Multiscale methods for time-harmonic acoustic and elastic wave propagation

Size: px
Start display at page:

Download "Multiscale methods for time-harmonic acoustic and elastic wave propagation"

Transcription

1 Multiscale methods for time-harmonic acoustic and elastic wave propagation Dietmar Gallistl (joint work with D. Brown and D. Peterseim) Institut für Angewandte und Numerische Mathematik Karlsruher Institut für Technologie (KIT) Workshop on Analysis and Numerics of Acoustic and Electromagnetic Problems RICAM, October 26 D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p.

2 Outline Introduction Helmholtz problem An ideal method Multiscale Petrov-Galerkin FEM Elastic wave propagation Numerical experiments D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 2

3 Introduction Helmholtz problem An ideal method Multiscale Petrov-Galerkin FEM Elastic wave propagation Numerical experiments

4 Model problem: high-frequency acoustic scattering I Ω Rd bounded polytope, diam Ω I Ω = ΓD ΓR I wave number κ > real parameter I incident wave uin I we seek u = uin + uscat I positive and bounded material parameters A(x), n(x), β (x) D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 3

5 Model problem: high-frequency acoustic scattering I Ω Rd bounded polytope, diam Ω I Ω = ΓD ΓR I wave number κ > real parameter I incident wave uin I we seek u = uin + uscat I positive and bounded material parameters A(x), n(x), β (x) div(a u) κ 2 n u = f in Ω u = on ΓD Ω (A u) ν iβ κu = g on ΓR := Ω \ ΓD D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 3

6 Pollution effect d Helmholtz: u xx κ 2 u = in [,], u in (x) = exp( iκx) Results for P-FEM (fixed resolution H := const/κ) 2 PFEM P-best ratio V-error κ D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 4

7 Pollution effect d Helmholtz: u xx κ 2 u = in [,], u in (x) = exp( iκx) Results for P-FEM (fixed resolution H := const/κ) 2 PFEM P-best ratio V-error κ D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 4

8 Pollution effect d Helmholtz: u xx κ 2 u = in [,], u in (x) = exp( iκx) Results for P-FEM (fixed resolution H := const/κ) 2 PFEM P-best ratio V-error κ D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 4

9 Pollution effect d Helmholtz: u xx κ 2 u = in [,], u in (x) = exp( iκx) Results for P-FEM (fixed resolution H := const/κ) 2 PFEM P-best ratio error(fem) κs error(bestapprox) [Babuška-Sauter 2] V-error κ D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 4

10 Pollution effect d Helmholtz: u xx κ 2 u = in [,], u in (x) = exp( iκx) Results for P-FEM (fixed resolution H := const/κ) 2 PFEM P-best ratio mspg Goal: error(mspg) error(bestapprox) C V-error κ D. Gallistl and D. Peterseim. Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comput. Methods Appl. Mech. Eng., 25. D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 4

11 Other Approaches hp-fem with p logκ Melenk, Sauter Trefftz methods, Plane wave methods Hiptmair, Moiola, Perugia DG FEM Farhat, Tezaur; Feng, Wu Ultra-weak formulation Cessenat, Després; Buffa, Monk Discontinuous Petrov-Galerkin Demkowicz, Gopalakrishnan D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 5

12 Introduction Helmholtz problem An ideal method Multiscale Petrov-Galerkin FEM Elastic wave propagation Numerical experiments

13 Variational formulation Hilbert space V := H D (Ω;C) := {v H (Ω;C) : v ΓD = } Continuous sesquilinear form on V V a(v,w) := (A v, w) L 2 (Ω) κ 2 (nv,w) L 2 (Ω) iκ(βv,w) L 2 (Γ R ) D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 6

14 Variational formulation Hilbert space V := H D (Ω;C) := {v H (Ω;C) : v ΓD = } Continuous sesquilinear form on V V a(v,w) := (A v, w) L 2 (Ω) κ 2 (nv,w) L 2 (Ω) iκ(βv,w) L 2 (Γ R ) Weak formulation seeks u V such that a(u,v) = (f,v) L 2 (Ω) + (g,v) L 2 (Γ R ) for all v V. D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 6

15 Variational formulation Hilbert space V := H D (Ω;C) := {v H (Ω;C) : v ΓD = } Continuous sesquilinear form on V V a(v,w) := (A v, w) L 2 (Ω) κ 2 (nv,w) L 2 (Ω) iκ(βv,w) L 2 (Γ R ) Weak formulation seeks u V such that a(u,v) = (f,v) L 2 (Ω) + (g,v) L 2 (Γ R ) for all v V. Data f L 2 (Ω;C) and g L 2 (Γ R ;C) Norm v V := κ 2 v 2 L 2 (Ω) + v 2 L 2 (Ω) D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 6

16 Well-posedness Assumption (Polynomial well-posedness) There exist a constant c(ω) and a polynomial p such that c(ω) p(κ) inf sup v V\{} w V\{} Ra(v, w) v V w V ( ) D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 7

17 Well-posedness Assumption (Polynomial well-posedness) There exist a constant c(ω) and a polynomial p such that c(ω) p(κ) inf sup v V\{} w V\{} Ra(v, w) v V w V ( ) Homogeneous material: assumption not satisfied in general [Betcke et al 2] pure impedence problem + Ω convex γ(κ,ω) κ [Melenk 995] pure impedence problem + Ω Lipschitz γ(κ,ω) κ 7/2 [Esterhazy-Melenk 22] star-shaped scatterer γ(κ,ω) κ [Hetmaniuk 27] D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 7

18 Well-posedness Assumption (Polynomial well-posedness) There exist a constant c(ω) and a polynomial p such that c(ω) p(κ) inf sup v V\{} w V\{} Ra(v, w) v V w V ( ) Heterogeneous material: Theorem There is a class of smooth coefficients A, n such that ( ) holds. D. Brown, D. Gallistl, and D. Peterseim. Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations. Arxiv preprint, 25. D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 7

19 Introduction Helmholtz problem An ideal method Multiscale Petrov-Galerkin FEM Elastic wave propagation Numerical experiments

20 Finite element spaces Coarse scale H /κ G H coarse mesh V H := Q (G H ) V standard Q FE space Fine scale h /κ 2 G h refinement of G H V h := Q (G h ) V standard Q FE space D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 8

21 Finite element spaces Coarse scale H /κ G H coarse mesh V H := Q (G H ) V standard Q FE space Fine scale h /κ 2 G h refinement of G H V h := Q (G h ) V standard Q FE space Quasi-interpolation I H : V h V H quasi-local projection Stability and L 2 -approximation H v I H v L 2 (T) + I H v L 2 (T) C IH v L 2 (N(T)) Example: I H := E H Π H Π H... piecewise L 2 projection onto Q (G H ) E H... nodal averaging operator D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 8

22 Subscale correction Fine scale remainder (null space of I H ): W h := {v h V h : I H (v h ) = } Subscale corrector C : V H W h : Given v H V H, C v H solves a(w,c v H ) = a(w,v H ) for all w W h D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 9

23 Subscale correction Fine scale remainder (null space of I H ): W h := {v h V h : I H (v h ) = } Subscale corrector C : V H W h : Given v H V H, C v H solves a(w,c v H ) = a(w,v H ) for all w W h C D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 9

24 Subscale correction Fine scale remainder (null space of I H ): W h := {v h V h : I H (v h ) = } Subscale corrector C : V H W h : Given v H V H, C v H solves a(w,c v H ) = a(w,v H ) for all w W h Lemma Under the resolution condition Hκ, the corrector problems are well-posed (even coercive). D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 9

25 Ideal Petrov-Galerkin method Standard trial space V H Corrected test space Ṽ H := ( C )V H D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p.

26 Ideal Petrov-Galerkin method Standard trial space V H Corrected test space Ṽ H := ( C )V H Re Re Re Im Im Im Λ z C Λ z Λ z = ( C )Λ z D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p.

27 Ideal Petrov-Galerkin method Standard trial space V H Corrected test space Ṽ H := ( C )V H Re Re Re Im Im Im Λ z C Λ z Λ z = ( C )Λ z D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p.

28 Ideal Petrov-Galerkin method Standard trial space V H Corrected test space Ṽ H := ( C )V H Re Re Re Im Im Im Λ z C Λ z Λ z = ( C )Λ z D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p.

29 Ideal Petrov-Galerkin method Standard trial space V H Corrected test space Ṽ H := ( C )V H Re Re Re Im Im Im Λ z C Λ z Λ z = ( C )Λ z D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p.

30 Ideal Petrov-Galerkin method Standard trial space V H Corrected test space Ṽ H := ( C )V H Re Re Re Im Im Im Λ z C Λ z Λ z = ( C )Λ z D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p.

31 Ideal Petrov-Galerkin method Standard trial space V H Corrected test space Ṽ H := ( C )V H Re Re Re Im Im Im Λ z C Λ z Λ z = ( C )Λ z D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p.

32 Ideal Petrov-Galerkin method Standard trial space V H Corrected test space Ṽ H := ( C )V H Re Re Re Im Im Im Λ z C Λ z Λ z = ( C )Λ z Ideal multiscale Petrov-Galerkin FEM seeks u ms H V H such that a(u ms H,ṽ H ) = (f,ṽ H ) L 2 (Ω) + (g,ṽ H ) L 2 (Γ R ) for all ṽ H Ṽ H. D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p.

33 Ideal Petrov-Galerkin method Standard trial space V H Corrected test space Ṽ H := ( C )V H Re Re Re Im Im Im Connections to existing methods Variational multiscale method [Hughes et al] Local orthogonal decomposition [Malqvist, Peterseim] D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p.

34 Stability and quasi-optimality Since u h I H u h W h, we have a(u h I H u }{{} h,( C )v H ) = for all v H V H. W h D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p.

35 Stability and quasi-optimality Since u h I H u h W h, we have a(u h I H u h, ( C )v H }{{} =ṽ H Ṽ H ) = for all v H V H. D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p.

36 Stability and quasi-optimality Since u h I H u h W h, we have a(u h I H u h, ( C )v H }{{} =ṽ H Ṽ H ) = for all v H V H. Hence: a(i H u h,ṽ H ) = a(u h,ṽ H ) = (f,ṽ H ) L 2 (Ω) + (g,ṽ H ) L 2 (Γ R ) D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p.

37 Stability and quasi-optimality Since u h I H u h W h, we have a(u h I H u h, ( C )v H }{{} =ṽ H Ṽ H ) = for all v H V H. Hence: a(i H u h,ṽ H ) = a(u h,ṽ H ) = (f,ṽ H ) L 2 (Ω) + (g,ṽ H ) L 2 (Γ R ) = I H u h solves Petrov-Galerkin method D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p.

38 Stability and quasi-optimality Since u h I H u h W h, we have a(u h I H u h, ( C )v H }{{} =ṽ H Ṽ H ) = for all v H V H. Hence: a(i H u h,ṽ H ) = a(u h,ṽ H ) = (f,ṽ H ) L 2 (Ω) + (g,ṽ H ) L 2 (Γ R ) = I H u h solves Petrov-Galerkin method Theorem The resolution condition Hκ implies and γ(κ,ω) inf sup v H V H \{} ṽ H Ṽ H \{} Ra(v H,ṽ H ) v H V ṽ H V u h u ms H V = ( I H )u h V min v H V H u h v H V. D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p.

39 Introduction Helmholtz problem An ideal method Multiscale Petrov-Galerkin FEM Elastic wave propagation Numerical experiments

40 Exponential decay of the correctors Theorem There is < β < such that for all vertices z and m N we have ( C )Λ z L 2 (Ω\B m H (z)) β m Λ z L 2 (Ω) Λ z = ( C )Λ z.5 Λ z D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 2

41 Localized fine-scale correctors Re Im D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 3

42 Localized fine-scale correctors Parameter m N m-th order element patches Ω T := N m (T) D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 4

43 Localized fine-scale correctors Parameter m N m-th order element patches Ω T := N m (T) D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 4

44 Localized fine-scale correctors Parameter m N m-th order element patches Ω T := N m (T) h H Localized test functions Ṽ H := ( C m )V H D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 4

45 Multiscale Petrov-Galerkin FEM Theorem (Well-posedness) Let h, Hκ and m logγ(κ,ω) logκ. Then a) Stability γ(κ,ω) inf sup v H V H \{} ṽ H Ṽ H \{} Ra(v H,ṽ H ) v H V ṽ H V b) Quasi-optimality u u ms H V min v H V H u v H V. D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 5

46 Introduction Helmholtz problem An ideal method Multiscale Petrov-Galerkin FEM Elastic wave propagation Numerical experiments

47 Time-harmonic elastic wave model We seek a displacement field u : Ω R d such that σ(u) = Cε(u) div(σ(u)) κ 2 u = f in Ω, for the strain ε := symd and the elasticity tensor CM := 2µM + λ trmi d d. σ(u) ν iκu = g on Γ R, u = on Γ D D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 6

48 Time-harmonic elastic wave model We seek a displacement field u : Ω R d such that σ(u) = Cε(u) div(σ(u)) κ 2 u = f in Ω, for the strain ε := symd and the elasticity tensor CM := 2µM + λ trmi d d. σ(u) ν iκu = g on Γ R, u = on Γ D Variational formulation employs V := {v (H (Ω)) d : v ΓD = } with norm V := κ 2 2 L 2 (Ω) + C/2 ε 2 L 2 (Ω). Sesquilinear form on V a(v,w) := (Cε(v),ε(w)) L 2 (Ω) (κ 2 v,w) L 2 (Ω) (iκv,w) L 2 (Γ R Ω). D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 6

49 Multiscale method and error analysis Analogous to the acoustic case. Provided h, Hκ and m logγ(κ,ω) logκ, then the method is stable and quasi-optimal under the assumption of polynomial well-posedness c(ω) p(κ) inf sup v V\{} w V\{} Ra(v, w). v V w V ( ) D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 7

50 Multiscale method and error analysis Analogous to the acoustic case. Provided h, Hκ and m logγ(κ,ω) logκ, then the method is stable and quasi-optimal under the assumption of polynomial well-posedness c(ω) p(κ) inf sup v V\{} w V\{} Ra(v, w). v V w V ( ) Only few (conditional) results available, see Cummings & Feng (25). D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 7

51 Multiscale method and error analysis Analogous to the acoustic case. Provided h, Hκ and m logγ(κ,ω) logκ, then the method is stable and quasi-optimal under the assumption of polynomial well-posedness c(ω) p(κ) inf sup v V\{} w V\{} Ra(v, w). v V w V ( ) Only few (conditional) results available, see Cummings & Feng (25). Brown&DG 26: Polynomial stability holds if Γ R = Ω. D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 7

52 Wavenumber-explicit stability bounds Theorem (Brown&DG 26) If Γ R = Ω, then c(ω) κ 7/2 inf sup v V\{} w V\{} Ra(v, w). v V w V D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 8

53 Wavenumber-explicit stability bounds Theorem (Brown&DG 26) If Γ R = Ω, then c(ω) κ 7/2 inf sup v V\{} w V\{} Ra(v, w). v V w V Proof: generalizes techniques of Melenk & Sauter (2) and Melenk & Esterhazy (22). Newton-potential estimates κ N κ (f ) H 2 (Ω) + N κ (f ) H (Ω) + κ N κ (f ) L 2 (Ω) C f L 2 (Ω), with N κ := G κ f and the Kupradze matrix G κ. D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 8

54 Introduction Helmholtz problem An ideal method Multiscale Petrov-Galerkin FEM Elastic wave propagation Numerical experiments

55 Numerical experiment for heterogeneous material Data: Ω = (,) 2, f = point sources ( + κ 2 n)u = f in Ω u ν iκu = on Ω Parameters: κ = { 2 7 n = /4 H variable m variable h = 2 9 } D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 9

56 Numerical experiment for heterogeneous material Data: Ω = (,) 2, f = point sources ( + κ 2 n)u = f in Ω u ν iκu = on Ω Parameters: κ = { 2 7 n = /4 H variable m variable h = 2 9 } D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 9

57 Numerical experiment for heterogeneous material Data: Ω = (,) 2, f = point sources ( + κ 2 n)u = f in Ω u ν iκu = on Ω V-norm error - -2 PFEM m = m = 2 m = 3 P-best O(H) -2 - H Parameters: κ = { 2 7 n = /4 H variable m variable h = 2 9 } D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 9

58 Numerical experiment: 2D elasticity (scattering) Data: Ω = (,) 2 \ [.375,.625] 2, f = point source, λ = = µ Parameters: κ = 2 7 H variable m variable h = 2 displacement D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 2

59 Numerical experiment: 2D elasticity (scattering) Data: Ω = (,) 2 \ [.375,.625] 2, f = point source, λ = = µ FEM mspg m = mspg m = 2 mspg m = 3 O(H) Parameters: κ = 2 7 H variable m variable h = V-norm errors H D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 2

60 Numerical experiment: 2D elasticity (scattering) Data: Ω = (,) 2 \ [.375,.625] 2, f = point source, λ = = µ L 2 -norm errors H FEM mspg m = mspg m = 2 mspg m = 3 O(H 2 ) Parameters: κ = 2 7 H variable m variable h = 2 D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 2

61 Numerical experiment: 3D elasticity (scattering) Data: Ω = (,) 3, f =, λ = = µ, polynomial solution, Γ R = Ω.5.5 FEM mspg m = mspg m = 2 O(H) Parameters: κ = 2 5 H variable m variable h = 2 6 V-norm errors.4.2 H D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 2

62 Numerical experiment: 3D elasticity (scattering) Data: Ω = (,) 3, f =, λ = = µ, polynomial solution, Γ R = Ω FEM mspg m = mspg m = 2 O(H 2 ) Parameters: κ = 2 5 H variable m variable h = 2 6 L 2 -norm errors.4.2 H D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 2

63 3D elasticity: pointwise errors Data: Ω = (,) 3, Γ R = Ω f =, λ = = µ, polynomial solution, -3 8 poinwise error: FEM (left) vs. multiscale (right) D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 22

64 Summary Multiscale Petrov-Galerkin FEM for the acoustic and elastic Helmholtz problems with large wave number Under reasonable assumptions on the parameters, the method is pollution-free In homogeneous (or more general periodic) media, the fine scale test functions depend only on local mesh-configurations and the seemingly high cost for the computation of the test functions can be drastically reduced on structured meshes Numerical experiments in two and three space dimensions support these observations. D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 23

65 References D. Brown, D. Gallistl, and D. Peterseim. Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations. Lect. Notes Comput. Sci. Eng., 26. D. Brown and D. Gallistl, Multiscale sub-grid correction method for time-harmonic high-frequency elastodynamics with wavenumber explicit bounds. ArXiv e-prints, 26. D. Gallistl and D. Peterseim. Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. CMAME, 295:-7, 25. D. Peterseim. Eliminating the pollution effect in Helmholtz problems by local subscale correction. Math. Comp., 26. A. Målqvist and D. Peterseim. Localization of elliptic multiscale problems. Math. Comp., 24. Thank you for your attention. D. Gallistl (KIT) Multiscale FEMs for waves RICAM 26 p. 24

Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering

Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering Wegelerstraße 6 53115 Bonn Germany phone +49 228 73-3427 fax +49 228 73-7527 www.ins.uni-bonn.de D. Gallistl, D. Peterseim Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic

More information

Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances

Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances Ilaria Perugia Dipartimento di Matematica Università di Pavia (Italy) In collaboration with Ralf Hiptmair, Christoph Schwab,

More information

Trefftz-Discontinuous Galerkin Methods for the Time-Harmonic Maxwell Equations

Trefftz-Discontinuous Galerkin Methods for the Time-Harmonic Maxwell Equations Trefftz-Discontinuous Galerkin Methods for the Time-Harmonic Maxwell Equations Ilaria Perugia Dipartimento di Matematica - Università di Pavia (Italy) http://www-dimat.unipv.it/perugia Joint work with

More information

Trefftz-discontinuous Galerkin methods for time-harmonic wave problems

Trefftz-discontinuous Galerkin methods for time-harmonic wave problems Trefftz-discontinuous Galerkin methods for time-harmonic wave problems Ilaria Perugia Dipartimento di Matematica - Università di Pavia (Italy) http://www-dimat.unipv.it/perugia Joint work with Ralf Hiptmair,

More information

Trefftz-Discontinuous Galerkin Methods for Maxwell s Equations

Trefftz-Discontinuous Galerkin Methods for Maxwell s Equations Trefftz-Discontinuous Galerkin Methods for Maxwell s Equations Ilaria Perugia Faculty of Mathematics, University of Vienna Vienna P D E Ralf Hiptmair (ETH Zürich), Andrea Moiola (University of Reading)

More information

NUMERICAL HOMOGENIZATION FOR INDEFINITE H(CURL)-PROBLEMS

NUMERICAL HOMOGENIZATION FOR INDEFINITE H(CURL)-PROBLEMS Proceedings of EQUADIFF 2017 pp. 137 146 NUMERICAL HOMOGENIZATION FOR INDEFINITE H(CURL)-PROBLEMS BARBARA VERFÜRTH Abstract. In this paper, we present a numerical homogenization scheme for indefinite,

More information

Computer simulation of multiscale problems

Computer simulation of multiscale problems Progress in the SSF project CutFEM, Geometry, and Optimal design Computer simulation of multiscale problems Axel Målqvist and Daniel Elfverson University of Gothenburg and Uppsala University Umeå 2015-05-20

More information

A space-time Trefftz method for the second order wave equation

A space-time Trefftz method for the second order wave equation A space-time Trefftz method for the second order wave equation Lehel Banjai The Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh Rome, 10th Apr 2017 Joint work with: Emmanuil

More information

A space-time Trefftz method for the second order wave equation

A space-time Trefftz method for the second order wave equation A space-time Trefftz method for the second order wave equation Lehel Banjai The Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh & Department of Mathematics, University of

More information

On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption

On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption Ivan Graham and Euan Spence (Bath, UK) Collaborations with: Paul Childs (Emerson Roxar,

More information

A phase-based interior penalty discontinuous Galerkin method for the Helmholtz equation with spatially varying wavenumber

A phase-based interior penalty discontinuous Galerkin method for the Helmholtz equation with spatially varying wavenumber A phase-based interior penalty discontinuous Galerkin method for the Helmholtz equation with spatially varying wavenumber Chi Yeung Lam * and Chi-Wang Shu ** * Department of Mathematics, The Chinese University

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

Error analysis and fast solvers for high-frequency scattering problems

Error analysis and fast solvers for high-frequency scattering problems Error analysis and fast solvers for high-frequency scattering problems I.G. Graham (University of Bath) Woudschoten October 2014 High freq. problem for the Helmholtz equation Given an object Ω R d, with

More information

The solution of time harmonic wave equations using complete families of elementary solutions

The solution of time harmonic wave equations using complete families of elementary solutions The solution of time harmonic wave equations using complete families of elementary solutions Peter Monk Department of Mathematical Sciences University of Delaware Newark, DE 19716 USA email: monk@math.udel.edu

More information

Preconditioned space-time boundary element methods for the heat equation

Preconditioned space-time boundary element methods for the heat equation W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods

More information

Finite Element Analysis of Acoustic Scattering

Finite Element Analysis of Acoustic Scattering Frank Ihlenburg Finite Element Analysis of Acoustic Scattering With 88 Illustrations Springer Contents Preface vii 1 The Governing Equations of Time-Harmonic Wave Propagation, 1 1.1 Acoustic Waves 1 1.1.1

More information

Approximation by plane and circular waves

Approximation by plane and circular waves LMS EPSRC DURHAM SYMPOSIUM, 8 16TH JULY 2014 Building Bridges: Connections and Challenges in Modern Approaches to Numerical PDEs Approximation by plane and circular waves Andrea Moiola DEPARTMENT OF MATHEMATICS

More information

Solving Time-Harmonic Scattering Problems by the Ultra Weak Variational Formulation

Solving Time-Harmonic Scattering Problems by the Ultra Weak Variational Formulation Introduction Solving Time-Harmonic Scattering Problems by the Ultra Weak Variational Formulation Plane waves as basis functions Peter Monk 1 Tomi Huttunen 2 1 Department of Mathematical Sciences University

More information

Hamburger Beiträge zur Angewandten Mathematik

Hamburger Beiträge zur Angewandten Mathematik Hamburger Beiträge zur Angewandten Mathematik Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations Klaus Deckelnick and Michael

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

Isogeometric Analysis:

Isogeometric Analysis: Isogeometric Analysis: some approximation estimates for NURBS L. Beirao da Veiga, A. Buffa, Judith Rivas, G. Sangalli Euskadi-Kyushu 2011 Workshop on Applied Mathematics BCAM, March t0th, 2011 Outline

More information

arxiv: v2 [math.na] 31 Oct 2016

arxiv: v2 [math.na] 31 Oct 2016 1 Multiscale methods for problems with comple geometry Daniel Elfverson, Mats G. Larson, and Ael Målqvist September 10, 2018 arxiv:1509.0991v2 [math.na] 1 Oct 2016 Abstract We propose a multiscale method

More information

A Numerical Study on the Weak Galerkin Method for the Helmholtz Equation

A Numerical Study on the Weak Galerkin Method for the Helmholtz Equation Commun. Comput. Phys. doi: 1.428/cicp.251112.21113a Vol. 15, No. 5, pp. 1461-1479 May 214 A Numerical Study on the Weak Galerkin Method for the Helmholtz Equation Lin Mu 1, Junping Wang 2, Xiu Ye 3 and

More information

Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives

Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives Supraconvergence of a Non-Uniform Discretisation for an Elliptic Third-Kind Boundary-Value Problem with Mixed Derivatives Etienne Emmrich Technische Universität Berlin, Institut für Mathematik, Straße

More information

ICES REPORT Wavenumber Explicit Analysis for a DPG Method for the Multidimensional Helmholtz Equation

ICES REPORT Wavenumber Explicit Analysis for a DPG Method for the Multidimensional Helmholtz Equation ICES REPORT 11-24 July 2011 Wavenumber Explicit Analysis for a DPG Method for the Multidimensional Helmholtz Equation by L. Demkowicz, J. Gopalakrishnan, I. Muga, and J. Zitelli The Institute for Computational

More information

New DPG techniques for designing numerical schemes

New DPG techniques for designing numerical schemes New DPG techniques for designing numerical schemes Jay Gopalakrishnan University of Florida Collaborator: Leszek Demkowicz October 2009 Massachusetts Institute of Technology, Boston Thanks: NSF Jay Gopalakrishnan

More information

Riesz bases of Floquet modes in semi-infinite periodic waveguides and implications

Riesz bases of Floquet modes in semi-infinite periodic waveguides and implications Riesz bases of Floquet modes in semi-infinite periodic waveguides and implications Thorsten Hohage joint work with Sofiane Soussi Institut für Numerische und Angewandte Mathematik Georg-August-Universität

More information

A generalized finite element method for linear thermoelasticity

A generalized finite element method for linear thermoelasticity Thesis for the Degree of Licentiate of Philosophy A generalized finite element method for linear thermoelasticity Anna Persson Division of Mathematics Department of Mathematical Sciences Chalmers University

More information

Space-time sparse discretization of linear parabolic equations

Space-time sparse discretization of linear parabolic equations Space-time sparse discretization of linear parabolic equations Roman Andreev August 2, 200 Seminar for Applied Mathematics, ETH Zürich, Switzerland Support by SNF Grant No. PDFMP2-27034/ Part of PhD thesis

More information

FINITE ELEMENT SOLUTION OF SCATTERING IN COUPLED FLUID-SOLID SYSTEMS by Mirela O. Popa B.S., Harvey Mudd College, Claremont CA, 1995 M.S.

FINITE ELEMENT SOLUTION OF SCATTERING IN COUPLED FLUID-SOLID SYSTEMS by Mirela O. Popa B.S., Harvey Mudd College, Claremont CA, 1995 M.S. FINITE ELEMENT SOLUTION OF SCATTERING IN COUPLED FLUID-SOLID SYSTEMS by Mirela O. Popa B.S., Harvey Mudd College, Claremont CA, 995 M.S., University of Colorado at Denver, 997 A thesis submitted to the

More information

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes Dylan Copeland 1, Ulrich Langer 2, and David Pusch 3 1 Institute of Computational Mathematics,

More information

Space time finite and boundary element methods

Space time finite and boundary element methods Space time finite and boundary element methods Olaf Steinbach Institut für Numerische Mathematik, TU Graz http://www.numerik.math.tu-graz.ac.at based on joint work with M. Neumüller, H. Yang, M. Fleischhacker,

More information

An A Posteriori Error Estimate for Discontinuous Galerkin Methods

An A Posteriori Error Estimate for Discontinuous Galerkin Methods An A Posteriori Error Estimate for Discontinuous Galerkin Methods Mats G Larson mgl@math.chalmers.se Chalmers Finite Element Center Mats G Larson Chalmers Finite Element Center p.1 Outline We present an

More information

High Frequency Scattering by Convex Polygons Stephen Langdon

High Frequency Scattering by Convex Polygons Stephen Langdon Bath, October 28th 2005 1 High Frequency Scattering by Convex Polygons Stephen Langdon University of Reading, UK Joint work with: Simon Chandler-Wilde Steve Arden Funded by: Leverhulme Trust University

More information

A posteriori error estimates for Maxwell Equations

A posteriori error estimates for Maxwell Equations www.oeaw.ac.at A posteriori error estimates for Maxwell Equations J. Schöberl RICAM-Report 2005-10 www.ricam.oeaw.ac.at A POSTERIORI ERROR ESTIMATES FOR MAXWELL EQUATIONS JOACHIM SCHÖBERL Abstract. Maxwell

More information

Operator Upscaling for the Wave Equation

Operator Upscaling for the Wave Equation Operator Upscaling for the Wave Equation Tetyana Vdovina Susan E. Minkoff UMBC), Oksana Korostyshevskaya Department of Computational and Applied Mathematics Rice University, Houston TX vdovina@caam.rice.edu

More information

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

Coercivity of high-frequency scattering problems

Coercivity of high-frequency scattering problems Coercivity of high-frequency scattering problems Valery Smyshlyaev Department of Mathematics, University College London Joint work with: Euan Spence (Bath), Ilia Kamotski (UCL); Comm Pure Appl Math 2015.

More information

A Posteriori Error Estimation for Highly Indefinite Helmholtz Problems

A Posteriori Error Estimation for Highly Indefinite Helmholtz Problems Computational Methods in Applied Mathematics Vol. 13 013), No. 3, pp. 333 347 c 013 Institute of Mathematics, NAS of Belarus Doi: 10.1515/cmam-013-0008 A Posteriori Error Estimation for Highly Indefinite

More information

Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media

Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Raytcho Lazarov & Aziz Takhirov Texas A&M May 3-4, 2016 R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 1 / 30 Outline

More information

Discontinuous Petrov-Galerkin Methods

Discontinuous Petrov-Galerkin Methods Discontinuous Petrov-Galerkin Methods Friederike Hellwig 1st CENTRAL School on Analysis and Numerics for Partial Differential Equations, November 12, 2015 Motivation discontinuous Petrov-Galerkin (dpg)

More information

1 domain-based methods: convergence analysis for hp-fem. 2 discussion of some non-standard FEMs. 3 BEM for Helmholtz problems.

1 domain-based methods: convergence analysis for hp-fem. 2 discussion of some non-standard FEMs. 3 BEM for Helmholtz problems. outline Helmholtz problems at large wavenumber k joint work with S. Sauter (Zürich) M. Löhndorf (Vienna) S. Langdon (Reading) 1 domain-based methods: convergence analysis for hp-fem 2 discussion of some

More information

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION Proceedings of ALGORITMY pp. 9 3 FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION JAN STEBEL Abstract. The paper deals with the numerical simulations of steady flows

More information

An Adaptive Finite Element Method for the Wave Scattering with Transparent Boundary Condition

An Adaptive Finite Element Method for the Wave Scattering with Transparent Boundary Condition Noname manuscript No. will be inserted by the editor An Adaptive Finite Element Method for the Wave Scattering with Transparent Boundary Condition Xue Jiang Peijun Li Junliang Lv Weiying Zheng eceived:

More information

Final Ph.D. Progress Report. Integration of hp-adaptivity with a Two Grid Solver: Applications to Electromagnetics. David Pardo

Final Ph.D. Progress Report. Integration of hp-adaptivity with a Two Grid Solver: Applications to Electromagnetics. David Pardo Final Ph.D. Progress Report Integration of hp-adaptivity with a Two Grid Solver: Applications to Electromagnetics. David Pardo Dissertation Committee: I. Babuska, L. Demkowicz, C. Torres-Verdin, R. Van

More information

plasmas Lise-Marie Imbert-Gérard, Bruno Després. July 27th 2011 Laboratoire J.-L. LIONS, Université Pierre et Marie Curie, Paris.

plasmas Lise-Marie Imbert-Gérard, Bruno Després. July 27th 2011 Laboratoire J.-L. LIONS, Université Pierre et Marie Curie, Paris. Lise-Marie Imbert-Gérard, Bruno Després. Laboratoire J.-L. LIONS, Université Pierre et Marie Curie, Paris. July 27th 2011 1 Physical and mathematical motivations 2 approximation of the solutions 3 4 Plan

More information

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO PREPRINT 2010:23 A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

1. How do error estimators for the Galerkin FEM depend on &, ft? 2. Can the classical Galerkin approach be improved towards a linear rule?

1. How do error estimators for the Galerkin FEM depend on &, ft? 2. Can the classical Galerkin approach be improved towards a linear rule? Reliability of finite element methods for the numerical computation of waves F. Ihlenburg*, I. Babuska*, S. Sauted "Institute for Physical Science and Technology, University of Maryland at College Park,

More information

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS PARTITION OF UNITY FOR THE STOES PROBLEM ON NONMATCHING GRIDS CONSTANTIN BACUTA AND JINCHAO XU Abstract. We consider the Stokes Problem on a plane polygonal domain Ω R 2. We propose a finite element method

More information

Trefftz-DG solution to the Helmholtz equation involving integral equations

Trefftz-DG solution to the Helmholtz equation involving integral equations Trefftz-DG solution to the Helmholtz equation involving integral equations H. Barucq, A. Bendali, M. Fares, V. Mattesi, S. Tordeux Magique 3D Inria Bordeaux Sud Ouest LMA UMR CNRS 5142 INSA of Toulouse

More information

Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media

Numerical Methods and Algorithms for High Frequency Wave Scattering Problems in Homogeneous and Random Media University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-014 Numerical Methods and Algorithms for High Frequency Wave Scattering Problems

More information

NUMERICAL STUDIES OF VARIATIONAL-TYPE TIME-DISCRETIZATION TECHNIQUES FOR TRANSIENT OSEEN PROBLEM

NUMERICAL STUDIES OF VARIATIONAL-TYPE TIME-DISCRETIZATION TECHNIQUES FOR TRANSIENT OSEEN PROBLEM Proceedings of ALGORITMY 212 pp. 44 415 NUMERICAL STUDIES OF VARIATIONAL-TYPE TIME-DISCRETIZATION TECHNIQUES FOR TRANSIENT OSEEN PROBLEM NAVEED AHMED AND GUNAR MATTHIES Abstract. In this paper, we combine

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions

A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions Zhiqiang Cai Seokchan Kim Sangdong Kim Sooryun Kong Abstract In [7], we proposed a new finite element method

More information

WELL POSEDNESS OF PROBLEMS I

WELL POSEDNESS OF PROBLEMS I Finite Element Method 85 WELL POSEDNESS OF PROBLEMS I Consider the following generic problem Lu = f, where L : X Y, u X, f Y and X, Y are two Banach spaces We say that the above problem is well-posed (according

More information

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain March 4-5, 2015 Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain M. Bonnasse-Gahot 1,2, H. Calandra 3, J. Diaz 1 and S. Lanteri 2

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

Space time finite element methods in biomedical applications

Space time finite element methods in biomedical applications Space time finite element methods in biomedical applications Olaf Steinbach Institut für Angewandte Mathematik, TU Graz http://www.applied.math.tugraz.at SFB Mathematical Optimization and Applications

More information

BETI for acoustic and electromagnetic scattering

BETI for acoustic and electromagnetic scattering BETI for acoustic and electromagnetic scattering O. Steinbach, M. Windisch Institut für Numerische Mathematik Technische Universität Graz Oberwolfach 18. Februar 2010 FWF-Project: Data-sparse Boundary

More information

Convergence and optimality of an adaptive FEM for controlling L 2 errors

Convergence and optimality of an adaptive FEM for controlling L 2 errors Convergence and optimality of an adaptive FEM for controlling L 2 errors Alan Demlow (University of Kentucky) joint work with Rob Stevenson (University of Amsterdam) Partially supported by NSF DMS-0713770.

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2003) 94: 195 202 Digital Object Identifier (DOI) 10.1007/s002110100308 Numerische Mathematik Some observations on Babuška and Brezzi theories Jinchao Xu, Ludmil Zikatanov Department of Mathematics,

More information

Maximum norm estimates for energy-corrected finite element method

Maximum norm estimates for energy-corrected finite element method Maximum norm estimates for energy-corrected finite element method Piotr Swierczynski 1 and Barbara Wohlmuth 1 Technical University of Munich, Institute for Numerical Mathematics, piotr.swierczynski@ma.tum.de,

More information

Besov regularity for operator equations on patchwise smooth manifolds

Besov regularity for operator equations on patchwise smooth manifolds on patchwise smooth manifolds Markus Weimar Philipps-University Marburg Joint work with Stephan Dahlke (PU Marburg) Mecklenburger Workshop Approximationsmethoden und schnelle Algorithmen Hasenwinkel, March

More information

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations Marcella Bonazzoli 2, Victorita Dolean 1,4, Ivan G. Graham 3, Euan A. Spence 3, Pierre-Henri Tournier

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz A note on the stable coupling of finite and boundary elements O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2009/4 Technische Universität Graz A

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

When all else fails, integrate by parts an overview of new and old variational formulations for linear elliptic PDEs

When all else fails, integrate by parts an overview of new and old variational formulations for linear elliptic PDEs When all else fails, integrate by parts an overview of new and old variational formulations for linear elliptic PDEs E. A. Spence December 31, 2014 Abstract We give an overview of variational formulations

More information

Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations

Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations Igor Mozolevski, Endre Süli Federal University of Santa Catarina, Brazil Oxford University Computing Laboratory,

More information

ICES REPORT Analysis of the DPG Method for the Poisson Equation

ICES REPORT Analysis of the DPG Method for the Poisson Equation ICES REPORT 10-37 September 2010 Analysis of the DPG Method for the Poisson Equation by L. Demkowicz and J. Gopalakrishnan The Institute for Computational Engineering and Sciences The University of Texas

More information

Acoustic and electromagnetic transmission problems: wavenumber-explicit bounds and resonance-free regions

Acoustic and electromagnetic transmission problems: wavenumber-explicit bounds and resonance-free regions WONAPDE, COMPUTATIONAL ELECTROMAGNETISM MS, CONCEPCIÓN, 21 25 JANUARY 2019 Acoustic and electromagnetic transmission problems: wavenumber-explicit bounds and resonance-free regions Andrea Moiola Joint

More information

Checkerboard instabilities in topological shape optimization algorithms

Checkerboard instabilities in topological shape optimization algorithms Checkerboard instabilities in topological shape optimization algorithms Eric Bonnetier, François Jouve Abstract Checkerboards instabilities for an algorithm of topological design are studied on a simple

More information

A spacetime DPG method for acoustic waves

A spacetime DPG method for acoustic waves A spacetime DPG method for acoustic waves Rainer Schneckenleitner JKU Linz January 30, 2018 ( JKU Linz ) Spacetime DPG method January 30, 2018 1 / 41 Overview 1 The transient wave problem 2 The broken

More information

Variational Formulations

Variational Formulations Chapter 2 Variational Formulations In this chapter we will derive a variational (or weak) formulation of the elliptic boundary value problem (1.4). We will discuss all fundamental theoretical results that

More information

Robust exponential convergence of hp-fem for singularly perturbed systems of reaction-diffusion equations

Robust exponential convergence of hp-fem for singularly perturbed systems of reaction-diffusion equations Robust exponential convergence of hp-fem for singularly perturbed systems of reaction-diffusion equations Christos Xenophontos Department of Mathematics and Statistics University of Cyprus joint work with

More information

Space-time XFEM for two-phase mass transport

Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Christoph Lehrenfeld joint work with Arnold Reusken EFEF, Prague, June 5-6th 2015 Christoph Lehrenfeld EFEF, Prague,

More information

Relaxing the CFL condition for the wave equation on adaptive meshes

Relaxing the CFL condition for the wave equation on adaptive meshes Wegelerstraße 6 53115 Bonn Germany phone +49 228 73-3427 fax +49 228 73-7527 www.ins.uni-bonn.de D. Peterseim, M. Schedensack Relaxing the CFL condition for the wave equation on adaptive meshes INS Preprint

More information

Is the Helmholtz Equation Really Sign-Indefinite?

Is the Helmholtz Equation Really Sign-Indefinite? SIAM REVIEW Vol. 56, No. 2, pp. 274 312 c 2014 Society for Industrial and Applied Mathematics Is the Helmholtz Equation Really Sign-Indefinite? Andrea Moiola Euan A. Spence Abstract. The usual variational

More information

arxiv: v3 [math.na] 10 Dec 2015

arxiv: v3 [math.na] 10 Dec 2015 arxiv:1410.0293v3 [math.na] 10 Dec 2015 Localized Harmonic Characteristic Basis Functions for Multiscale Finite Element Methods Leonardo A. Poveda Sebastian Huepo Juan Galvis Contents Victor M. Calo October

More information

Numerical Solution I

Numerical Solution I Numerical Solution I Stationary Flow R. Kornhuber (FU Berlin) Summerschool Modelling of mass and energy transport in porous media with practical applications October 8-12, 2018 Schedule Classical Solutions

More information

Yongdeok Kim and Seki Kim

Yongdeok Kim and Seki Kim J. Korean Math. Soc. 39 (00), No. 3, pp. 363 376 STABLE LOW ORDER NONCONFORMING QUADRILATERAL FINITE ELEMENTS FOR THE STOKES PROBLEM Yongdeok Kim and Seki Kim Abstract. Stability result is obtained for

More information

The Mortar Boundary Element Method

The Mortar Boundary Element Method The Mortar Boundary Element Method A Thesis submitted for the degree of Doctor of Philosophy by Martin Healey School of Information Systems, Computing and Mathematics Brunel University March 2010 Abstract

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Stability of the Laplace single layer boundary integral operator in Sobolev spaces O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2016/2 Technische

More information

When is the error in the h BEM for solving the Helmholtz equation bounded independently of k?

When is the error in the h BEM for solving the Helmholtz equation bounded independently of k? BIT manuscript No. (will be inserted by the editor) When is the error in the h BEM for solving the Helmholtz equation bounded independently of k? I. G. Graham M. Löhndorf J. M. Melenk E. A. Spence Received:

More information

Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation

Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2011 Wavenumber explicit convergence analysis for Galerkin discretizations

More information

Institut de Recherche MAthématique de Rennes

Institut de Recherche MAthématique de Rennes LMS Durham Symposium: Computational methods for wave propagation in direct scattering. - July, Durham, UK The hp version of the Weighted Regularization Method for Maxwell Equations Martin COSTABEL & Monique

More information

Splitting methods with boundary corrections

Splitting methods with boundary corrections Splitting methods with boundary corrections Alexander Ostermann University of Innsbruck, Austria Joint work with Lukas Einkemmer Verona, April/May 2017 Strang s paper, SIAM J. Numer. Anal., 1968 S (5)

More information

Multigrid Methods for Saddle Point Problems

Multigrid Methods for Saddle Point Problems Multigrid Methods for Saddle Point Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University Advances in Mathematics of Finite Elements (In

More information

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé CMCS/IACS Ecole Polytechnique Federale de Lausanne Erik.Burman@epfl.ch Méthodes Numériques

More information

Multigrid Methods for Maxwell s Equations

Multigrid Methods for Maxwell s Equations Multigrid Methods for Maxwell s Equations Jintao Cui Institute for Mathematics and Its Applications University of Minnesota Outline Nonconforming Finite Element Methods for a Two Dimensional Curl-Curl

More information

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION JOHNNY GUZMÁN, ABNER J. SALGADO, AND FRANCISCO-JAVIER SAYAS Abstract. The analysis of finite-element-like Galerkin discretization techniques for the

More information

Sparse Tensor Galerkin Discretizations for First Order Transport Problems

Sparse Tensor Galerkin Discretizations for First Order Transport Problems Sparse Tensor Galerkin Discretizations for First Order Transport Problems Ch. Schwab R. Hiptmair, E. Fonn, K. Grella, G. Widmer ETH Zürich, Seminar for Applied Mathematics IMA WS Novel Discretization Methods

More information

Mixed Multiscale Methods for Heterogeneous Elliptic Problems

Mixed Multiscale Methods for Heterogeneous Elliptic Problems Mixed Multiscale Methods for Heterogeneous Elliptic Problems Todd Arbogast Abstract We consider a second order elliptic problem written in mixed form, i.e., as a system of two first order equations. Such

More information

From Completing the Squares and Orthogonal Projection to Finite Element Methods

From Completing the Squares and Orthogonal Projection to Finite Element Methods From Completing the Squares and Orthogonal Projection to Finite Element Methods Mo MU Background In scientific computing, it is important to start with an appropriate model in order to design effective

More information

Unique continuation for the Helmholtz equation using a stabilized finite element method

Unique continuation for the Helmholtz equation using a stabilized finite element method Unique continuation for the Helmholtz equation using a stabilized finite element method Lauri Oksanen University College London Based on a joint work with Erik Burman and Mihai Nechita Motivation: recovering

More information

On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations

On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations Lutz Tobiska Institut für Analysis und Numerik Otto-von-Guericke-Universität

More information

arxiv: v1 [math.na] 29 Feb 2016

arxiv: v1 [math.na] 29 Feb 2016 EFFECTIVE IMPLEMENTATION OF THE WEAK GALERKIN FINITE ELEMENT METHODS FOR THE BIHARMONIC EQUATION LIN MU, JUNPING WANG, AND XIU YE Abstract. arxiv:1602.08817v1 [math.na] 29 Feb 2016 The weak Galerkin (WG)

More information

ON A PRIORI ERROR ANALYSIS OF FULLY DISCRETE HETEROGENEOUS MULTISCALE FEM

ON A PRIORI ERROR ANALYSIS OF FULLY DISCRETE HETEROGENEOUS MULTISCALE FEM MULTISCALE MODEL. SIMUL. Vol. 4, No. 2, pp. 447 459 c 2005 Society for Industrial and Applied Mathematics ON A PRIORI ERROR ANALYSIS OF FULLY DISCRETE HETEROGENEOUS MULTISCALE FEM ASSYR ABDULLE Abstract.

More information

A posteriori error estimation of approximate boundary fluxes

A posteriori error estimation of approximate boundary fluxes COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2008; 24:421 434 Published online 24 May 2007 in Wiley InterScience (www.interscience.wiley.com)..1014 A posteriori error estimation

More information

ON THE EXISTENCE OF TRANSMISSION EIGENVALUES. Andreas Kirsch1

ON THE EXISTENCE OF TRANSMISSION EIGENVALUES. Andreas Kirsch1 Manuscript submitted to AIMS Journals Volume 3, Number 2, May 29 Website: http://aimsciences.org pp. 1 XX ON THE EXISTENCE OF TRANSMISSION EIGENVALUES Andreas Kirsch1 University of Karlsruhe epartment

More information