAMINATED COMPOSITE PLATES ANALYSIS OF MIXED FINITE ELEMENTS FOR LAMINATED COMPOSITE PLATES F. Auricchio Dipartimento di Meccanica Strutturale Università di Pavia, Italy C. Lovadina Dipartimento di Ingegneria Meccanica e Strutturale

More information

ERROR ESTIMATES FOR LOW-ORDER ISOPARAMETRIC QUADRILATERAL FINITE ELEMENTS FOR PLATES

ERROR ESTIMATES FOR LOW-ORDER ISOPARAMETRIC QUADRILATERAL FINITE ELEMENTS FOR PLATES ERROR ESTIATES FOR LOW-ORDER ISOPARAETRIC QUADRILATERAL FINITE ELEENTS FOR PLATES RICARDO G DURÁN, ERWIN HERNÁNDEZ, LUIS HERVELLA-NIETO, ELSA LIBERAN, AND RODOLFO RODRíGUEZ Abstract This paper deals with

More information

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016 Mixed Finite Element Methods Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016 Linear elasticity Given the load f : Ω R n, find the displacement u : Ω R n and the

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY ABHELSINKI UNIVERSITY OF TECHNOLOGY TECHNISCHE UNIVERSITÄT HELSINKI UNIVERSITE DE TECHNOLOGIE D HELSINKI A posteriori error analysis for the Morley plate element Jarkko Niiranen Department of Structural

More information

A NEW CLASS OF MIXED FINITE ELEMENT METHODS FOR REISSNER MINDLIN PLATES

A NEW CLASS OF MIXED FINITE ELEMENT METHODS FOR REISSNER MINDLIN PLATES A NEW CLASS OF IXED FINITE ELEENT ETHODS FOR REISSNER INDLIN PLATES C. LOVADINA Abstract. A new class of finite elements for Reissner indlin plate problem is presented. The family is based on a modified

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS CARLO LOVADINA AND ROLF STENBERG Abstract The paper deals with the a-posteriori error analysis of mixed finite element methods

More information

A-priori and a-posteriori error estimates for a family of Reissner-Mindlin plate elements

A-priori and a-posteriori error estimates for a family of Reissner-Mindlin plate elements A-priori and a-posteriori error estimates for a family of Reissner-Mindlin plate elements Joint work with Lourenco Beirão da Veiga (Milano), Claudia Chinosi (Alessandria) and Carlo Lovadina (Pavia) Previous

More information

QUADRILATERAL H(DIV) FINITE ELEMENTS

QUADRILATERAL H(DIV) FINITE ELEMENTS QUADRILATERAL H(DIV) FINITE ELEMENTS DOUGLAS N. ARNOLD, DANIELE BOFFI, AND RICHARD S. FALK Abstract. We consider the approximation properties of quadrilateral finite element spaces of vector fields defined

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Residual and Error of Finite Element Solutions Mixed BVP of Poisson Equation

More information

A Mixed Nonconforming Finite Element for Linear Elasticity

A Mixed Nonconforming Finite Element for Linear Elasticity A Mixed Nonconforming Finite Element for Linear Elasticity Zhiqiang Cai, 1 Xiu Ye 2 1 Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-1395 2 Department of Mathematics and Statistics,

More information

INNOVATIVE FINITE ELEMENT METHODS FOR PLATES* DOUGLAS N. ARNOLD

INNOVATIVE FINITE ELEMENT METHODS FOR PLATES* DOUGLAS N. ARNOLD INNOVATIVE FINITE ELEMENT METHODS FOR PLATES* DOUGLAS N. ARNOLD Abstract. Finite element methods for the Reissner Mindlin plate theory are discussed. Methods in which both the tranverse displacement and

More information

Dominique Chapelle 1, Anca Ferent 1 and Patrick Le Tallec 2

Dominique Chapelle 1, Anca Ferent 1 and Patrick Le Tallec 2 Mathematical Modelling and Numerical Analysis ESAIM: M2AN Modélisation Mathématique et Analyse Numérique M2AN, Vol. 37, N o, 2003, pp. 43 58 DOI: 0.05/m2an:200305 THE TREATMENT OF PINCHING LOCKING IN 3D-SHELL

More information

b i (x) u + c(x)u = f in Ω,

b i (x) u + c(x)u = f in Ω, SIAM J. NUMER. ANAL. Vol. 39, No. 6, pp. 1938 1953 c 2002 Society for Industrial and Applied Mathematics SUBOPTIMAL AND OPTIMAL CONVERGENCE IN MIXED FINITE ELEMENT METHODS ALAN DEMLOW Abstract. An elliptic

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Nonconformity and the Consistency Error First Strang Lemma Abstract Error Estimate

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS MATHEMATICS OF COMPUTATION Volume 75, Number 256, October 2006, Pages 1659 1674 S 0025-57180601872-2 Article electronically published on June 26, 2006 ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED

More information

A UNIFORMLY ACCURATE FINITE ELEMENT METHOD FOR THE REISSNER MINDLIN PLATE*

A UNIFORMLY ACCURATE FINITE ELEMENT METHOD FOR THE REISSNER MINDLIN PLATE* SIAM J. NUMER. ANAL. c 989 Society for Industrial and Applied Mathematics Vol. 26, No. 6, pp. 5, December 989 000 A UNIFORMLY ACCURATE FINITE ELEMENT METHOD FOR THE REISSNER MINDLIN PLATE* DOUGLAS N. ARNOLD

More information

Least-squares Finite Element Approximations for the Reissner Mindlin Plate

Least-squares Finite Element Approximations for the Reissner Mindlin Plate NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl., 6, 479 496 999 Least-squares Finite Element Approximations for the Reissner Mindlin Plate Zhiqiang Cai, Xiu Ye 2 and Huilong Zhang

More information

Numerical analysis of a locking-free mixed finite element method for a bending moment formulation of Reissner-Mindlin plate model

Numerical analysis of a locking-free mixed finite element method for a bending moment formulation of Reissner-Mindlin plate model Numerical analysis of a locking-free mixed finite element method for a bending moment formulation of Reissner-Mindlin plate model LOURENÇO BEIRÃO DA VEIGA Dipartimento di Matematica F. Enriques, Università

More information

A primer on Numerical methods for elasticity

A primer on Numerical methods for elasticity A primer on Numerical methods for elasticity Douglas N. Arnold, University of Minnesota Complex materials: Mathematical models and numerical methods Oslo, June 10 12, 2015 One has to resort to the indignity

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

A multipoint flux mixed finite element method on hexahedra

A multipoint flux mixed finite element method on hexahedra A multipoint flux mixed finite element method on hexahedra Ross Ingram Mary F. Wheeler Ivan Yotov Abstract We develop a mixed finite element method for elliptic problems on hexahedral grids that reduces

More information

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday.

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday. MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* DOUGLAS N ARNOLD, RICHARD S FALK, and RAGNAR WINTHER Dedicated to Professor Jim Douglas, Jr on the occasion of his seventieth birthday Abstract

More information

On the Justification of Plate Models

On the Justification of Plate Models On the Justification of Plate Models Dietrich Braess Stefan Sauter Christoph Schwab October 26, 2009 Abstract In this paper, we will consider the modelling of problems in linear elasticity on thin plates

More information

NONCONFORMING MIXED ELEMENTS FOR ELASTICITY

NONCONFORMING MIXED ELEMENTS FOR ELASTICITY Mathematical Models and Methods in Applied Sciences Vol. 13, No. 3 (2003) 295 307 c World Scientific Publishing Company NONCONFORMING MIXED ELEMENTS FOR ELASTICITY DOUGLAS N. ARNOLD Institute for Mathematics

More information

Geometry-dependent MITC method for a 2-node iso-beam element

Geometry-dependent MITC method for a 2-node iso-beam element Structural Engineering and Mechanics, Vol. 9, No. (8) 3-3 Geometry-dependent MITC method for a -node iso-beam element Phill-Seung Lee Samsung Heavy Industries, Seocho, Seoul 37-857, Korea Hyu-Chun Noh

More information

Some Remarks on the Reissner Mindlin Plate Model

Some Remarks on the Reissner Mindlin Plate Model Some Remarks on the Reissner Mindlin Plate Model Alexandre L. Madureira LNCC Brazil Talk at the Workshop of Numerical Analysis of PDEs LNCC February 10, 2003 1 Outline The 3D Problem and its Modeling Full

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. 2015 130:395 423 DOI 10.1007/s00211-014-0672-7 Numerische Mathematik Weakly over-penalized discontinuous Galerkin schemes for Reissner Mindlin plates without the shear variable Paulo Rafael

More information

Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS

Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS The Q4 element has four nodes and eight nodal dof. The shape can be any quadrilateral; we ll concentrate on a rectangle now. The displacement field in terms

More information

arxiv: v1 [math.na] 27 Jan 2016

arxiv: v1 [math.na] 27 Jan 2016 Virtual Element Method for fourth order problems: L 2 estimates Claudia Chinosi a, L. Donatella Marini b arxiv:1601.07484v1 [math.na] 27 Jan 2016 a Dipartimento di Scienze e Innovazione Tecnologica, Università

More information

MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS JUHO KÖNNÖ, DOMINIK SCHÖTZAU, AND ROLF STENBERG Abstract. We derive new a-priori and a-posteriori error estimates for mixed nite

More information

A Locking-Free MHM Method for Elasticity

A Locking-Free MHM Method for Elasticity Trabalho apresentado no CNMAC, Gramado - RS, 2016. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics A Locking-Free MHM Method for Elasticity Weslley S. Pereira 1 Frédéric

More information

Mathematical modelling and numerical analysis of thin elastic shells

Mathematical modelling and numerical analysis of thin elastic shells Mathematical modelling and numerical analysis of thin elastic shells Zhang Sheng Wayne State University, Michigan Zhang Sheng (szhang@wayne.edu) Thin elastic shell May, 202 / 9 Models for mechanics of

More information

Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media

Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Raytcho Lazarov & Aziz Takhirov Texas A&M May 3-4, 2016 R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 1 / 30 Outline

More information

Questions (And some Answers) (And lots of Opinions) On Shell Theory

Questions (And some Answers) (And lots of Opinions) On Shell Theory 1 Questions (And some Answers) (And lots of Opinions) On Shell Theory 2 Shells Q: What is a shell? A: A three-dimensional elastic body occupying a thin neighborhood of a two-dimensional submanifold of

More information

Finite Element Approximation of Piezoelectric Plates

Finite Element Approximation of Piezoelectric Plates Finite Element Approximation of Piezoelectric Plates F. Auricchio Department of Structural Mechanics, University of Pavia, 27100 Pavia, Italy P. Bisegna Department of Civil Engineering, University of Roma

More information

GEOMETRIC NONLINEAR ANALYSIS

GEOMETRIC NONLINEAR ANALYSIS GEOMETRIC NONLINEAR ANALYSIS The approach for solving problems with geometric nonlinearity is presented. The ESAComp solution relies on Elmer open-source computational tool [1] for multiphysics problems.

More information

arxiv: v1 [math.na] 2 Nov 2018

arxiv: v1 [math.na] 2 Nov 2018 A multipoint stress mixed finite element method for elasticity II: Quadrilateral grids Ilona Ambartsumyan Eldar Khattatov Jan Nordbotten Ivan Yotov October 30, 2018 arxiv:1811.01928v1 [math.na] 2 Nov 2018

More information

ICES REPORT A Generalized Mimetic Finite Difference Method and Two-Point Flux Schemes over Voronoi Diagrams

ICES REPORT A Generalized Mimetic Finite Difference Method and Two-Point Flux Schemes over Voronoi Diagrams ICS RPORT 15-17 July 2015 A Generalized Mimetic Finite Difference Method and Two-Point Flux Schemes over Voronoi Diagrams by Omar Al-Hinai, Mary F. Wheeler, Ivan Yotov The Institute for Computational ngineering

More information

3D-SHELL ELEMENTS AND THEIR UNDERLYING MATHEMATICAL MODEL

3D-SHELL ELEMENTS AND THEIR UNDERLYING MATHEMATICAL MODEL Mathematical Models and Methods in Applied Sciences Vol. 4, No. (2004) 05 42 c World Scientific Publishing Company 3D-SHELL ELEMENTS AND THEIR UNDERLYING MATHEMATICAL MODEL D. CHAPELLE and A. FERENT INRIA-Rocquencourt,

More information

THE PATCH RECOVERY FOR FINITE ELEMENT APPROXIMATION OF ELASTICITY PROBLEMS UNDER QUADRILATERAL MESHES. Zhong-Ci Shi and Xuejun Xu.

THE PATCH RECOVERY FOR FINITE ELEMENT APPROXIMATION OF ELASTICITY PROBLEMS UNDER QUADRILATERAL MESHES. Zhong-Ci Shi and Xuejun Xu. DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS SERIES B Volume 9, Number, January 2008 pp. 63 82 THE PATCH RECOVERY FOR FINITE ELEMENT APPROXIMATION OF ELASTICITY PROBLEMS UNDER

More information

ME FINITE ELEMENT ANALYSIS FORMULAS

ME FINITE ELEMENT ANALYSIS FORMULAS ME 2353 - FINITE ELEMENT ANALYSIS FORMULAS UNIT I FINITE ELEMENT FORMULATION OF BOUNDARY VALUE PROBLEMS 01. Global Equation for Force Vector, {F} = [K] {u} {F} = Global Force Vector [K] = Global Stiffness

More information

Yongdeok Kim and Seki Kim

Yongdeok Kim and Seki Kim J. Korean Math. Soc. 39 (00), No. 3, pp. 363 376 STABLE LOW ORDER NONCONFORMING QUADRILATERAL FINITE ELEMENTS FOR THE STOKES PROBLEM Yongdeok Kim and Seki Kim Abstract. Stability result is obtained for

More information

A DECOMPOSITION RESULT FOR BIHARMONIC PROBLEMS AND THE HELLAN-HERRMANN-JOHNSON METHOD

A DECOMPOSITION RESULT FOR BIHARMONIC PROBLEMS AND THE HELLAN-HERRMANN-JOHNSON METHOD Electronic ransactions on Numerical Analysis. Volume 45, pp. 257 282, 2016. Copyright c 2016,. ISSN 1068 9613. ENA A DECOMPOSIION RESUL FOR BIHARMONIC PROBLEMS AND HE HELLAN-HERRMANN-JOHNSON MEHOD WOLFGANG

More information

On the characterization of drilling rotation in the 6 parameter resultant shell theory

On the characterization of drilling rotation in the 6 parameter resultant shell theory On the characterization of drilling rotation in the 6 parameter resultant shell theory Mircea Birsan and Patrizio Neff Chair for Nonlinear Analysis and Modelling Faculty of Mathematics, University Duisburg-Essen,

More information

A Robust Approach to Minimizing H(div)-Dominated Functionals in an H 1 -Conforming Finite Element Space

A Robust Approach to Minimizing H(div)-Dominated Functionals in an H 1 -Conforming Finite Element Space NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2000; 00:1 23 [Version: 2002/09/18 v1.02] A Robust Approach to Minimizing H(div)-Dominated Functionals in an H 1 -Conforming Finite

More information

Constitutive models. Constitutive model: determines P in terms of deformation

Constitutive models. Constitutive model: determines P in terms of deformation Constitutive models Constitutive model: determines P in terms of deformation Elastic material: P depends only on current F Hyperelastic material: work is independent of path strain energy density function

More information

A u + b u + cu = f in Ω, (1.1)

A u + b u + cu = f in Ω, (1.1) A WEIGHTED H(div) LEAST-SQUARES METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS Z. CAI AND C. R. WESTPHAL Abstract. This paper presents analysis of a weighted-norm least squares finite element method for elliptic

More information

Solutions of Selected Problems

Solutions of Selected Problems 1 Solutions of Selected Problems October 16, 2015 Chapter I 1.9 Consider the potential equation in the disk := {(x, y) R 2 ; x 2 +y 2 < 1}, with the boundary condition u(x) = g(x) r for x on the derivative

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

Chapter 5 A priori error estimates for nonconforming finite element approximations 5.1 Strang s first lemma

Chapter 5 A priori error estimates for nonconforming finite element approximations 5.1 Strang s first lemma Chapter 5 A priori error estimates for nonconforming finite element approximations 51 Strang s first lemma We consider the variational equation (51 a(u, v = l(v, v V H 1 (Ω, and assume that the conditions

More information

c 2008 Society for Industrial and Applied Mathematics

c 2008 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 46, No. 3, pp. 640 65 c 2008 Society for Industrial and Applied Mathematics A WEIGHTED H(div) LEAST-SQUARES METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS Z. CAI AND C. R. WESTPHAL

More information

IMPLEMENTATION OF FUNCTIONAL-TYPE A POSTERIORI ERROR ESTIMATES FOR LINEAR PROBLEMS IN SOLID MECHANICS. Maksim Frolov

IMPLEMENTATION OF FUNCTIONAL-TYPE A POSTERIORI ERROR ESTIMATES FOR LINEAR PROBLEMS IN SOLID MECHANICS. Maksim Frolov IMPLEMENTATION OF FUNCTIONAL-TYPE A POSTERIORI ERROR ESTIMATES FOR LINEAR PROBLEMS IN SOLID MECHANICS Maksim Frolov Peter the Great St.Petersburg Polytechnic University AANMPDE11, FINLAND 06 10 August

More information

MORTAR MULTISCALE FINITE ELEMENT METHODS FOR STOKES-DARCY FLOWS

MORTAR MULTISCALE FINITE ELEMENT METHODS FOR STOKES-DARCY FLOWS MORTAR MULTISCALE FINITE ELEMENT METHODS FOR STOKES-DARCY FLOWS VIVETTE GIRAULT, DANAIL VASSILEV, AND IVAN YOTOV Abstract. We investigate mortar multiscale numerical methods for coupled Stokes and Darcy

More information

Chapter 6 2D Elements Plate Elements

Chapter 6 2D Elements Plate Elements Institute of Structural Engineering Page 1 Chapter 6 2D Elements Plate Elements Method of Finite Elements I Institute of Structural Engineering Page 2 Continuum Elements Plane Stress Plane Strain Toda

More information

Tangential-Displacement and Normal-Normal-Stress Continuous Mixed Finite Elements for Elasticity

Tangential-Displacement and Normal-Normal-Stress Continuous Mixed Finite Elements for Elasticity www.oeaw.ac.at angential-displacement and Normal-Normal-Stress Continuous Mixed inite Elements for Elasticity J. Schöberl, A. Sinwel RICAM-Report 2007-10 www.ricam.oeaw.ac.at ANGENIAL-DISPLACEMEN AND NORMAL-NORMAL-SRESS

More information

An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element

An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element Calcolo manuscript No. (will be inserted by the editor) An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element Dietrich Braess Faculty of Mathematics, Ruhr-University

More information

Finite element approximation on quadrilateral meshes

Finite element approximation on quadrilateral meshes COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2001; 17:805 812 (DOI: 10.1002/cnm.450) Finite element approximation on quadrilateral meshes Douglas N. Arnold 1;, Daniele

More information

MIXED FINITE ELEMENTS, COMPATIBILITY CONDITIONS AND APPLICATIONS

MIXED FINITE ELEMENTS, COMPATIBILITY CONDITIONS AND APPLICATIONS D.Boffi F.Brezzi L.Demkowicz R.G.Durán R.S.Falk M.Fortin MIXED FINITE ELEMENTS, COMPATIBILITY CONDITIONS AND APPLICATIONS Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 26-July

More information

Discontinuous Petrov-Galerkin Methods

Discontinuous Petrov-Galerkin Methods Discontinuous Petrov-Galerkin Methods Friederike Hellwig 1st CENTRAL School on Analysis and Numerics for Partial Differential Equations, November 12, 2015 Motivation discontinuous Petrov-Galerkin (dpg)

More information

A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATIONS

A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATIONS A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATIONS LIN MU, JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This article introduces and analyzes a weak Galerkin mixed finite element method

More information

HEXAHEDRAL H(DIV) AND H(CURL) FINITE ELEMENTS

HEXAHEDRAL H(DIV) AND H(CURL) FINITE ELEMENTS HEXAHEDRAL H(DIV) AND H(CURL) FINITE ELEMENTS RICHARD S. FAL, PAOLO GATTO, AND PETER MON Abstract. We study the approximation properties of some finite element subspaces of H(div; Ω) and H(curl ; Ω) defined

More information

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A. Kroker, W. Becker TU Darmstadt, Department of Mechanical Engineering, Chair of Structural Mechanics Hochschulstr. 1, D-64289 Darmstadt, Germany kroker@mechanik.tu-darmstadt.de,

More information

Simple Examples on Rectangular Domains

Simple Examples on Rectangular Domains 84 Chapter 5 Simple Examples on Rectangular Domains In this chapter we consider simple elliptic boundary value problems in rectangular domains in R 2 or R 3 ; our prototype example is the Poisson equation

More information

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION JOHNNY GUZMÁN, ABNER J. SALGADO, AND FRANCISCO-JAVIER SAYAS Abstract. The analysis of finite-element-like Galerkin discretization techniques for the

More information

Optimal thickness of a cylindrical shell under dynamical loading

Optimal thickness of a cylindrical shell under dynamical loading Optimal thickness of a cylindrical shell under dynamical loading Paul Ziemann Institute of Mathematics and Computer Science, E.-M.-A. University Greifswald, Germany e-mail paul.ziemann@uni-greifswald.de

More information

INTRODUCTION TO STRAIN

INTRODUCTION TO STRAIN SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,

More information

A posteriori error estimates for non conforming approximation of eigenvalue problems

A posteriori error estimates for non conforming approximation of eigenvalue problems A posteriori error estimates for non conforming approximation of eigenvalue problems E. Dari a, R. G. Durán b and C. Padra c, a Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and CONICE,

More information

A NEW STABILIZED ONE POINT INTEGRATED SHEAR ELASTIC PLATE ELEMENT

A NEW STABILIZED ONE POINT INTEGRATED SHEAR ELASTIC PLATE ELEMENT European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004 P. Neittaanmäki, T. Rossi, K. Majava, and O. Pironneau (eds.) R. Owen and M. Mikkola (assoc. eds.) Jyväskylä,

More information

A posteriori error estimation in the FEM

A posteriori error estimation in the FEM A posteriori error estimation in the FEM Plan 1. Introduction 2. Goal-oriented error estimates 3. Residual error estimates 3.1 Explicit 3.2 Subdomain error estimate 3.3 Self-equilibrated residuals 3.4

More information

Error estimates for the Raviart-Thomas interpolation under the maximum angle condition

Error estimates for the Raviart-Thomas interpolation under the maximum angle condition Error estimates for the Raviart-Thomas interpolation under the maximum angle condition Ricardo G. Durán and Ariel L. Lombardi Abstract. The classical error analysis for the Raviart-Thomas interpolation

More information

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS A. RÖSCH AND R. SIMON Abstract. An optimal control problem for an elliptic equation

More information

WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES

WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES INERNAIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 12, Number 1, Pages 31 53 c 2015 Institute for Scientific Computing and Information WEAK GALERKIN FINIE ELEMEN MEHODS ON POLYOPAL MESHES LIN

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

ENHANCED STRAIN METHODS FOR ELASTICITY PROBLEMS

ENHANCED STRAIN METHODS FOR ELASTICITY PROBLEMS European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004 P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, J. Périaux, and D. Knörzer (eds.) Jyväskylä, 24 28 July 2004

More information

Advances in Engineering Software

Advances in Engineering Software Advances in Engineering Software 41 (21) 712 728 Contents lists available at ScienceDirect Advances in Engineering Software journal homepage: www.elsevier.com/locate/advengsoft The quadratic MITC plate

More information

A super convergent hybridisable discontinuous Galerkin method for linear elasticity

A super convergent hybridisable discontinuous Galerkin method for linear elasticity A super convergent hybridisable discontinuous Galerkin method for linear elasticity arxiv:82.223v [math.na] 6 Feb 28 Ruben Sevilla Zienkiewicz Centre for Computational Engineering, College of Engineering,

More information

Chapter 5 Structural Elements: The truss & beam elements

Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 1 Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 2 Chapter Goals Learn how to formulate the Finite Element Equations

More information

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES A Thesis by WOORAM KIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the

More information

Virtual Element Methods for general second order elliptic problems

Virtual Element Methods for general second order elliptic problems Virtual Element Methods for general second order elliptic problems Alessandro Russo Department of Mathematics and Applications University of Milano-Bicocca, Milan, Italy and IMATI-CNR, Pavia, Italy Workshop

More information

A Subspace Correction Method for Discontinuous Galerkin Discretizations of Linear Elasticity Equations

A Subspace Correction Method for Discontinuous Galerkin Discretizations of Linear Elasticity Equations www.oeaw.ac.at A Subspace Correction Method for Discontinuous Galerkin Discretizations of Linear lasticity quations B. Ayuso de Dios, I. Georgiev, J. Kraus, L. Zikatanov RICAM-Report 2011-29 www.ricam.oeaw.ac.at

More information

Introduction to finite element exterior calculus

Introduction to finite element exterior calculus Introduction to finite element exterior calculus Ragnar Winther CMA, University of Oslo Norway Why finite element exterior calculus? Recall the de Rham complex on the form: R H 1 (Ω) grad H(curl, Ω) curl

More information

A SECOND ELASTICITY ELEMENT USING THE MATRIX BUBBLE WITH TIGHTENED STRESS SYMMETRY

A SECOND ELASTICITY ELEMENT USING THE MATRIX BUBBLE WITH TIGHTENED STRESS SYMMETRY A SECOND ELASTICITY ELEMENT USING THE MATRIX BUBBLE WITH TIGHTENED STRESS SYMMETRY J. GOPALAKRISHNAN AND J. GUZMÁN Abstract. We presented a family of finite elements that use a polynomial space augmented

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT HUOYUAN DUAN, SHA LI, ROGER C. E. TAN, AND WEIYING ZHENG Abstract. To deal with the divergence-free

More information

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Contents Chapter I. Introduction 7 I.1. Motivation 7 I.2. Sobolev and finite

More information

Overview. A Posteriori Error Estimates for the Biharmonic Equation. Variational Formulation and Discretization. The Biharmonic Equation

Overview. A Posteriori Error Estimates for the Biharmonic Equation. Variational Formulation and Discretization. The Biharmonic Equation Overview A Posteriori rror stimates for the Biharmonic quation R Verfürth Fakultät für Mathematik Ruhr-Universität Bochum wwwruhr-uni-bochumde/num1 Milan / February 11th, 013 The Biharmonic quation Summary

More information

A Stable Mixed Finite Element Scheme for the Second Order Elliptic Problems

A Stable Mixed Finite Element Scheme for the Second Order Elliptic Problems A Stable Mixed Finite Element Scheme for the Second Order Elliptic Problems Miaochan Zhao, Hongbo Guan, Pei Yin Abstract A stable mixed finite element method (MFEM) for the second order elliptic problems,

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY ABHELSINKI UNIVERSITY OF TECHNOLOGY TECHNISCHE UNIVERSITÄT HELSINKI UNIVERSITE DE TECHNOLOGIE D HELSINKI A posteriori error analysis for Kirchhoff plate elements Jarkko Niiranen Laboratory of Structural

More information

Steps in the Finite Element Method. Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen

Steps in the Finite Element Method. Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen Steps in the Finite Element Method Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen General Idea Engineers are interested in evaluating effects such as deformations, stresses,

More information