Projection Methods for Rotating Flow

Size: px
Start display at page:

Download "Projection Methods for Rotating Flow"

Transcription

1 Projection Methods for Rotating Flow Daniel Arndt Gert Lube Georg-August-Universität Göttingen Institute for Numerical and Applied Mathematics IACM - ECCOMAS 2014 Computational Modeling of Turbulent and Complex Flows with Applications I July 24th 2014

2 Overview 1 Introduction 2 Time discretization 3 Stabilized Spatial Discretization 4 Numerical Results Daniel Arndt Projection Methods for Rotating Flow 2

3 Overview 1 Introduction 2 Time discretization 3 Stabilized Spatial Discretization 4 Numerical Results Daniel Arndt Projection Methods for Rotating Flow 3

4 Setting Navier Stokes Equations in an Inertial Frame of Reference u t + (u )u ν u + p = f in Ω (0, T ] Ω R d bounded polyhedral domain u = 0 in Ω (0, T ] Navier Stokes Equations in a Rotating Frame of Reference v t + (v )v ν v + 2ω v + p = f in Ω (0, T ] v = 0 in Ω (0, T ] ω (ω r) = 1 2 (ω r)2 p = p 1 (ω r)2 2 Daniel Arndt Projection Methods for Rotating Flow 4

5 Setting Navier Stokes Equations in an Inertial Frame of Reference u t + (u )u ν u + p = f in Ω (0, T ] Ω R d bounded polyhedral domain u = 0 in Ω (0, T ] Navier Stokes Equations in a Rotating Frame of Reference v t + (v )v ν v + 2ω v + p = f in Ω (0, T ] v = 0 in Ω (0, T ] ω (ω r) = 1 2 (ω r)2 p = p 1 (ω r)2 2 Daniel Arndt Projection Methods for Rotating Flow 4

6 Overview 1 Introduction 2 Time discretization 3 Stabilized Spatial Discretization 4 Numerical Results Daniel Arndt Projection Methods for Rotating Flow 5

7 Pressure-Correction Scheme, Diffusion step Find ũ k+1 such that and satisfying 1 2 t (3ũk+1 4u k + u k 1 ) + (u ũ k ( u )ũ k+1 ) ν 2 ũ k+1 + 2ω ũ k+1 + p k = f(t k+1 ) in Ω ũ k+1 = 0 on Ω. Daniel Arndt Projection Methods for Rotating Flow 6

8 Pressure-Correction Scheme, Projection step Find (u k+1, p k+1 ) such that and satisfying 1 2 t (3uk+1 3ũ k+1 ) + φ k+1 = 0 in Ω u k+1 = 0, u k+1 n Ω = 0 in Ω u k+1 n = 0 on Ω. The updated pressure is then given by where α {0, 1}. p k+1 = φ k+1 + p k αν ũ k+1 Daniel Arndt Projection Methods for Rotating Flow 7

9 Standard Pressure-Correction Scheme, Error Estimates Theorem (Rates of convergence for α = 0) Provided (u, p) is sufficiently smooth, (u t, ũ t, p t ) satisfies u u t l 2 ([L 2 (Ω)] d ) + u ũ t l 2 ([L 2 (Ω)] d ) C t 2 p p t l (L 2 (Ω)) + u ũ t l ([H 1 (Ω)] d ) C t Proof. Similar to the proof by Guermond and Shen in [GS04] Remark p k+1 n Ω =... = p 0 n Ω non-physical Neumann boundary condition leads to numerical boundary layer, reducing the order of convergence the splitting-error is of size O( t 2 ) Daniel Arndt Projection Methods for Rotating Flow 8

10 Rotational Pressure-Correction Scheme, Error Estimates Theorem (Rates of convergence for α = 1) Provided (u, p) is sufficiently smooth, (u t, ũ t, p t ) satisfies Proof. u u t l 2 ([L 2 (Ω)] d ) + u ũ t l 2 ([L 2 (Ω)] d ) C t 2 u u t l 2 ([H 1 (Ω)] d ) + u ũ t l 2 ([H 1 (Ω)] d ) C t 3 2 p p t l 2 (L 2 (Ω)) C t 3 2 Similar to the proof by Guermond and Shen in [GS04] Remark p k+1 n Ω = (f(t k+1 ) ν u k+1 ) n Ω is a consistent pressure boundary condition the splitting-error is of size O( t 2 ) Daniel Arndt Projection Methods for Rotating Flow 9

11 Overview 1 Introduction 2 Time discretization 3 Stabilized Spatial Discretization 4 Numerical Results Daniel Arndt Projection Methods for Rotating Flow 10

12 Weak Formulation Find U = (u, p) : (0, T ) V Q = [H0 1(Ω)]d L 2 0 (Ω), such that where ( t u, v) + A G (u, U, V) = (f, v) V = (v, q) V Q A G (w; U, V) := a G (U, V) + c(w; u, v) a G (U, V) := ν( u, v) + (2ω u, v) (p, v) + (q, u) c(w, u, v) := ((w )u, v) ((w )v, u) 2 Daniel Arndt Projection Methods for Rotating Flow 11

13 Local Projection Stabilization Idea Separate discrete function spaces into small and large scales Add stabilization terms only on small scales. Notations and prerequisites Family of shape-regular macro decompositions {M h } Let D M [L (M)] d denote a FE space on M M h for u h. For each M M h, let π M : [L 2 (M)] d D M be the orthogonal L 2 -projection. κ M = Id πh u fluctuation operator Averaged streamline direction u M R d : u M C u L (M), u u M L (M) Ch M u W 1, (M) Daniel Arndt Projection Methods for Rotating Flow 12

14 Local Projection Stabilization Idea Separate discrete function spaces into small and large scales Add stabilization terms only on small scales. Notations and prerequisites Family of shape-regular macro decompositions {M h } Let D M [L (M)] d denote a FE space on M M h for u h. For each M M h, let π M : [L 2 (M)] d D M be the orthogonal L 2 -projection. κ M = Id πh u fluctuation operator Averaged streamline direction u M R d : u M C u L (M), u u M L (M) Ch M u W 1, (M) Daniel Arndt Projection Methods for Rotating Flow 12

15 Assumptions Assumption (A.1) Consider FE spaces (V h, Q h ) satisfying a discrete inf-sup-condition: inf sup q Q h \{0} v V h \{0} ( v, q) v L 2 (Ω) q L 2 (Ω) β > 0 V h div := {v h V h ( v h, q h ) = 0 q h Q h } {0} Assumption (A.2) The fluctuation operator κ M = id π M provides the approximation property (depending on D M and s {0,, k}): κ M w L 2 (M) Ch l M w W l,2 (M), w W l,2 (M), M M h, l s. A sufficient condition for (A.2) is P s 1 D M. Daniel Arndt Projection Methods for Rotating Flow 13

16 Assumptions Assumption (A.3) Let the FE space V h satisfy the local inverse inequality v h L2 (M) Ch 1 M v h L2 (M) v h V h, M M h. Assumption (A.4) There are (quasi-)interpolation operators j u : V V h and j p : Q Q h such that for all M M h, for all w V [W l,2 (Ω)] d with 2 l k + 1: w j u w L 2 (M) + h M (w j u w) L 2 (M) Ch l M w W l,2 (ω M ) and for all q Q H l (M) with 2 l k on a suitable patch ω M M: q j p q L2 (M) + h M (q j p q) L 2 (M) Ch l M q W l,2 (ω M ) v j u v L (M) Ch M v W 1, (M) v [W 1, (M)] d. Daniel Arndt Projection Methods for Rotating Flow 14

17 Stabilization Terms LPS Streamline upwind Petrov-Galerkin (SUPG) s h (w h ; u, v) := τ M (w M )(κ M ((w M )u), κ M ((w M )v)) M M M h div-div t h (w h ; u, v) := M M h γ M (w M )( u, v) M LPS Coriolis stabilization a h (w h ; u h, v h ) := α M (w M )(κ(ω M u h ), κ(ω M v h )) M M M h Daniel Arndt Projection Methods for Rotating Flow 15

18 Stability and Existence Stabilized Problem Find U h = (u h, p h ) : (0, T ) V h div Q h, s.t. V h = (v h, q h ) V h div Q h ( tu h, v h ) + A G (u h ; U h, V h ) + (s h + t h + a h )(u h ; u h, v h ) = (f, v h ) Stability Define for V V Q the norm V 2 LPS := ν v 2 + (s h + t h + a h )(V, V). Then the following stability result holds: u h (t) 2 L 2 (Ω) + t 0 U h (s) 2 LPS ds u h (0) 2 L 2 (Ω) + 3 f 2 L 2 (0,T ;L 2 (Ω)) Corollary (using the generalized Peano theorem) discrete solution u h : [0, T ] V h div for the LPS model. Daniel Arndt Projection Methods for Rotating Flow 16

19 Stability and Existence Stabilized Problem Find U h = (u h, p h ) : (0, T ) V h div Q h, s.t. V h = (v h, q h ) V h div Q h ( tu h, v h ) + A G (u h ; U h, V h ) + (s h + t h + a h )(u h ; u h, v h ) = (f, v h ) Stability Define for V V Q the norm V 2 LPS := ν v 2 + (s h + t h + a h )(V, V). Then the following stability result holds: u h (t) 2 L 2 (Ω) + t 0 U h (s) 2 LPS ds u h (0) 2 L 2 (Ω) + 3 f 2 L 2 (0,T ;L 2 (Ω)) Corollary (using the generalized Peano theorem) discrete solution u h : [0, T ] V h div for the LPS model. Daniel Arndt Projection Methods for Rotating Flow 16

20 Stability and Existence Stabilized Problem Find U h = (u h, p h ) : (0, T ) V h div Q h, s.t. V h = (v h, q h ) V h div Q h ( tu h, v h ) + A G (u h ; U h, V h ) + (s h + t h + a h )(u h ; u h, v h ) = (f, v h ) Stability Define for V V Q the norm V 2 LPS := ν v 2 + (s h + t h + a h )(V, V). Then the following stability result holds: u h (t) 2 L 2 (Ω) + t 0 U h (s) 2 LPS ds u h (0) 2 L 2 (Ω) + 3 f 2 L 2 (0,T ;L 2 (Ω)) Corollary (using the generalized Peano theorem) discrete solution u h : [0, T ] V h div for the LPS model. Daniel Arndt Projection Methods for Rotating Flow 16

21 Theorem (A., Lube 2014) Assume a solution according to u [L (0, T ; W 1, (Ω)) L 2 (0, T ; [W k+1,2 (Ω))] d, tu [L 2 (0, T ; W k,2 (Ω))] d, p L 2 (0, T ; W k,2 (Ω)). Let be u h (0) = j uu 0. Then we obtain for e h = u h j uu: e h 2 L (0,t);L 2 (Ω)) + C M h 2k M t 0 t e C G (u)(t τ) 0 e h (τ) 2 LPSdτ [ min ( d ν, 1 ) p(τ) 2 W γ k,2 (ω M ) M + (1 + νrem 2 + τ M u M 2 + dγ M + α M ω 2 L (M)hM 2 ( ) + τ M u M 2 + α M hm ω 2 2 L (M) h 2(s k) M u(τ) 2 W s+1,2 (ω M ) ] + tu(τ) 2 W k,2 (ω M ) dτ ) u(τ) 2 W k+1,2 (ω M ) with Re M := h M u L (M), s {0,, k} and the Gronwall constant ν C G (u) = 1 + C u L (0,T ;W 1, (Ω)) + Ch u 2 L (0,T ;W 1, (Ω)) Daniel Arndt Projection Methods for Rotating Flow 17

22 Theorem (A., Lube 2014) Assume a solution according to u [L (0, T ; W 1, (Ω)) L 2 (0, T ; [W k+1,2 (Ω))] d, tu [L 2 (0, T ; W k,2 (Ω))] d, p L 2 (0, T ; W k,2 (Ω)). Let be u h (0) = j uu 0. Then we obtain for e h = u h j uu: e h 2 L (0,t);L 2 (Ω)) + C M h 2k M t 0 t e C G (u)(t τ) 0 e h (τ) 2 LPSdτ [ min ( d ν, 1 ) p(τ) 2 W γ k,2 (ω M ) M + (1 + νrem 2 + τ M u M 2 + dγ M + α M ω 2 L (M)hM 2 ( ) + τ M u M 2 + α M hm ω 2 2 L (M) h 2(s k) M u(τ) 2 W s+1,2 (ω M ) ] + tu(τ) 2 W k,2 (ω M ) dτ ) u(τ) 2 W k+1,2 (ω M ) with Re M := h M u L (M), s {0,, k} and the Gronwall constant ν C G (u) = 1 + C u L (0,T ;W 1, (Ω)) + Ch u 2 L (0,T ;W 1, (Ω)) Daniel Arndt Projection Methods for Rotating Flow 17

23 Theorem (A., Lube 2014) Assume a solution according to u [L (0, T ; W 1, (Ω)) L 2 (0, T ; [W k+1,2 (Ω))] d, tu [L 2 (0, T ; W k,2 (Ω))] d, p L 2 (0, T ; W k,2 (Ω)). Let be u h (0) = j uu 0. Then we obtain for e h = u h j uu: e h 2 L (0,t);L 2 (Ω)) + C M h 2k M t 0 t e C G (u)(t τ) 0 e h (τ) 2 LPSdτ [ min ( d ν, 1 ) p(τ) 2 W γ k,2 (ω M ) M + (1 + νrem 2 + τ M u M 2 + dγ M + α M ω 2 L (M)hM 2 ( ) + τ M u M 2 + α M hm ω 2 2 L (M) h 2(s k) M u(τ) 2 W s+1,2 (ω M ) ] + tu(τ) 2 W k,2 (ω M ) dτ ) u(τ) 2 W k+1,2 (ω M ) with Re M := h M u L (M), s {0,, k} and the Gronwall constant ν C G (u) = 1 + C u L (0,T ;W 1, (Ω)) + Ch u 2 L (0,T ;W 1, (Ω)) Daniel Arndt Projection Methods for Rotating Flow 17

24 Choice of Parameters and Projection Spaces We achieve a method of order k provided τ M u M 2 h 2(s k) M νre 2 M C h M C ν u L (M) h 2(k s) M C τ M τ 0 u M 2 max{ 1 γ M, γ M } C γ M = γ 0 α M ω 2 L (M)h 2(1+s k) M h 2(k s 1) M C α M α 0 ω 2 L (M) Examples for suitable projection spaces One-Level: Q k /Q k 1 /Q t, P k /P k 1 /P t, Q k /P (k 1) /P t t k 1 Two-Level: P k /P k 1 /P t, Q k /Q k 1 /Q t, Q k /P (k 1) /P t t k 1 Daniel Arndt Projection Methods for Rotating Flow 18

25 Overview 1 Introduction 2 Time discretization 3 Stabilized Spatial Discretization 4 Numerical Results Daniel Arndt Projection Methods for Rotating Flow 19

26 Couzy Testcase Choose f such that the following pair is a solution in Ω = [0, 1] 2 : ( ( ) 1 u(x) = sin (πt) cos 2 πx ( ) 1 p(x) = π sin 2 πx sin ( 1 2 πy ( 1 sin 2 πy ) sin (πt). ) ( ) ( )) T 1 1, sin 2 πx cos 2 πy Daniel Arndt Projection Methods for Rotating Flow 20

27 Couzy Testcase, unstabilized 10 6 Ro= Ek=10 0 Ek=10 2 Ek=10 3 Ek=10 4 h 2 h 3 L 2 (u) error h Daniel Arndt Projection Methods for Rotating Flow 21

28 Couzy Testcase, stabilized 10 6 Ro= Ek=10 0 Ek=10 2 Ek=10 3 Ek=10 4 h 2 h 3 L 2 (u) error h Daniel Arndt Projection Methods for Rotating Flow 22

29 Couzy Testcase, unstabilized 10 4 Ro= Ek=10 0 Ek=10 2 Ek=10 3 Ek=10 4 h 1 h 2 H 1 (u) error h Daniel Arndt Projection Methods for Rotating Flow 23

30 Couzy Testcase, stabilized 10 4 Ro= Ek=10 0 Ek=10 2 Ek=10 3 Ek=10 4 h 1 h 2 H 1 (u) error h Daniel Arndt Projection Methods for Rotating Flow 24

31 Numerical Results, Rotating Poiseuille Flow Ω = [ 2, 2] [ 1, 1] { (1 y 2, 0) T, x = 2 u(x, y) = (0, 0) T, ( u n)(x = 2, y) = 0, y = 1 u 0 = 0, p 0 = 0, f = 0 ω = (0, 0, 100), ν = 10 3 Flow for the parameters ω = (0, 0, 1), ν = 10 1 Daniel Arndt Projection Methods for Rotating Flow 25

32 Rotating Poiseuille Flow, div-div Daniel Arndt Projection Methods for Rotating Flow 26

33 Rotating Poiseuille Flow, div-div Daniel Arndt Projection Methods for Rotating Flow 27

34 Rotating Poiseuille Flow, div-div adaptive Daniel Arndt Projection Methods for Rotating Flow 28

35 Rotating Poiseuille Flow, div-div adaptive Daniel Arndt Projection Methods for Rotating Flow 29

36 Rotating Poiseuille Flow, Coriolis Daniel Arndt Projection Methods for Rotating Flow 30

37 Rotating Poiseuille Flow, Coriolis Daniel Arndt Projection Methods for Rotating Flow 31

38 Rotating Poiseuille Flow, SUPG Daniel Arndt Projection Methods for Rotating Flow 32

39 Rotating Poiseuille Flow, SUPG Daniel Arndt Projection Methods for Rotating Flow 33

40 Rotating Poiseuille Flow, SUPG Coriolis Daniel Arndt Projection Methods for Rotating Flow 34

41 Rotating Poiseuille Flow, SUPG Coriolis Daniel Arndt Projection Methods for Rotating Flow 35

42 Rotating Poiseuille Flow, SUPG Coriolis Adaptive Daniel Arndt Projection Methods for Rotating Flow 36

43 Rotating Poiseuille Flow, SUPG Coriolis Adaptive Daniel Arndt Projection Methods for Rotating Flow 37

44 Summary Temporal Discretization Using a BDF2 approach Second order convergence in the velocity w.r.t l 2 ([L 2 (Ω)] d ) Convergence of order 3/2 in the velocity w.r.t l 2 ([H 1 (Ω)] d ) and in the pressure w.r.t l 2 ([L 2 (Ω)] d ) Spatial Discretization The Local Projection Stabilization approach provides Stability and Existence Quasi-optimal error estimates for standard discretizations (e.g. Taylor-Hood) Numerical results confirm analytical estimates Daniel Arndt Projection Methods for Rotating Flow 38

45 References A. ; Dallmann, Helene ; Lube, Gert: Local Projection FEM Stabilization for the Time-dependent Incompressible Navier-Stokes Problem. In: submitted to Numerical Methods for Partial Differential Equations (2014) Guermond, J ; Shen, Jie: On the error estimates for the rotational pressure-correction projection methods. In: Mathematics of Computation 73 (2004), Nr. 248, S Daniel Arndt Projection Methods for Rotating Flow 39

46 Thank you for your attention! Daniel Arndt Projection Methods for Rotating Flow 40

Suitability of LPS for Laminar and Turbulent Flow

Suitability of LPS for Laminar and Turbulent Flow Suitability of LPS for Laminar and Turbulent Flow Daniel Arndt Helene Dallmann Georg-August-Universität Göttingen Institute for Numerical and Applied Mathematics VMS 2015 10th International Workshop on

More information

Minimal stabilization techniques for incompressible flows

Minimal stabilization techniques for incompressible flows Minimal stabilization tecniques for incompressible flows G. Lube 1, L. Röe 1 and T. Knopp 2 1 Numerical and Applied Matematics Georg-August-University of Göttingen D-37083 Göttingen, Germany 2 German Aerospace

More information

Some remarks on grad-div stabilization of incompressible flow simulations

Some remarks on grad-div stabilization of incompressible flow simulations Some remarks on grad-div stabilization of incompressible flow simulations Gert Lube Institute for Numerical and Applied Mathematics Georg-August-University Göttingen M. Stynes Workshop Numerical Analysis

More information

Preconditioned space-time boundary element methods for the heat equation

Preconditioned space-time boundary element methods for the heat equation W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods

More information

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé CMCS/IACS Ecole Polytechnique Federale de Lausanne Erik.Burman@epfl.ch Méthodes Numériques

More information

The incompressible Navier-Stokes equations in vacuum

The incompressible Navier-Stokes equations in vacuum The incompressible, Université Paris-Est Créteil Piotr Bogus law Mucha, Warsaw University Journées Jeunes EDPistes 218, Institut Elie Cartan, Université de Lorraine March 23th, 218 Incompressible Navier-Stokes

More information

On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations

On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations Lutz Tobiska Institut für Analysis und Numerik Otto-von-Guericke-Universität

More information

Implementation of 3D Incompressible N-S Equations. Mikhail Sekachev

Implementation of 3D Incompressible N-S Equations. Mikhail Sekachev Implementation of 3D Incompressible N-S Equations Mikhail Sekachev Navier-Stokes Equations The motion of a viscous incompressible fluid is governed by the Navier-Stokes equations u + t u = ( u ) 0 Quick

More information

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1 On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1 Jie Shen Department of Mathematics, Penn State University University Park, PA 1682 Abstract. We present some

More information

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Gert Lube 1, Tobias Knopp 2, and Gerd Rapin 2 1 University of Göttingen, Institute of Numerical and Applied Mathematics (http://www.num.math.uni-goettingen.de/lube/)

More information

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems.

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems. Robust A Posteriori Error Estimates for Stabilized Finite Element s of Non-Stationary Convection-Diffusion Problems L. Tobiska and R. Verfürth Universität Magdeburg Ruhr-Universität Bochum www.ruhr-uni-bochum.de/num

More information

Optimal control in fluid mechanics by finite elements with symmetric stabilization

Optimal control in fluid mechanics by finite elements with symmetric stabilization Computational Sciences Center Optimal control in fluid mechanics by finite elements with symmetric stabilization Malte Braack Mathematisches Seminar Christian-Albrechts-Universität zu Kiel VMS Worshop

More information

ON THE ERROR ESTIMATES FOR THE ROTATIONAL PRESSURE-CORRECTION PROJECTION METHODS

ON THE ERROR ESTIMATES FOR THE ROTATIONAL PRESSURE-CORRECTION PROJECTION METHODS Submitted to Math. Comp. ON THE ERROR ESTIMATES FOR THE ROTATIONAL PRESSURE-CORRECTION PROJECTION METHODS J.L. GUERMOND 1 AND JIE SHEN 2 Abstract. In this paper we study the rotational form of the pressure-correction

More information

Analysis and Computation of Navier-Stokes equation in bounded domains

Analysis and Computation of Navier-Stokes equation in bounded domains 1 Analysis and Computation of Navier-Stokes equation in bounded domains Jian-Guo Liu Department of Physics and Department of Mathematics Duke University with Jie Liu (National University of Singapore)

More information

Approximation of fluid-structure interaction problems with Lagrange multiplier

Approximation of fluid-structure interaction problems with Lagrange multiplier Approximation of fluid-structure interaction problems with Lagrange multiplier Daniele Boffi Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/boffi May 30, 2016 Outline

More information

Variable Exponents Spaces and Their Applications to Fluid Dynamics

Variable Exponents Spaces and Their Applications to Fluid Dynamics Variable Exponents Spaces and Their Applications to Fluid Dynamics Martin Rapp TU Darmstadt November 7, 213 Martin Rapp (TU Darmstadt) Variable Exponent Spaces November 7, 213 1 / 14 Overview 1 Variable

More information

1 Introduction. J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods

1 Introduction. J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods 1 Introduction Achieving high order time-accuracy in the approximation of the incompressible Navier Stokes equations by means of fractional-step

More information

Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system

Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague joint work

More information

ON THE ERROR ESTIMATES FOR THE ROTATIONAL PRESSURE-CORRECTION PROJECTION METHODS

ON THE ERROR ESTIMATES FOR THE ROTATIONAL PRESSURE-CORRECTION PROJECTION METHODS MATHEMATICS OF COMPUTATION Volume 73, Number 248, Pages 1719 1737 S 0025-5718(03)01621-1 Article electronically published on December 19, 2003 ON THE ERROR ESTIMATES FOR THE ROTATIONAL PRESSURE-CORRECTION

More information

NUMERICAL STUDIES OF VARIATIONAL-TYPE TIME-DISCRETIZATION TECHNIQUES FOR TRANSIENT OSEEN PROBLEM

NUMERICAL STUDIES OF VARIATIONAL-TYPE TIME-DISCRETIZATION TECHNIQUES FOR TRANSIENT OSEEN PROBLEM Proceedings of ALGORITMY 212 pp. 44 415 NUMERICAL STUDIES OF VARIATIONAL-TYPE TIME-DISCRETIZATION TECHNIQUES FOR TRANSIENT OSEEN PROBLEM NAVEED AHMED AND GUNAR MATTHIES Abstract. In this paper, we combine

More information

NUMERICAL SOLUTION OF CONVECTION DIFFUSION EQUATIONS USING UPWINDING TECHNIQUES SATISFYING THE DISCRETE MAXIMUM PRINCIPLE

NUMERICAL SOLUTION OF CONVECTION DIFFUSION EQUATIONS USING UPWINDING TECHNIQUES SATISFYING THE DISCRETE MAXIMUM PRINCIPLE Proceedings of the Czech Japanese Seminar in Applied Mathematics 2005 Kuju Training Center, Oita, Japan, September 15-18, 2005 pp. 69 76 NUMERICAL SOLUTION OF CONVECTION DIFFUSION EQUATIONS USING UPWINDING

More information

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Timo Heister, Texas A&M University 2013-02-28 SIAM CSE 2 Setting Stationary, incompressible flow problems

More information

Gunar Matthies 1, Piotr Skrzypacz 2 and Lutz Tobiska 2. Introduction

Gunar Matthies 1, Piotr Skrzypacz 2 and Lutz Tobiska 2. Introduction A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLE Gunar atthies 1, Piotr Skrzypacz 2 and Lutz Tobiska 2 Abstract. The discretisation of the Oseen problem by

More information

Past, present and space-time

Past, present and space-time Past, present and space-time Arnold Reusken Chair for Numerical Mathematics RWTH Aachen Utrecht, 12.11.2015 Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 1 / 20 Outline Past. Past

More information

arxiv: v1 [math.na] 28 Apr 2017

arxiv: v1 [math.na] 28 Apr 2017 Variational Multiscale Modeling with Discontinuous Subscales: Analysis and Application to Scalar Transport arxiv:1705.00082v1 [math.na] 28 Apr 2017 Christopher Coley and John A. Evans Ann and H.J. Smead

More information

The 2D Magnetohydrodynamic Equations with Partial Dissipation. Oklahoma State University

The 2D Magnetohydrodynamic Equations with Partial Dissipation. Oklahoma State University The 2D Magnetohydrodynamic Equations with Partial Dissipation Jiahong Wu Oklahoma State University IPAM Workshop Mathematical Analysis of Turbulence IPAM, UCLA, September 29-October 3, 2014 1 / 112 Outline

More information

Some recent results for two extended Navier-Stokes systems

Some recent results for two extended Navier-Stokes systems Some recent results for two extended Navier-Stokes systems Jim Kelliher UC Riverside Joint work with Mihaela Ignatova (UCR), Gautam Iyer (Carnegie Mellon), Bob Pego (Carnegie Mellon), and Arghir Dani Zarnescu

More information

NONSTANDARD NONCONFORMING APPROXIMATION OF THE STOKES PROBLEM, I: PERIODIC BOUNDARY CONDITIONS

NONSTANDARD NONCONFORMING APPROXIMATION OF THE STOKES PROBLEM, I: PERIODIC BOUNDARY CONDITIONS NONSTANDARD NONCONFORMING APPROXIMATION OF THE STOKES PROBLEM, I: PERIODIC BOUNDARY CONDITIONS J.-L. GUERMOND 1, Abstract. This paper analyzes a nonstandard form of the Stokes problem where the mass conservation

More information

Navier-Stokes equations in thin domains with Navier friction boundary conditions

Navier-Stokes equations in thin domains with Navier friction boundary conditions Navier-Stokes equations in thin domains with Navier friction boundary conditions Luan Thach Hoang Department of Mathematics and Statistics, Texas Tech University www.math.umn.edu/ lhoang/ luan.hoang@ttu.edu

More information

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN Weierstraß-Institut für Angewandte Analysis und Stochastik Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN 946 8633 A numerical investigation of velocity-pressure reduced order models

More information

In Proc. of the V European Conf. on Computational Fluid Dynamics (ECFD), Preprint

In Proc. of the V European Conf. on Computational Fluid Dynamics (ECFD), Preprint V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 J. C. F. Pereira and A. Sequeira (Eds) Lisbon, Portugal, 14 17 June 2010 THE HIGH ORDER FINITE ELEMENT METHOD FOR STEADY CONVECTION-DIFFUSION-REACTION

More information

The Kolmogorov Law of turbulence

The Kolmogorov Law of turbulence What can rigorously be proved? IRMAR, UMR CNRS 6625. Labex CHL. University of RENNES 1, FRANCE Introduction Aim: Mathematical framework for the Kolomogorov laws. Table of contents 1 Incompressible Navier-Stokes

More information

A Numerical Investigation of Velocity-Pressure Reduced Order Models for Incompressible Flows

A Numerical Investigation of Velocity-Pressure Reduced Order Models for Incompressible Flows A Numerical Investigation of Velocity-Pressure educed Order Models for Incompressible Flows Alfonso Caiazzo a, Traian Iliescu b,1, Volker John a,c,, Swetlana Schyschlowa a a Weierstrass Institute for Applied

More information

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Universität des Saarlandes. Fachrichtung 6.1 Mathematik Universität des Saarlandes U N I V E R S I T A S S A R A V I E N I S S Fachrichtung 6.1 Mathematik Preprint Nr. 219 On finite element methods for 3D time dependent convection diffusion reaction equations

More information

SUPG Reduced Order Models for Convection-Dominated Convection-Diffusion-Reaction Equations

SUPG Reduced Order Models for Convection-Dominated Convection-Diffusion-Reaction Equations SUPG Reduced Order Models for Convection-Dominated Convection-Diffusion-Reaction Equations Swetlana Giere a,, Traian Iliescu b,1, Volker John a,c, David Wells b,1, a Weierstrass Institute for Applied Analysis

More information

Vector and scalar penalty-projection methods

Vector and scalar penalty-projection methods Numerical Flow Models for Controlled Fusion - April 2007 Vector and scalar penalty-projection methods for incompressible and variable density flows Philippe Angot Université de Provence, LATP - Marseille

More information

On the local well-posedness of compressible viscous flows with bounded density

On the local well-posedness of compressible viscous flows with bounded density On the local well-posedness of compressible viscous flows with bounded density Marius Paicu University of Bordeaux joint work with Raphaël Danchin and Francesco Fanelli Mathflows 2018, Porquerolles September

More information

A Local Projection Stabilization/Continuous Galerkin Petrov Method for Incompressible Flow Problems

A Local Projection Stabilization/Continuous Galerkin Petrov Method for Incompressible Flow Problems A Local Projection Stabilization/Continuous Galerkin Petrov Metod for Incompressible Flow Problems Naveed Amed, Volker Jon, Gunar Matties, Julia Novo Marc 22, 218 Abstract A local projection stabilization

More information

CONNECTIONS BETWEEN A CONJECTURE OF SCHIFFER S AND INCOMPRESSIBLE FLUID MECHANICS

CONNECTIONS BETWEEN A CONJECTURE OF SCHIFFER S AND INCOMPRESSIBLE FLUID MECHANICS CONNECTIONS BETWEEN A CONJECTURE OF SCHIFFER S AND INCOMPRESSIBLE FLUID MECHANICS JAMES P. KELLIHER Abstract. We demonstrate connections that exists between a conjecture of Schiffer s (which is equivalent

More information

INTRODUCTION TO PDEs

INTRODUCTION TO PDEs INTRODUCTION TO PDEs In this course we are interested in the numerical approximation of PDEs using finite difference methods (FDM). We will use some simple prototype boundary value problems (BVP) and initial

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

INCOMPRESSIBLE FLUIDS IN THIN DOMAINS WITH NAVIER FRICTION BOUNDARY CONDITIONS (II) Luan Thach Hoang. IMA Preprint Series #2406.

INCOMPRESSIBLE FLUIDS IN THIN DOMAINS WITH NAVIER FRICTION BOUNDARY CONDITIONS (II) Luan Thach Hoang. IMA Preprint Series #2406. INCOMPRESSIBLE FLUIDS IN THIN DOMAINS WITH NAVIER FRICTION BOUNDARY CONDITIONS II By Luan Thach Hoang IMA Preprint Series #2406 August 2012 INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS UNIVERSITY OF

More information

Space-time sparse discretization of linear parabolic equations

Space-time sparse discretization of linear parabolic equations Space-time sparse discretization of linear parabolic equations Roman Andreev August 2, 200 Seminar for Applied Mathematics, ETH Zürich, Switzerland Support by SNF Grant No. PDFMP2-27034/ Part of PhD thesis

More information

Three remarks on anisotropic finite elements

Three remarks on anisotropic finite elements Three remarks on anisotropic finite elements Thomas Apel Universität der Bundeswehr München Workshop Numerical Analysis for Singularly Perturbed Problems dedicated to the 60th birthday of Martin Stynes

More information

SUPG STABILIZATION PARAMETERS CALCULATED FROM THE QUADRATURE-POINT COMPONENTS OF THE ELEMENT-LEVEL MATRICES

SUPG STABILIZATION PARAMETERS CALCULATED FROM THE QUADRATURE-POINT COMPONENTS OF THE ELEMENT-LEVEL MATRICES European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 24 P. Neittaanmäki, T. Rossi, K. Majava, and O. Pironneau (eds.) W. Rodi and P. Le Quéré (assoc. eds.) Jyväskylä,

More information

PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS Jie Shen Department of Mathematics, Penn State University University Par, PA 1680, USA Abstract. We present in this

More information

A Finite Element Method for the Surface Stokes Problem

A Finite Element Method for the Surface Stokes Problem J A N U A R Y 2 0 1 8 P R E P R I N T 4 7 5 A Finite Element Method for the Surface Stokes Problem Maxim A. Olshanskii *, Annalisa Quaini, Arnold Reusken and Vladimir Yushutin Institut für Geometrie und

More information

Convergence of Finite Volumes schemes for an elliptic-hyperbolic system with boundary conditions

Convergence of Finite Volumes schemes for an elliptic-hyperbolic system with boundary conditions Convergence of Finite Volumes schemes for an elliptic-hyperbolic system with boundary conditions Marie Hélène Vignal UMPA, E.N.S. Lyon 46 Allée d Italie 69364 Lyon, Cedex 07, France abstract. We are interested

More information

STABILIZED GALERKIN FINITE ELEMENT METHODS FOR CONVECTION DOMINATED AND INCOMPRESSIBLE FLOW PROBLEMS

STABILIZED GALERKIN FINITE ELEMENT METHODS FOR CONVECTION DOMINATED AND INCOMPRESSIBLE FLOW PROBLEMS NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING BANACH CENTER PUBLICATIONS, VOLUME 29 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1994 STABILIZED GALERIN FINITE ELEMENT METHODS FOR CONVECTION

More information

J.-L. Guermond 1 FOR TURBULENT FLOWS LARGE EDDY SIMULATION MODEL A HYPERVISCOSITY SPECTRAL

J.-L. Guermond 1 FOR TURBULENT FLOWS LARGE EDDY SIMULATION MODEL A HYPERVISCOSITY SPECTRAL A HYPERVISCOSITY SPECTRAL LARGE EDDY SIMULATION MODEL FOR TURBULENT FLOWS J.-L. Guermond 1 Collaborator: S. Prudhomme 2 Mathematical Aspects of Computational Fluid Dynamics Oberwolfach November 9th to

More information

On discontinuity capturing methods for convection diffusion equations

On discontinuity capturing methods for convection diffusion equations On discontinuity capturing methods for convection diffusion equations Volker John 1 and Petr Knobloch 2 1 Universität des Saarlandes, Fachbereich 6.1 Mathematik, Postfach 15 11 50, 66041 Saarbrücken, Germany,

More information

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN Weierstraß-Institut für Angewandte Analysis und Stochastik Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN 2198-5855 SUPG reduced order models for convection-dominated convection-diffusion-reaction

More information

NONLOCAL DIFFUSION EQUATIONS

NONLOCAL DIFFUSION EQUATIONS NONLOCAL DIFFUSION EQUATIONS JULIO D. ROSSI (ALICANTE, SPAIN AND BUENOS AIRES, ARGENTINA) jrossi@dm.uba.ar http://mate.dm.uba.ar/ jrossi 2011 Non-local diffusion. The function J. Let J : R N R, nonnegative,

More information

Towards pressure-robust mixed methods for the incompressible Navier Stokes equations

Towards pressure-robust mixed methods for the incompressible Navier Stokes equations Mohrenstrasse 39 10117 Berlin Germany Tel. +49 30 20372 0 www.wias-berlin.de 2016-05-05, Pittsburgh Weierstrass Institute for Applied Analysis and Stochastics Towards pressure-robust mixed methods for

More information

Hybridized Discontinuous Galerkin Methods

Hybridized Discontinuous Galerkin Methods Hybridized Discontinuous Galerkin Methods Theory and Christian Waluga Joint work with Herbert Egger (Uni Graz) 1st DUNE User Meeting, Stuttgart Christian Waluga (AICES) HDG Methods October 6-8, 2010 1

More information

Space time finite element methods in biomedical applications

Space time finite element methods in biomedical applications Space time finite element methods in biomedical applications Olaf Steinbach Institut für Angewandte Mathematik, TU Graz http://www.applied.math.tugraz.at SFB Mathematical Optimization and Applications

More information

On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion

On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion Volker John and Ellen Schmeyer FR 6.1 Mathematik, Universität des Saarlandes, Postfach 15 11

More information

ANALYSIS OF AN INTERFACE STABILISED FINITE ELEMENT METHOD: THE ADVECTION-DIFFUSION-REACTION EQUATION

ANALYSIS OF AN INTERFACE STABILISED FINITE ELEMENT METHOD: THE ADVECTION-DIFFUSION-REACTION EQUATION ANALYSIS OF AN INTERFACE STABILISED FINITE ELEMENT METHOD: THE ADVECTION-DIFFUSION-REACTION EQUATION GARTH N. WELLS Abstract. Analysis of an interface stabilised finite element method for the scalar advectiondiffusion-reaction

More information

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Martin Eigel C. Carstensen, C. Löbhard, R.H.W. Hoppe Humboldt-Universität zu Berlin 19.05.2010 1 we know of Guidelines for Applicants

More information

A space-time Trefftz method for the second order wave equation

A space-time Trefftz method for the second order wave equation A space-time Trefftz method for the second order wave equation Lehel Banjai The Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh & Department of Mathematics, University of

More information

In honor of Prof. Hokee Minn

In honor of Prof. Hokee Minn In honor of Prof. Hokee Minn It is my greatest honor to be here today to deliver the nd Minn Hokee memorial lecture. I would like to thank the Prof. Ha for the nomination and the selecting committee for

More information

Space-time XFEM for two-phase mass transport

Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Christoph Lehrenfeld joint work with Arnold Reusken EFEF, Prague, June 5-6th 2015 Christoph Lehrenfeld EFEF, Prague,

More information

Singularly Perturbed Partial Differential Equations

Singularly Perturbed Partial Differential Equations WDS'9 Proceedings of Contributed Papers, Part I, 54 59, 29. ISN 978-8-7378--9 MTFYZPRESS Singularly Perturbed Partial Differential Equations J. Lamač Charles University, Faculty of Mathematics and Physics,

More information

ADAPTIVE DETERMINATION OF THE FINITE ELEMENT STABILIZATION PARAMETERS

ADAPTIVE DETERMINATION OF THE FINITE ELEMENT STABILIZATION PARAMETERS ECCOMAS Computational Fluid Dynamics Conference 2001 Swansea, Wales, UK, 4-7 September 2001 c ECCOMAS ADAPTIVE DETERMINATION OF THE FINITE ELEMENT STABILIZATION PARAMETERS Tayfun E. Tezduyar Team for Advanced

More information

WELL POSEDNESS OF PROBLEMS I

WELL POSEDNESS OF PROBLEMS I Finite Element Method 85 WELL POSEDNESS OF PROBLEMS I Consider the following generic problem Lu = f, where L : X Y, u X, f Y and X, Y are two Banach spaces We say that the above problem is well-posed (according

More information

Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows

Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows Chapter 7 The Time-Dependent Navier-Stokes Equations Turbulent Flows Remark 7.1. Turbulent flows. The usually used model for turbulent incompressible flows are the incompressible Navier Stokes equations

More information

Key words. Incompressible magnetohydrodynamics, mixed finite element methods, discontinuous Galerkin methods

Key words. Incompressible magnetohydrodynamics, mixed finite element methods, discontinuous Galerkin methods A MIXED DG METHOD FOR LINEARIZED INCOMPRESSIBLE MAGNETOHYDRODYNAMICS PAUL HOUSTON, DOMINIK SCHÖTZAU, AND XIAOXI WEI Journal of Scientific Computing, vol. 40, pp. 8 34, 009 Abstract. We introduce and analyze

More information

A space-time Trefftz method for the second order wave equation

A space-time Trefftz method for the second order wave equation A space-time Trefftz method for the second order wave equation Lehel Banjai The Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh Rome, 10th Apr 2017 Joint work with: Emmanuil

More information

Experience with DNS of particulate flow using a variant of the immersed boundary method

Experience with DNS of particulate flow using a variant of the immersed boundary method Experience with DNS of particulate flow using a variant of the immersed boundary method Markus Uhlmann Numerical Simulation and Modeling Unit CIEMAT Madrid, Spain ECCOMAS CFD 2006 Motivation wide range

More information

arxiv: v1 [math.na] 12 Mar 2018

arxiv: v1 [math.na] 12 Mar 2018 ON PRESSURE ESTIMATES FOR THE NAVIER-STOKES EQUATIONS J A FIORDILINO arxiv:180304366v1 [matna 12 Mar 2018 Abstract Tis paper presents a simple, general tecnique to prove finite element metod (FEM) pressure

More information

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable?

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Thomas Apel, Hans-G. Roos 22.7.2008 Abstract In the first part of the paper we discuss minimal

More information

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION JOHNNY GUZMÁN, ABNER J. SALGADO, AND FRANCISCO-JAVIER SAYAS Abstract. The analysis of finite-element-like Galerkin discretization techniques for the

More information

Numerical Methods for the Navier-Stokes equations

Numerical Methods for the Navier-Stokes equations Arnold Reusken Numerical Methods for the Navier-Stokes equations January 6, 212 Chair for Numerical Mathematics RWTH Aachen Contents 1 The Navier-Stokes equations.............................................

More information

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, Berlin, Germany,

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, Berlin, Germany, Volker John On the numerical simulation of population balance systems Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany, Free University of Berlin, Department

More information

Vorticity and Dynamics

Vorticity and Dynamics Vorticity and Dynamics In Navier-Stokes equation Nonlinear term ω u the Lamb vector is related to the nonlinear term u 2 (u ) u = + ω u 2 Sort of Coriolis force in a rotation frame Viscous term ν u = ν

More information

SECOND-ORDER FULLY DISCRETIZED PROJECTION METHOD FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

SECOND-ORDER FULLY DISCRETIZED PROJECTION METHOD FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS Tenth MSU Conference on Differential Equations and Computational Simulations. Electronic Journal of Differential Equations, Conference 3 (06), pp. 9 0. ISSN: 07-669. URL: http://ejde.math.txstate.edu or

More information

New DPG techniques for designing numerical schemes

New DPG techniques for designing numerical schemes New DPG techniques for designing numerical schemes Jay Gopalakrishnan University of Florida Collaborator: Leszek Demkowicz October 2009 Massachusetts Institute of Technology, Boston Thanks: NSF Jay Gopalakrishnan

More information

Space-time Finite Element Methods for Parabolic Evolution Problems

Space-time Finite Element Methods for Parabolic Evolution Problems Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients Ulrich Langer, Martin Neumüller, Andreas Schafelner Johannes Kepler University, Linz Doctoral Program Computational

More information

The Navier Stokes Equations for Incompressible Flows: Solution Properties at Potential Blow Up Times

The Navier Stokes Equations for Incompressible Flows: Solution Properties at Potential Blow Up Times The Navier Stokes Equations for Incompressible Flows: Solution Properties at Potential Blow Up Times Jens Lorenz Department of Mathematics and Statistics, UNM, Albuquerque, NM 873 Paulo Zingano Dept. De

More information

Numerical methods for the Navier- Stokes equations

Numerical methods for the Navier- Stokes equations Numerical methods for the Navier- Stokes equations Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Dec 6, 2012 Note:

More information

Week 6 Notes, Math 865, Tanveer

Week 6 Notes, Math 865, Tanveer Week 6 Notes, Math 865, Tanveer. Energy Methods for Euler and Navier-Stokes Equation We will consider this week basic energy estimates. These are estimates on the L 2 spatial norms of the solution u(x,

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

Stabilized and Coupled FEM/EFG Approximations for Fluid Problems

Stabilized and Coupled FEM/EFG Approximations for Fluid Problems COMPUTATIONAL MECHANICS WCCM VI in conjunction with APCOM4, Sept. 5-, 24, Beijing, China c 24 Tsinghua University Press & Springer-Verlag Stabilized and Coupled FEM/EFG Approximations for Fluid Problems

More information

Interaction of Incompressible Fluid and Moving Bodies

Interaction of Incompressible Fluid and Moving Bodies WDS'06 Proceedings of Contributed Papers, Part I, 53 58, 2006. ISBN 80-86732-84-3 MATFYZPRESS Interaction of Incompressible Fluid and Moving Bodies M. Růžička Charles University, Faculty of Mathematics

More information

A stabilized finite element method for the convection dominated diffusion optimal control problem

A stabilized finite element method for the convection dominated diffusion optimal control problem Applicable Analysis An International Journal ISSN: 0003-6811 (Print) 1563-504X (Online) Journal homepage: http://www.tandfonline.com/loi/gapa20 A stabilized finite element method for the convection dominated

More information

Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems

Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems Christoph Lehrenfeld and Arnold Reusken Bericht Nr. 340 April 2012 Key words: transport problem, Nitsche method, XFEM,

More information

IMPROVED LEAST-SQUARES ERROR ESTIMATES FOR SCALAR HYPERBOLIC PROBLEMS, 1

IMPROVED LEAST-SQUARES ERROR ESTIMATES FOR SCALAR HYPERBOLIC PROBLEMS, 1 Computational Methods in Applied Mathematics Vol. 1, No. 1(2001) 1 8 c Institute of Mathematics IMPROVED LEAST-SQUARES ERROR ESTIMATES FOR SCALAR HYPERBOLIC PROBLEMS, 1 P.B. BOCHEV E-mail: bochev@uta.edu

More information

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements W I S S E N T E C H N I K L E I D E N S C H A F T A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements Matthias Gsell and Olaf Steinbach Institute of Computational Mathematics

More information

Post-processing of solutions of incompressible Navier Stokes equations on rotating spheres

Post-processing of solutions of incompressible Navier Stokes equations on rotating spheres ANZIAM J. 50 (CTAC2008) pp.c90 C106, 2008 C90 Post-processing of solutions of incompressible Navier Stokes equations on rotating spheres M. Ganesh 1 Q. T. Le Gia 2 (Received 14 August 2008; revised 03

More information

A MHD problem on unbounded domains - Coupling of FEM and BEM

A MHD problem on unbounded domains - Coupling of FEM and BEM A MHD problem on unbounded domains - Coupling of FEM and BEM Wiebke Lemster and Gert Lube Abstract We consider the MHD problem on R 3 = Ω Ω E, where Ω is a bounded, conducting Lipschitz domain and Ω E

More information

A NOTE ON CONSTANT-FREE A POSTERIORI ERROR ESTIMATES

A NOTE ON CONSTANT-FREE A POSTERIORI ERROR ESTIMATES A NOTE ON CONSTANT-FREE A POSTERIORI ERROR ESTIMATES R. VERFÜRTH Abstract. In this note we look at constant-free a posteriori error estimates from a different perspective. We show that they can be interpreted

More information

A posteriori error estimates for Maxwell Equations

A posteriori error estimates for Maxwell Equations www.oeaw.ac.at A posteriori error estimates for Maxwell Equations J. Schöberl RICAM-Report 2005-10 www.ricam.oeaw.ac.at A POSTERIORI ERROR ESTIMATES FOR MAXWELL EQUATIONS JOACHIM SCHÖBERL Abstract. Maxwell

More information

Algebraic Multigrid Methods for the Oseen Problem

Algebraic Multigrid Methods for the Oseen Problem Algebraic Multigrid Methods for the Oseen Problem Markus Wabro Joint work with: Walter Zulehner, Linz www.numa.uni-linz.ac.at This work has been supported by the Austrian Science Foundation Fonds zur Förderung

More information

A Multiscale DG Method for Convection Diffusion Problems

A Multiscale DG Method for Convection Diffusion Problems A Multiscale DG Method for Convection Diffusion Problems Annalisa Buffa Istituto di Matematica Applicata e ecnologie Informatiche - Pavia National Research Council Italy Joint project with h. J.R. Hughes,

More information

Institut für Numerische und Angewandte Mathematik

Institut für Numerische und Angewandte Mathematik Institut für Numerisce und Angewandte atematik A Local Projection Stabilization FE for te linearized stationary HD problem B. Wacker, G. Lube Nr. 34 Preprint-Serie des Instituts für Numerisce und Angewandte

More information

Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations

Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations Igor Mozolevski, Endre Süli Federal University of Santa Catarina, Brazil Oxford University Computing Laboratory,

More information

EXISTENCE OF SOLUTIONS TO BURGERS EQUATIONS IN DOMAINS THAT CAN BE TRANSFORMED INTO RECTANGLES

EXISTENCE OF SOLUTIONS TO BURGERS EQUATIONS IN DOMAINS THAT CAN BE TRANSFORMED INTO RECTANGLES Electronic Journal of Differential Equations, Vol. 6 6), No. 57, pp. 3. ISSN: 7-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF SOLUTIONS TO BURGERS EQUATIONS IN DOMAINS

More information

BIHARMONIC WAVE MAPS INTO SPHERES

BIHARMONIC WAVE MAPS INTO SPHERES BIHARMONIC WAVE MAPS INTO SPHERES SEBASTIAN HERR, TOBIAS LAMM, AND ROLAND SCHNAUBELT Abstract. A global weak solution of the biharmonic wave map equation in the energy space for spherical targets is constructed.

More information

Review Article Robust Numerical Methods for Singularly Perturbed Differential Equations: A Survey Covering

Review Article Robust Numerical Methods for Singularly Perturbed Differential Equations: A Survey Covering International Scholarly Research Network ISRN Applied Mathematics Volume 2012, Article ID 379547, 30 pages doi:10.5402/2012/379547 Review Article Robust Numerical Methods for Singularly Perturbed Differential

More information

ERROR ESTIMATES FOR SEMI-DISCRETE GAUGE METHODS FOR THE NAVIER-STOKES EQUATIONS : FIRST-ORDER SCHEMES

ERROR ESTIMATES FOR SEMI-DISCRETE GAUGE METHODS FOR THE NAVIER-STOKES EQUATIONS : FIRST-ORDER SCHEMES MATHEMATICS OF COMPUTATION Volume, Number, Pages S 5-578XX- ERROR ESTIMATES FOR SEMI-DISCRETE GAUGE METHODS FOR THE NAVIER-STOKES EQUATIONS : FIRST-ORDER SCHEMES RICARDO H. NOCHETTO AND JAE-HONG PYO Abstract.

More information