Three remarks on anisotropic finite elements

Size: px
Start display at page:

Download "Three remarks on anisotropic finite elements"

Transcription

1 Three remarks on anisotropic finite elements Thomas Apel Universität der Bundeswehr München Workshop Numerical Analysis for Singularly Perturbed Problems dedicated to the 60th birthday of Martin Stynes Apel 1 / 34

2 Instead of a motivation of anisotropic finite elements Congratulations to Martin! Apel 2 / 34

3 Plan of the talk 1 A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 2 Remarks on interpolation Apel 3 / 34

4 Plan of the talk 1 A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 2 Remarks on interpolation Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 4 / 34

5 Classical formulation Lu := div (A u) + b u + cu = f in Ω Layers due to dominating convection b: ordinary boundary layers at outflow boundary u = 0 on Γ D A u n = g on Γ N parabolic boundary layers due to flow parallel to the boundary Layers due to discontinuous right hand side f : internal layer due to small diffusion through line/face of discontinuity Layers due to anisotropic diffusion tensor A: [ ] ε 0 e.g. A = : diffusion small in x-direction: layers left and right 0 1 Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 5 / 34

6 Example for illustrating anisotropic diffusion div (A u) = f in Ω = (0, 1) 2 u = 0 { on Γ 1 for 0 < x < 1 f = 2 +1 for 1 2 [ < x < ] 1 [ ] [ cos α sin α ε 0 A = sin α cos α 0 1 cos α sin α sin α cos α ] Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 6 / 34

7 Example: α = 0 div (A u) = f in Ω = (0, 1) 2 { 1 for 0 < x < 1 f = 2 +1 for 1 2 [ ] < x < 1 ε 0 A = 0 1 Picture by G. Winkler Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 7 / 34

8 Example: α = 0.5π div (A u) = f in Ω = (0, 1) 2 { 1 for 0 < x < 1 f = 2 +1 for 1 2 [ ] < x < A = 0 ε Picture by G. Winkler Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 8 / 34

9 Example: α = 0.49π div (A u) = f in Ω = (0, 1) 2 { 1 for 0 < x < 1 f = 2 +1 for 1 2 [ < x < ] 1 [ ] [ cos α sin α ε 0 A = sin α cos α 0 1 cos α sin α sin α cos α ] Picture by G. Winkler Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 9 / 34

10 Example: α = 0.48π div (A u) = f in Ω = (0, 1) 2 { 1 for 0 < x < 1 f = 2 +1 for 1 2 [ < x < ] 1 [ ] [ cos α sin α ε 0 A = sin α cos α 0 1 cos α sin α sin α cos α ] Picture by G. Winkler Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 10 / 34

11 Example: α = 0.47π div (A u) = f in Ω = (0, 1) 2 { 1 for 0 < x < 1 f = 2 +1 for 1 2 [ < x < ] 1 [ ] [ cos α sin α ε 0 A = sin α cos α 0 1 cos α sin α sin α cos α ] Picture by G. Winkler Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 11 / 34

12 Example: α = 0.46π div (A u) = f in Ω = (0, 1) 2 { 1 for 0 < x < 1 f = 2 +1 for 1 2 [ < x < ] 1 [ ] [ cos α sin α ε 0 A = sin α cos α 0 1 cos α sin α sin α cos α ] Picture by G. Winkler Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 12 / 34

13 Example: α = 0.45π div (A u) = f in Ω = (0, 1) 2 { 1 for 0 < x < 1 f = 2 +1 for 1 2 [ < x < ] 1 [ ] [ cos α sin α ε 0 A = sin α cos α 0 1 cos α sin α sin α cos α ] Picture by G. Winkler Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 13 / 34

14 Example: α = 0.25π div (A u) = f in Ω = (0, 1) 2 { 1 for 0 < x < 1 f = 2 +1 for 1 2 [ < x < ] ε 1 ε A = ε 1 + ε Picture by G. Winkler Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 14 / 34

15 Example: α = 0.05π div (A u) = f in Ω = (0, 1) 2 { 1 for 0 < x < 1 f = 2 +1 for 1 2 [ ] < x < 1 ε 0 A = 0 1 Picture by G. Winkler Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 15 / 34

16 Example: α = 0 div (A u) = f in Ω = (0, 1) 2 { 1 for 0 < x < 1 f = 2 +1 for 1 2 [ ] < x < 1 ε 0 A = 0 1 Picture by G. Winkler Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 16 / 34

17 Related results a priori error analysis (anisotropic diffusion): Li, Wheeler a posteriori error estimation (convection dominated problems): isotropic: Angermann, Kay/Silvester, Sangalli, Verfürth anisotropic: Formaggia/Perotto/Zunino, Kunert, Picasso a posteriori error estimation (anisotropic diffusion): Fierro/Veeser Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 17 / 34

18 SUPG discretization Let V h := {v C(Ω) : v T P 1 (T ) T T h, v = 0 on Γ D }, B h (u h, v h ) = (A u h v h ) + (b u h + cu h, v h ) + T δ T (Lu h, b v h ) T F h (v h ) = (f, v h ) + (g, v h ) ΓN + T δ T (f, b v h ) T The parameters δ T 0 satisfy δ T min{µ 2 h 2 min,t A1/ , c 0 c 2 1,T, h min,a,t A 1/2 b 1,T } where µ is the constant in some inverse inequality and h min,a,t = min h min,fa T (T ω ) with F A (x) = A 1/2 x. T Streamline upwind Petrov-Galerkin (SUPG) scheme: Find u h V h with B h (u h, v h ) = F h (v h ) v h V h. Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 18 / 34

19 Error estimation Residuals: element residual: R T := f Lu h edge residual: R E := [A u h n E ] with modification on Ω Resulting error estimator: η 2 T := α2 T r T 2 T + E T \Γ D α E β 1 E r E 2 E, η2 := T η 2 T where α T = min{c 1/2 0, h min,a,t }, β E = max T ωe (h E,T h 1 α E = α T corresponding to β E. Approximation terms: ζt 2 := α2 T R T r T 2 T + T ω T sup v H 1 Γ D (Ω)\{0} Weighted norm: u 2 := (A u, u) 2 + (c 0 u, u) Ω Dual norm: φ := φv v =: φv 1. min,a,t ), E T \Γ D α E β 1 E R E r E 2 E, ζ2 := K T h ζ 2 T. Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 19 / 34 Ω

20 Quality of the error estimator Theorem: [Apel/Nicaise/Sirch:11] The error is bounded from above by and from below by u u h m 1 (u u h, A, T h ) (η + ζ) b (u u h ) κ u u h + m 1 (v 1, A, T h )(η + ζ) where κ = max{1, c 1 0 c,t }. Alignment measure: η κ u u h + b (u u h ) + ζ m 2 1(v, A, T h ) := T h 2 min,a,t C A,T v 2 T A 1/2 v 2 Robust lower bound was obtained due to the use of the dual norm of the convective derivative, cf. also [Verfürth 05] for isotropic meshes. Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 20 / 34

21 Note on alignment Our a posteriori error estimates are reliable if some alignment measure is close to unity: no problem if the aspect ratio is smaller than appropriate too much anisotropy increases the value of the alignment measure If is optimal, then the following situations lead to an increased alignment measure: Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 21 / 34

22 Numerical test: the problem div (A u) + b u = f in Ω = (0, 1) 2 u = g on Γ with A = ( ε ) ( 1, b = 0 ) Data f and g are chosen such that ( u = 10y(1 y) e x e 1+(x 1)/ε), is the exact solution. The solution contains a typical boundary layer of that problem. Both the data and the solution are O(1) in the L 2 (Ω)- and L (Ω)-norms uniformly in ε. Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 22 / 34

23 Numerical test: the discretization Mesh: piecewise uniform with an anisotropic part in the boundary strip Ω L = (1 2ε ln ε, 1) (0, 1). SUPG scheme with { εh 2 δ T = T,min in the boundary layer, elsewhere. is chosen. h 2 T,min Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 23 / 34

24 Numerical test: behaviour of the error... in the max norm and in the SUPG norm [v] 2 = B(v, v) + T T h δ T b v 2 L 2 (T ). ε = 10 4 N e L (Ω) rate [e] rate E E E E E E E E E E E E E E ε = 10 8 N e L (Ω) rate [e] rate E E E E E E E E E E E E E E Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 24 / 34

25 Numerical test: behaviour of the error estimator ε = 10 4 N η rate e rate b e rate I eff E E E E E E E E E E E E E E E E E E E E E ε = 10 8 N η rate e rate b e rate I eff E E E E E E E E E E E E E E E E E E E E E Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 25 / 34

26 Numerical test: computation of the dual norm The error in the dual norm φ is approximately computed here by Ω φ = sup φv v HΓ 1 (Ω)\{0} v sup Ω φ hv h v h V h \{0} v h D where φ h is an approximation of φ in a finite dimensional space W h, here the space of piecewise constants. By some linear algebra one can show that the latter expression is computable: Ω φ ( hv h 1/2 = φ T MK 1 M φ) T. v h sup v h V h \{0} Apel A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 26 / 34

27 Plan of the talk 1 A posteriori error estimation for an anisotropic diffusion model (Collaboration with S. Nicaise and D. Sirch) 2 Remarks on interpolation Apel Remarks on interpolation 27 / 34

28 Isotropic (shape-regular) and anisotropic elements Isotropic elements: The aspect ratio enters the constant in certain estimates. Anisotropic elements: Estimates should be valid uniformly in the aspect ratio. Apel Remarks on interpolation 28 / 34

29 Remarks on wrong conjectures I Let T be an isotropic triangle, and I h the piecewise linear interpolant w.r.t. the vertices. Then I h u H1 (T ) u H1 (T ) u H 1 (T ) C(T ), u I h u L2 (T ) h T u H1 (T ) u H 1 (T ) C(T ). Apel Remarks on interpolation 29 / 34

30 u Remarks on wrong conjectures I Let T be an isotropic triangle, and I h the piecewise linear interpolant w.r.t. the vertices. Then I h u H1 (T ) u H1 (T ) u H 1 (T ) C(T ), u I h u L2 (T ) h T u H1 (T ) u H 1 (T ) C(T ). Counterexample: Let T be the reference triangle and r = x x 2 2. { u ε (x 1, x 2 ) = min 1, ε ln ln r } e I h u ε (x 1, x 2 ) = 1 x 1 x 2 independent of ε y x ε = 0.4 Picture by Th. Flaig u ε H 1 (T ) 0 for ε 0 I h u ε H1 (T ) 0 for ε 0 u ε I h u ε L2 (T ) 0 for ε 0 Origin of this example? Apel Remarks on interpolation 29 / 34

31 u Remarks on wrong conjectures I Let T be an isotropic triangle, and I h the piecewise linear interpolant w.r.t. the vertices. Then I h u H1 (T ) u H1 (T ) u H 1 (T ) C(T ), u I h u L2 (T ) h T u H1 (T ) u H 1 (T ) C(T ). Counterexample: Let T be the reference triangle and r = y x ε = 0.4 Picture by Th. Flaig x x 2 2. { u ε (x 1, x 2 ) = min 1, ε ln ln r } e I h u ε (x 1, x 2 ) = 1 x 1 x 2 independent of ε u ε H 1 (T ) 0 for ε 0 I h u ε H1 (T ) 0 for ε 0 u ε I h u ε L2 (T ) 0 for ε 0 Origin of this example? The estimates are valid for an interpolant based on edge mean values. Apel Remarks on interpolation 29 / 34

32 Remarks on wrong conjectures II The estimate holds u I h u 1,T h u 2,T u H 2 (T ) in 2D for isotropic and anisotropic triangles (under maximal angle condition), in 3D for isotropic tetrahedra, but not in 3D for anisotropic tetrahedra. An example is given in [Apel/Dobrowolski 92] on the basis of the example from the previous slide. Apel Remarks on interpolation 30 / 34

33 Remarks on the maximal angle condition The proof of the estimate u I h u 1,T h u 2,T u H 2 (T ) in the case of anisotropic triangles (2D) does not follow the standard arguments [Ciarlet/Raviart]. With standard arguments one would obtain an estimate like u I h u H1 (T ) h2 x h y u xx L2 (T ) + h x u xy L2 (T ) + h y u yy L2 (T ) h y which is sharp if no maximal angle condition is assumed (h x /h y sin 1 (maximal angle)): If u xx L 2 (T ) u xy L 2 (T ) u yy L 2 (T ) then u I h u H 1 (T ) h2 x h y u H 2 (T ) [Apel/Dobrowolski:92, Theorem 2]. h x Apel Remarks on interpolation 31 / 34

34 Remarks on the maximal angle condition The proof of the estimate u I h u 1,T h u 2,T u H 2 (T ) in the case of anisotropic triangles (2D) does not follow the standard arguments [Ciarlet/Raviart]. With standard arguments one would obtain an estimate like u I h u H 1 (T ) h2 x h y u xx L 2 (T ) + h x u xy L 2 (T ) + h y u yy L 2 (T ) h y This new estimate may be useful in an a posteriori context when h 2 x u xx L2 (T ) h x h y u xy L2 (T ) h 2 y u yy L2 (T ) ( alignment ) can be assured since then u I h u H 1 (T ) h y u H 2 (T ). h x Apel Remarks on interpolation 31 / 34

35 Remark on the coordinate system I Estimates like u I h u H 1 (T ) h2 x h y u xx L 2 (T ) + h x u xy L 2 (T ) + h y u yy L 2 (T ) or, under a maximal angle condition, u I h u H 1 (T ) h x u xx L 2 (T ) + h x u xy L 2 (T ) + h y u yy L 2 (T ) combine the element related quantities h x and h y with basis vectors of a coordinate system (via the partial derivatives of u). The relationship of the two can be expressed in different ways: Apel Remarks on interpolation 32 / 34

36 Remark on the coordinate system II [Apel/Dobrowolski 92]: [Apel/Lube 98]: tan ϑ h 2 /h 1 x2 h 2 h 1 C h2 E ϑ h1 x1 Apel Remarks on interpolation 33 / 34

37 Remark on the coordinate system II [Apel/Dobrowolski 92]: [Apel/Lube 98]: tan ϑ h 2 /h 1 x2 h 2 h 1 C h2 E ϑ h1 x1 [Cao 05] considers the affine mapping x = F(ˆx) = Bˆx + b = UΣV T ˆx + b with T = F(ˆT ). The columns of U form a good coordinate system [Formaggia/Perotto 01]. Apel Remarks on interpolation 33 / 34

38 Remark on the coordinate system II [Apel/Dobrowolski 92]: [Apel/Lube 98]: tan ϑ h 2 /h 1 x2 h 2 h 1 C h2 E ϑ h1 x1 [Cao 05] considers the affine mapping x = F(ˆx) = Bˆx + b = UΣV T ˆx + b with T = F(ˆT ). The columns of U form a good coordinate system [Formaggia/Perotto 01]. [Hetmaniuk/Knupp 08] give estimates where the columns of B give the coordinate directions. Apel Remarks on interpolation 33 / 34

39 Summary There are still publications on anisotropic interpolation. There is not yet an reliable and efficient a posteriori error estimator for anisotropic discretizations without any alignment condition. Apel Remarks on interpolation 34 / 34

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems.

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems. Robust A Posteriori Error Estimates for Stabilized Finite Element s of Non-Stationary Convection-Diffusion Problems L. Tobiska and R. Verfürth Universität Magdeburg Ruhr-Universität Bochum www.ruhr-uni-bochum.de/num

More information

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable?

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Thomas Apel, Hans-G. Roos 22.7.2008 Abstract In the first part of the paper we discuss minimal

More information

Superconvergence analysis of the SDFEM for elliptic problems with characteristic layers

Superconvergence analysis of the SDFEM for elliptic problems with characteristic layers Superconvergence analysis of the SDFEM for elliptic problems with characteristic layers S. Franz, T. Linß, H.-G. Roos Institut für Numerische Mathematik, Technische Universität Dresden, D-01062, Germany

More information

Interpolation in h-version finite element spaces

Interpolation in h-version finite element spaces Interpolation in h-version finite element spaces Thomas Apel Institut für Mathematik und Bauinformatik Fakultät für Bauingenieur- und Vermessungswesen Universität der Bundeswehr München Chemnitzer Seminar

More information

Singularly Perturbed Partial Differential Equations

Singularly Perturbed Partial Differential Equations WDS'9 Proceedings of Contributed Papers, Part I, 54 59, 29. ISN 978-8-7378--9 MTFYZPRESS Singularly Perturbed Partial Differential Equations J. Lamač Charles University, Faculty of Mathematics and Physics,

More information

A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators

A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators Jeff Ovall University of Kentucky Mathematics www.math.uky.edu/ jovall jovall@ms.uky.edu Kentucky Applied and

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

A Multiscale DG Method for Convection Diffusion Problems

A Multiscale DG Method for Convection Diffusion Problems A Multiscale DG Method for Convection Diffusion Problems Annalisa Buffa Istituto di Matematica Applicata e ecnologie Informatiche - Pavia National Research Council Italy Joint project with h. J.R. Hughes,

More information

NUMERICAL SOLUTION OF CONVECTION DIFFUSION EQUATIONS USING UPWINDING TECHNIQUES SATISFYING THE DISCRETE MAXIMUM PRINCIPLE

NUMERICAL SOLUTION OF CONVECTION DIFFUSION EQUATIONS USING UPWINDING TECHNIQUES SATISFYING THE DISCRETE MAXIMUM PRINCIPLE Proceedings of the Czech Japanese Seminar in Applied Mathematics 2005 Kuju Training Center, Oita, Japan, September 15-18, 2005 pp. 69 76 NUMERICAL SOLUTION OF CONVECTION DIFFUSION EQUATIONS USING UPWINDING

More information

A NOTE ON CONSTANT-FREE A POSTERIORI ERROR ESTIMATES

A NOTE ON CONSTANT-FREE A POSTERIORI ERROR ESTIMATES A NOTE ON CONSTANT-FREE A POSTERIORI ERROR ESTIMATES R. VERFÜRTH Abstract. In this note we look at constant-free a posteriori error estimates from a different perspective. We show that they can be interpreted

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Residual and Error of Finite Element Solutions Mixed BVP of Poisson Equation

More information

On discontinuity capturing methods for convection diffusion equations

On discontinuity capturing methods for convection diffusion equations On discontinuity capturing methods for convection diffusion equations Volker John 1 and Petr Knobloch 2 1 Universität des Saarlandes, Fachbereich 6.1 Mathematik, Postfach 15 11 50, 66041 Saarbrücken, Germany,

More information

IMPROVED LEAST-SQUARES ERROR ESTIMATES FOR SCALAR HYPERBOLIC PROBLEMS, 1

IMPROVED LEAST-SQUARES ERROR ESTIMATES FOR SCALAR HYPERBOLIC PROBLEMS, 1 Computational Methods in Applied Mathematics Vol. 1, No. 1(2001) 1 8 c Institute of Mathematics IMPROVED LEAST-SQUARES ERROR ESTIMATES FOR SCALAR HYPERBOLIC PROBLEMS, 1 P.B. BOCHEV E-mail: bochev@uta.edu

More information

A first-order system Petrov-Galerkin discretisation for a reaction-diffusion problem on a fitted mesh

A first-order system Petrov-Galerkin discretisation for a reaction-diffusion problem on a fitted mesh A first-order system Petrov-Galerkin discretisation for a reaction-diffusion problem on a fitted mesh James Adler, Department of Mathematics Tufts University Medford, MA 02155 Scott MacLachlan Department

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

An exponentially graded mesh for singularly perturbed problems

An exponentially graded mesh for singularly perturbed problems An exponentially graded mesh for singularly perturbed problems Christos Xenophontos Department of Mathematics and Statistics University of Cyprus joint work with P. Constantinou (UCY), S. Franz (TU Dresden)

More information

On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations

On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations On the relationship of local projection stabilization to other stabilized methods for one-dimensional advection-diffusion equations Lutz Tobiska Institut für Analysis und Numerik Otto-von-Guericke-Universität

More information

Graded Mesh Refinement and Error Estimates of Higher Order for DGFE-solutions of Elliptic Boundary Value Problems in Polygons

Graded Mesh Refinement and Error Estimates of Higher Order for DGFE-solutions of Elliptic Boundary Value Problems in Polygons Graded Mesh Refinement and Error Estimates of Higher Order for DGFE-solutions of Elliptic Boundary Value Problems in Polygons Anna-Margarete Sändig, Miloslav Feistauer University Stuttgart, IANS Journées

More information

New DPG techniques for designing numerical schemes

New DPG techniques for designing numerical schemes New DPG techniques for designing numerical schemes Jay Gopalakrishnan University of Florida Collaborator: Leszek Demkowicz October 2009 Massachusetts Institute of Technology, Boston Thanks: NSF Jay Gopalakrishnan

More information

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University A Posteriori Error Estimation Techniques for Finite Element Methods Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 16, 2017 Books Ainsworth & Oden, A posteriori

More information

Suitability of LPS for Laminar and Turbulent Flow

Suitability of LPS for Laminar and Turbulent Flow Suitability of LPS for Laminar and Turbulent Flow Daniel Arndt Helene Dallmann Georg-August-Universität Göttingen Institute for Numerical and Applied Mathematics VMS 2015 10th International Workshop on

More information

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Contents Chapter I. Introduction 7 I.1. Motivation 7 I.2. Sobolev and finite

More information

Space-time Finite Element Methods for Parabolic Evolution Problems

Space-time Finite Element Methods for Parabolic Evolution Problems Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients Ulrich Langer, Martin Neumüller, Andreas Schafelner Johannes Kepler University, Linz Doctoral Program Computational

More information

Review Article Robust Numerical Methods for Singularly Perturbed Differential Equations: A Survey Covering

Review Article Robust Numerical Methods for Singularly Perturbed Differential Equations: A Survey Covering International Scholarly Research Network ISRN Applied Mathematics Volume 2012, Article ID 379547, 30 pages doi:10.5402/2012/379547 Review Article Robust Numerical Methods for Singularly Perturbed Differential

More information

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Aravind Balan, Michael Woopen and Georg May AICES Graduate School, RWTH Aachen University, Germany 22nd AIAA Computational

More information

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction The a posteriori error estimation of finite element approximations of elliptic boundary value problems has reached

More information

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Gert Lube 1, Tobias Knopp 2, and Gerd Rapin 2 1 University of Göttingen, Institute of Numerical and Applied Mathematics (http://www.num.math.uni-goettingen.de/lube/)

More information

On angle conditions in the finite element method. Institute of Mathematics, Academy of Sciences Prague, Czech Republic

On angle conditions in the finite element method. Institute of Mathematics, Academy of Sciences Prague, Czech Republic On angle conditions in the finite element method Michal Křížek Institute of Mathematics, Academy of Sciences Prague, Czech Republic Joint work with Jan Brandts (University of Amsterdam), Antti Hannukainen

More information

arxiv: v1 [math.na] 28 Apr 2017

arxiv: v1 [math.na] 28 Apr 2017 Variational Multiscale Modeling with Discontinuous Subscales: Analysis and Application to Scalar Transport arxiv:1705.00082v1 [math.na] 28 Apr 2017 Christopher Coley and John A. Evans Ann and H.J. Smead

More information

LECTURE 3: DISCRETE GRADIENT FLOWS

LECTURE 3: DISCRETE GRADIENT FLOWS LECTURE 3: DISCRETE GRADIENT FLOWS Department of Mathematics and Institute for Physical Science and Technology University of Maryland, USA Tutorial: Numerical Methods for FBPs Free Boundary Problems and

More information

In Proc. of the V European Conf. on Computational Fluid Dynamics (ECFD), Preprint

In Proc. of the V European Conf. on Computational Fluid Dynamics (ECFD), Preprint V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 J. C. F. Pereira and A. Sequeira (Eds) Lisbon, Portugal, 14 17 June 2010 THE HIGH ORDER FINITE ELEMENT METHOD FOR STEADY CONVECTION-DIFFUSION-REACTION

More information

Recovery-Based A Posteriori Error Estimation

Recovery-Based A Posteriori Error Estimation Recovery-Based A Posteriori Error Estimation Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 2, 2011 Outline Introduction Diffusion Problems Higher Order Elements

More information

A PARAMETER ROBUST NUMERICAL METHOD FOR A TWO DIMENSIONAL REACTION-DIFFUSION PROBLEM

A PARAMETER ROBUST NUMERICAL METHOD FOR A TWO DIMENSIONAL REACTION-DIFFUSION PROBLEM A PARAMETER ROBUST NUMERICAL METHOD FOR A TWO DIMENSIONAL REACTION-DIFFUSION PROBLEM C. CLAVERO, J.L. GRACIA, AND E. O RIORDAN Abstract. In this paper a singularly perturbed reaction diffusion partial

More information

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Department of Mathematics and Institute for Physical Science and Technology University of Maryland, USA www.math.umd.edu/ rhn 7th

More information

A Robust Residual-Type a Posteriori Error Estimator for Convection Diffusion Equations

A Robust Residual-Type a Posteriori Error Estimator for Convection Diffusion Equations See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/269578037 A Robust Residual-Type a Posteriori Error Estimator for Convection Diffusion Equations

More information

A VOLUME MESH FINITE ELEMENT METHOD FOR PDES ON SURFACES

A VOLUME MESH FINITE ELEMENT METHOD FOR PDES ON SURFACES European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) J. Eberhardsteiner et.al. (eds.) Vienna, Austria, September 10-14, 2012 A VOLUME MESH FINIE ELEMEN MEHOD FOR

More information

Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems

Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems Christoph Lehrenfeld and Arnold Reusken Bericht Nr. 340 April 2012 Key words: transport problem, Nitsche method, XFEM,

More information

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Universität des Saarlandes. Fachrichtung 6.1 Mathematik Universität des Saarlandes U N I V E R S I T A S S A R A V I E N I S S Fachrichtung 6.1 Mathematik Preprint Nr. 219 On finite element methods for 3D time dependent convection diffusion reaction equations

More information

Optimal control in fluid mechanics by finite elements with symmetric stabilization

Optimal control in fluid mechanics by finite elements with symmetric stabilization Computational Sciences Center Optimal control in fluid mechanics by finite elements with symmetric stabilization Malte Braack Mathematisches Seminar Christian-Albrechts-Universität zu Kiel VMS Worshop

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Journal of Computational Mathematics Vol.28, No.2, 2010, 273 288. http://www.global-sci.org/jcm doi:10.4208/jcm.2009.10-m2870 UNIFORM SUPERCONVERGENCE OF GALERKIN METHODS FOR SINGULARLY PERTURBED PROBLEMS

More information

Projection Methods for Rotating Flow

Projection Methods for Rotating Flow Projection Methods for Rotating Flow Daniel Arndt Gert Lube Georg-August-Universität Göttingen Institute for Numerical and Applied Mathematics IACM - ECCOMAS 2014 Computational Modeling of Turbulent and

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY ABHELSINKI UNIVERSITY OF TECHNOLOGY TECHNISCHE UNIVERSITÄT HELSINKI UNIVERSITE DE TECHNOLOGIE D HELSINKI A posteriori error analysis for the Morley plate element Jarkko Niiranen Department of Structural

More information

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires MIXED FINITE ELEMENTS FOR PLATES Ricardo G. Durán Universidad de Buenos Aires - Necessity of 2D models. - Reissner-Mindlin Equations. - Finite Element Approximations. - Locking. - Mixed interpolation or

More information

ANISOTROPIC MEASURES OF THIRD ORDER DERIVATIVES AND THE QUADRATIC INTERPOLATION ERROR ON TRIANGULAR ELEMENTS

ANISOTROPIC MEASURES OF THIRD ORDER DERIVATIVES AND THE QUADRATIC INTERPOLATION ERROR ON TRIANGULAR ELEMENTS SIAM J. SCI. COMPUT. Vol. 29, No. 2, pp. 756 78 c 2007 Society for Industrial and Applied Mathematics ANISOTROPIC MEASURES OF THIRD ORDER DERIVATIVES AND THE QUADRATIC INTERPOLATION ERROR ON TRIANGULAR

More information

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Martin Eigel C. Carstensen, C. Löbhard, R.H.W. Hoppe Humboldt-Universität zu Berlin 19.05.2010 1 we know of Guidelines for Applicants

More information

Adaptive methods for control problems with finite-dimensional control space

Adaptive methods for control problems with finite-dimensional control space Adaptive methods for control problems with finite-dimensional control space Saheed Akindeinde and Daniel Wachsmuth Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy

More information

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS CHARALAMBOS MAKRIDAKIS AND RICARDO H. NOCHETTO Abstract. It is known that the energy technique for a posteriori error analysis

More information

c 2008 Society for Industrial and Applied Mathematics

c 2008 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 46, No. 3, pp. 640 65 c 2008 Society for Industrial and Applied Mathematics A WEIGHTED H(div) LEAST-SQUARES METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS Z. CAI AND C. R. WESTPHAL

More information

A posteriori error estimates for a Maxwell type problem

A posteriori error estimates for a Maxwell type problem Russ. J. Numer. Anal. Math. Modelling, Vol. 24, No. 5, pp. 395 408 (2009) DOI 0.55/ RJNAMM.2009.025 c de Gruyter 2009 A posteriori error estimates for a Maxwell type problem I. ANJAM, O. MALI, A. MUZALEVSKY,

More information

Superconvergence Using Pointwise Interpolation in Convection-Diffusion Problems

Superconvergence Using Pointwise Interpolation in Convection-Diffusion Problems Als Manuskript gedruckt Technische Universität Dresden Herausgeber: Der Rektor Superconvergence Using Pointwise Interpolation in Convection-Diffusion Problems Sebastian Franz MATH-M-04-2012 July 9, 2012

More information

A Primal-Dual Weak Galerkin Finite Element Method for Second Order Elliptic Equations in Non-Divergence Form

A Primal-Dual Weak Galerkin Finite Element Method for Second Order Elliptic Equations in Non-Divergence Form A Primal-Dual Weak Galerkin Finite Element Method for Second Order Elliptic Equations in Non-Divergence Form Chunmei Wang Visiting Assistant Professor School of Mathematics Georgia Institute of Technology

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Universität des Saarlandes. Fachrichtung 6.1 Mathematik Universität des Saarlandes U N I V E R S I T A S S A R A V I E N I S S Fachrichtung 6.1 Mathematik Preprint Nr. 156 A comparison of spurious oscillations at layers diminishing (SOLD) methods for convection

More information

Some remarks on grad-div stabilization of incompressible flow simulations

Some remarks on grad-div stabilization of incompressible flow simulations Some remarks on grad-div stabilization of incompressible flow simulations Gert Lube Institute for Numerical and Applied Mathematics Georg-August-University Göttingen M. Stynes Workshop Numerical Analysis

More information

Interior Layers in Singularly Perturbed Problems

Interior Layers in Singularly Perturbed Problems Interior Layers in Singularly Perturbed Problems Eugene O Riordan Abstract To construct layer adapted meshes for a class of singularly perturbed problems, whose solutions contain boundary layers, it is

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS CARLO LOVADINA AND ROLF STENBERG Abstract The paper deals with the a-posteriori error analysis of mixed finite element methods

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Nonconformity and the Consistency Error First Strang Lemma Abstract Error Estimate

More information

A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media

A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media D. A. Di Pietro, M. Vohraĺık, and S. Yousef Université Montpellier 2 Marseille,

More information

Overview. A Posteriori Error Estimates for the Biharmonic Equation. Variational Formulation and Discretization. The Biharmonic Equation

Overview. A Posteriori Error Estimates for the Biharmonic Equation. Variational Formulation and Discretization. The Biharmonic Equation Overview A Posteriori rror stimates for the Biharmonic quation R Verfürth Fakultät für Mathematik Ruhr-Universität Bochum wwwruhr-uni-bochumde/num1 Milan / February 11th, 013 The Biharmonic quation Summary

More information

A u + b u + cu = f in Ω, (1.1)

A u + b u + cu = f in Ω, (1.1) A WEIGHTED H(div) LEAST-SQUARES METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS Z. CAI AND C. R. WESTPHAL Abstract. This paper presents analysis of a weighted-norm least squares finite element method for elliptic

More information

On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion

On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion Volker John and Ellen Schmeyer FR 6.1 Mathematik, Universität des Saarlandes, Postfach 15 11

More information

Recovery-Based a Posteriori Error Estimators for Interface Problems: Mixed and Nonconforming Elements

Recovery-Based a Posteriori Error Estimators for Interface Problems: Mixed and Nonconforming Elements Recovery-Based a Posteriori Error Estimators for Interface Problems: Mixed and Nonconforming Elements Zhiqiang Cai Shun Zhang Department of Mathematics Purdue University Finite Element Circus, Fall 2008,

More information

A posteriori error analysis of an augmented mixed finite element method for Darcy flow

A posteriori error analysis of an augmented mixed finite element method for Darcy flow A posteriori error analysis of an augmented mixed finite element method for Darcy flow Tomás P. Barrios, J. Manuel Cascón and María González Abstract We develop an a posteriori error analysis of residual

More information

Analysis of a Streamline-Diffusion Finite Element Method on Bakhvalov-Shishkin Mesh for Singularly Perturbed Problem

Analysis of a Streamline-Diffusion Finite Element Method on Bakhvalov-Shishkin Mesh for Singularly Perturbed Problem Numer. Math. Theor. Meth. Appl. Vol. 10, No. 1, pp. 44-64 doi: 10.408/nmtma.017.y1306 February 017 Analysis of a Streamline-Diffusion Finite Element Method on Bakhvalov-Shishkin Mesh for Singularly Perturbed

More information

Finite Element Superconvergence Approximation for One-Dimensional Singularly Perturbed Problems

Finite Element Superconvergence Approximation for One-Dimensional Singularly Perturbed Problems Finite Element Superconvergence Approximation for One-Dimensional Singularly Perturbed Problems Zhimin Zhang Department of Mathematics Wayne State University Detroit, MI 48202 Received 19 July 2000; accepted

More information

Nitsche XFEM with Streamline Diffusion Stabilization for a Two Phase Mass Transport Problem

Nitsche XFEM with Streamline Diffusion Stabilization for a Two Phase Mass Transport Problem Nitsche XFEM with Streamline Diffusion Stabilization for a Two Phase Mass Transport Problem Christoph Lehrenfeld and Arnold Reusken Bericht Nr. 333 November 2011 Key words: transport problem, Nitsche method,

More information

SUPERCONVERGENCE OF DG METHOD FOR ONE-DIMENSIONAL SINGULARLY PERTURBED PROBLEMS *1)

SUPERCONVERGENCE OF DG METHOD FOR ONE-DIMENSIONAL SINGULARLY PERTURBED PROBLEMS *1) Journal of Computational Mathematics, Vol.5, No., 007, 185 00. SUPERCONVERGENCE OF DG METHOD FOR ONE-DIMENSIONAL SINGULARLY PERTURBED PROBLEMS *1) Ziqing Xie (College of Mathematics and Computer Science,

More information

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO PREPRINT 2010:23 A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

Space-time sparse discretization of linear parabolic equations

Space-time sparse discretization of linear parabolic equations Space-time sparse discretization of linear parabolic equations Roman Andreev August 2, 200 Seminar for Applied Mathematics, ETH Zürich, Switzerland Support by SNF Grant No. PDFMP2-27034/ Part of PhD thesis

More information

(bu) = f in Ω, (1.1) u = g on Γ I, (1.2)

(bu) = f in Ω, (1.1) u = g on Γ I, (1.2) A DUAL LEAST-SQUARES FINITE ELEMENT METHOD FOR LINEAR HYPERBOLIC PDES: A NUMERICAL STUDY LUKE OLSON Abstract. In this paper, we develop a least-squares finite element method for linear Partial Differential

More information

Thomas Apel 1, Ariel L. Lombardi 2 and Max Winkler 1

Thomas Apel 1, Ariel L. Lombardi 2 and Max Winkler 1 Mathematical Modelling and Numerical Analysis Modélisation Mathématique et Analyse Numérique Will be set by the publisher ANISOTROPIC MESH REFINEMENT IN POLYHEDRAL DOMAINS: ERROR ESTIMATES WITH DATA IN

More information

1. Introduction. We consider scalar linear partial differential equations (PDEs) of hyperbolic type that are of the form.

1. Introduction. We consider scalar linear partial differential equations (PDEs) of hyperbolic type that are of the form. SIAM J. SCI. COMPUT. Vol. 26, No. 1, pp. 31 54 c 24 Society for Industrial and Applied Mathematics LEAST-SQUARES FINITE ELEMENT METHODS AND ALGEBRAIC MULTIGRID SOLVERS FOR LINEAR HYPERBOLIC PDEs H. DE

More information

Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media

Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Uniform inf-sup condition for the Brinkman problem in highly heterogeneous media Raytcho Lazarov & Aziz Takhirov Texas A&M May 3-4, 2016 R. Lazarov & A.T. (Texas A&M) Brinkman May 3-4, 2016 1 / 30 Outline

More information

Adaptivity and Variational Stabilization for Convection-Diffusion Equations

Adaptivity and Variational Stabilization for Convection-Diffusion Equations Adaptivity and Variational Stabilization for Convection-Diffusion Equations Albert Cohen, Wolfgang Dahmen, Gerrit Welper January 31, 2011 Abstract In this paper we propose and analyze stable variational

More information

Numerical Studies of Adaptive Finite Element Methods for Two Dimensional Convection-Dominated Problems

Numerical Studies of Adaptive Finite Element Methods for Two Dimensional Convection-Dominated Problems DOI 10.1007/s10915-009-9337-6 Numerical Studies of Adaptive Finite Element Methods for Two Dimensional Convection-Dominated Problems Pengtao Sun Long Chen Jinchao Xu Received: 17 April 2009 / Revised:

More information

Convergence and optimality of an adaptive FEM for controlling L 2 errors

Convergence and optimality of an adaptive FEM for controlling L 2 errors Convergence and optimality of an adaptive FEM for controlling L 2 errors Alan Demlow (University of Kentucky) joint work with Rob Stevenson (University of Amsterdam) Partially supported by NSF DMS-0713770.

More information

Parameter-Uniform Numerical Methods for a Class of Singularly Perturbed Problems with a Neumann Boundary Condition

Parameter-Uniform Numerical Methods for a Class of Singularly Perturbed Problems with a Neumann Boundary Condition Parameter-Uniform Numerical Methods for a Class of Singularly Perturbed Problems with a Neumann Boundary Condition P. A. Farrell 1,A.F.Hegarty 2, J. J. H. Miller 3, E. O Riordan 4,andG.I. Shishkin 5 1

More information

AN OPTIMAL UNIFORM A PRIORI ERROR ESTIMATE FOR AN UNSTEADY SINGULARLY PERTURBED PROBLEM

AN OPTIMAL UNIFORM A PRIORI ERROR ESTIMATE FOR AN UNSTEADY SINGULARLY PERTURBED PROBLEM INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 11, Number 1, Pages 24 33 c 2014 Institute for Scientific Computing and Information AN OPTIMAL UNIFORM A PRIORI ERROR ESTIMATE FOR AN UNSTEADY

More information

A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods

A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods Alexandre Ern, Annette Stephansen o cite this version: Alexandre Ern, Annette

More information

RESIDUAL BASED ERROR ESTIMATES FOR THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD APPLIED TO NONLINEAR HYPERBOLIC EQUATIONS

RESIDUAL BASED ERROR ESTIMATES FOR THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD APPLIED TO NONLINEAR HYPERBOLIC EQUATIONS Proceedings of ALGORITMY 2016 pp. 113 124 RESIDUAL BASED ERROR ESTIMATES FOR THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD APPLIED TO NONLINEAR HYPERBOLIC EQUATIONS VÍT DOLEJŠÍ AND FILIP ROSKOVEC Abstract.

More information

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T 2 R.H. NOCHETTO 2. Lecture 2. Adaptivity I: Design and Convergence of AFEM tarting with a conforming mesh T H, the adaptive procedure AFEM consists of loops of the form OLVE ETIMATE MARK REFINE to produce

More information

Received: 23 April 2004 / Revised: 17 December 2004 / Published online: 5 July 2005 Springer-Verlag 2005

Received: 23 April 2004 / Revised: 17 December 2004 / Published online: 5 July 2005 Springer-Verlag 2005 Numer. Math. 25 : 273 38 DOI.7/s2-5-62-7 Numerische Mathematik Andrea Cangiani Endre Süli Enhanced RFB method Received: 23 April 24 / Revised: 7 December 24 / Published online: 5 July 25 Springer-Verlag

More information

STABILIZED GALERKIN FINITE ELEMENT METHODS FOR CONVECTION DOMINATED AND INCOMPRESSIBLE FLOW PROBLEMS

STABILIZED GALERKIN FINITE ELEMENT METHODS FOR CONVECTION DOMINATED AND INCOMPRESSIBLE FLOW PROBLEMS NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING BANACH CENTER PUBLICATIONS, VOLUME 29 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1994 STABILIZED GALERIN FINITE ELEMENT METHODS FOR CONVECTION

More information

Control of Interface Evolution in Multi-Phase Fluid Flows

Control of Interface Evolution in Multi-Phase Fluid Flows Control of Interface Evolution in Multi-Phase Fluid Flows Markus Klein Department of Mathematics University of Tübingen Workshop on Numerical Methods for Optimal Control and Inverse Problems Garching,

More information

LOCAL ERROR ANALYSIS OF DISCONTINUOUS GALERKIN METHODS FOR ADVECTION-DOMINATED ELLIPTIC LINEAR-QUADRATIC OPTIMAL CONTROL PROBLEMS

LOCAL ERROR ANALYSIS OF DISCONTINUOUS GALERKIN METHODS FOR ADVECTION-DOMINATED ELLIPTIC LINEAR-QUADRATIC OPTIMAL CONTROL PROBLEMS SIAM J. NUMER. ANAL. Vol. 50, No. 4, pp. 2012 2038 c 2012 Society for Industrial and Applied Mathematics LOCAL ERROR ANALYSIS OF DISCONTINUOUS GALERKIN METHODS FOR ADVECTION-DOMINATED ELLIPTIC LINEAR-QUADRATIC

More information

A posteriori error estimates applied to flow in a channel with corners

A posteriori error estimates applied to flow in a channel with corners Mathematics and Computers in Simulation 61 (2003) 375 383 A posteriori error estimates applied to flow in a channel with corners Pavel Burda a,, Jaroslav Novotný b, Bedřich Sousedík a a Department of Mathematics,

More information

Error estimates for moving least square approximations

Error estimates for moving least square approximations Applied Numerical Mathematics 37 (2001) 397 416 Error estimates for moving least square approximations María G. Armentano, Ricardo G. Durán 1 Departamento de Matemática, Facultad de Ciencias Exactas y

More information

Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods

Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods Contents Ralf Hartmann Institute of Aerodynamics and Flow Technology DLR (German Aerospace Center) Lilienthalplatz 7, 3808

More information

A Ginzburg-Landau Type Problem for Nematics with Highly Anisotropic Elastic Term

A Ginzburg-Landau Type Problem for Nematics with Highly Anisotropic Elastic Term A Ginzburg-Landau Type Problem for Nematics with Highly Anisotropic Elastic Term Peter Sternberg In collaboration with Dmitry Golovaty (Akron) and Raghav Venkatraman (Indiana) Department of Mathematics

More information

Discontinuous Petrov-Galerkin Methods

Discontinuous Petrov-Galerkin Methods Discontinuous Petrov-Galerkin Methods Friederike Hellwig 1st CENTRAL School on Analysis and Numerics for Partial Differential Equations, November 12, 2015 Motivation discontinuous Petrov-Galerkin (dpg)

More information

Analysis of a Multiscale Discontinuous Galerkin Method for Convection Diffusion Problems

Analysis of a Multiscale Discontinuous Galerkin Method for Convection Diffusion Problems Analysis of a Multiscale Discontinuous Galerkin Method for Convection Diffusion Problems A. Buffa,.J.R. Hughes, G. Sangalli Istituto di Matematica Applicata e ecnologie Informatiche del C.N.R. Via Ferrata

More information

1. Introduction. We consider the following convection-diffusion-reaction problem: Find u = u(x) such that

1. Introduction. We consider the following convection-diffusion-reaction problem: Find u = u(x) such that SIAM J. UMR. AAL. Vol. 42, o. 6, pp. 2496 2521 c 2005 Society for Industrial and Applied Mathematics XPLICIT AD AVRAGIG A POSTRIORI RROR STIMATS FOR ADAPTIV FIIT VOLUM MTHODS C. CARSTS, R. LAZAROV, AD

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

Numerical analysis and a-posteriori error control for a new nonconforming quadrilateral linear finite element

Numerical analysis and a-posteriori error control for a new nonconforming quadrilateral linear finite element Numerical analysis and a-posteriori error control for a new nonconforming quadrilateral linear finite element M. Grajewski, J. Hron, S. Turek Matthias.Grajewski@math.uni-dortmund.de, jaroslav.hron@math.uni-dortmund.de,

More information

A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction diffusion problems

A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction diffusion problems IMA Journal of Numerical Analysis (2003 23, 627 644 A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction diffusion problems NIALL MADDEN Department of

More information

Electronic Transactions on Numerical Analysis Volume 32, 2008

Electronic Transactions on Numerical Analysis Volume 32, 2008 Electronic Transactions on Numerical Analysis Volume 32, 2008 Contents 1 On the role of boundary conditions for CIP stabilization of higher order finite elements. Friedhelm Schieweck. We investigate the

More information

Convergence on Layer-adapted Meshes and Anisotropic Interpolation Error Estimates of Non-Standard Higher Order Finite Elements

Convergence on Layer-adapted Meshes and Anisotropic Interpolation Error Estimates of Non-Standard Higher Order Finite Elements Convergence on Layer-adapted Meshes and Anisotropic Interpolation Error Estimates of Non-Standard Higher Order Finite Elements Sebastian Franz a,1, Gunar Matthies b, a Department of Mathematics and Statistics,

More information

SAROD Conference, Hyderabad, december 2005 CONTINUOUS MESH ADAPTATION MODELS FOR CFD

SAROD Conference, Hyderabad, december 2005 CONTINUOUS MESH ADAPTATION MODELS FOR CFD 1 SAROD Conference, Hyderabad, december 2005 CONTINUOUS MESH ADAPTATION MODELS FOR CFD Bruno Koobus, 1,2 Laurent Hascoët, 1 Frédéric Alauzet, 3 Adrien Loseille, 3 Youssef Mesri, 1 Alain Dervieux 1 1 INRIA

More information

Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients

Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients Superconvergence of discontinuous Galerkin methods for -D linear hyperbolic equations with degenerate variable coefficients Waixiang Cao Chi-Wang Shu Zhimin Zhang Abstract In this paper, we study the superconvergence

More information

Numerical Methods for PDEs

Numerical Methods for PDEs Numerical Methods for PDEs Partial Differential Equations (Lecture 1, Week 1) Markus Schmuck Department of Mathematics and Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh

More information