SAROD Conference, Hyderabad, december 2005 CONTINUOUS MESH ADAPTATION MODELS FOR CFD

Size: px
Start display at page:

Download "SAROD Conference, Hyderabad, december 2005 CONTINUOUS MESH ADAPTATION MODELS FOR CFD"

Transcription

1 1 SAROD Conference, Hyderabad, december 2005 CONTINUOUS MESH ADAPTATION MODELS FOR CFD Bruno Koobus, 1,2 Laurent Hascoët, 1 Frédéric Alauzet, 3 Adrien Loseille, 3 Youssef Mesri, 1 Alain Dervieux 1 1 INRIA Sophia-Antipolis, France 2 Université de Montpellier II, France 3 INRIA Rocquencourt, France

2 2 (P): Find the design parameter γ opt for which a functional j is minimum. γ:aircraft shape parameter j: performances via CFD approximate model M:mesh parameterization j(m,γ) = J(M,γ,U(M,γ)), Ψ State (M,γ,U(M,γ)) = 0. - minimize the functional with respect to shape γ, - minimize the error on functional with respect to a mesh parameter, M.

3 3 Adaptation for a functional - Best ideal mesh density minimizing a continuous model of the error, see Babuska-Strouboulis - Adjoint based:. superconvergence for a functional,giles. a posteriori error for a functional,becker-rannacher

4 4 Mesh optimization strategy Minimize an error functional j with respect to mesh parameter, M. with Ψ ST AT E (γ,u) = 0 M = ArgMin J(M,γ,U exact U) with Ψ ERROR (M,γ,U exact U) = 0. J(U exact U(M)) = J exacte (U exact ).(U exact U(M)) 2

5 5 Mesh parameterization: Riemannian metric We modelize a mesh as a continuous medium, with an anisotropic property, the local metric (*): M x,y = R 1 M ( (mζ ) (m θ ) 2 ) R M, (*)(George, Hecht,..., Fortin, Habashi, Vallet,...) - interpolation error, - approximation error: elliptic theory, extension to CFD.

6 6 P1-Interpolation error E M = ( ) 2 2 u ξ 2.m2 ξ + 2 u η 2.m2 η dxdy where ξ and η are directions of diagonalization of the Hessian of u. Discontinuous case: (u(ξ + δ,η) 2u(ξ,η) + u(ξ δ,η))/δ 2 bounded in L 1 2. min M E M under the constraint N M = N.

7 7 Optimal Metric construction. M = R Λ R ( 1, where ( Λ = diag( ) λ i ) ) and λ c λi 1 1 i = min max, ε h 2, max h 2. min M opt = C N R 1 2 u 5/6 η 2 2 u 1/6 0 ξ u 5/6 ξ 2 2 u 1/6 η 2 avec: C = ( )2 2 u u 6 ξ 2. 2 η 2 dxdy. R. Erreur minimale: E opt = 4C2 N 2 ( ) 2 1/3 u ξ 2 2 1/3 u η 2 dxdy

8 8 Anisotropic mesh reconstruction Purpose: to generate a mesh such that all edges have a length of (or close to) one in the prescribed metric. For P a vertex M(P ) the metric at P, an edge P X has a local parametrization P X = P + t P X.Its average length is: l M ( P X) = 1 0 t P X M(P + t P X ) P X dt. (1) - add nodes in edges longer than 1+...

9 9 Supersonic business jet Final mesh (iteration 9) contains 798,756 vertices, 38,492 boundary triangles and 4,714,162 tetrahedra. Total CPU time 44 hours on a 600MHz workstation with 1Gb of memory. The remeshing time is 2% of total time time.

10 10 Supersonic business jet

11 11

12 12 Isotropic mesh and asymptotics How does behave the approximation error? m ζ 1 2 = m θ 1 2 = d: local mesh density M = d d h = h 1 d h > 0.

13 13 A First model: Dirichlet model, Galerkin Babuska-Rheinbolt: local problems + pollution error Mesh quality and element location effects A priori: Projection/Aubin-Nitsche Our option: extract a global smooth behavior from second-order a priori estimates.

14 14 Approximation-error splitting - P 1 -continuous, vertex-centered approximations, Π M : H k (Ω) V h = {v, continue, P 1 by element } U exact U(M) = U exact Π M U exact + Π M U exact U(M) U exact Π M U exact is interpolation error Π M U exact U(M) is the implicit error, solution of a discrete system.

15 15 Implicit error : elliptic case < (u), φ > = fφ dx. < (u h ), Π h φ > = fφ dx. < (u h Π h u), Π h φ > = < (u Π h u), Π h φ >

16 16 Lemma : We assume that the continuous solution u is in C 3 ( Ω) and that the continuous mesh size m is in C 2 ( Ω). Then, for any function φ of D 3 (Ω), we have Ω (u Π h u) Π h φ x x dm + = h 2 Ω Ω (u Π h u) Π h φ y y dm g (m)φdm + O φ (h 3 ) (2)

17 17 g (m) = g 1(m) + g 2(m) : (g 1(m),φ) = 3 48 (g 2(m),φ) = φ Ω y φ x Ω ( m 2 ( m 2 3 u x 3 ) 3 u x y 2 dm ) dm φ ( m 2 3 ) u Ω y 6 x 2 + φ 2 y y 2 φ ( ) m 2 3 u Ω y y 3 + φ 2 y 2 ( m 2 2 u x 2 ( m 2 2 u y 2 Remark: H 2 pivot space for gradient with respect to m. ) dm ) dm.

18 18 Numerical implementation Given u and its derivatives, the continuous optimization problem is discretized on a background mesh. Its adjoint and gradient are obtained by reverse-mode Automated Differentiation with TAPENADE. Optimization : One-Shot SQP and multi-level preconditioner. Example: Dirichlet problem, Minimization of L 2 error on whole domain, on left half domain.

19 19 case 1: Min 1 0 Optimization of mesh for a Dirichlet problem 1 0 u u h 2 dxdy, case 2: Min ( 1 0 u u h 2 dy)dx,

20 20 Case 1: Node-density initial(line)/final(dashes)

21 21 Case 1: Truncation error initial(line)/final(dashes)

22 22 Case 1: Approximation error initial(line)/final(dashes)

23 23 Case 2: Node-density initial(line)/final(dashes)

24 24 Case 2: truncation error initial(line)/final(dashes)

25 25 Case 2: approximation error initial(line)/final(dashes)

26 26 Towards the anisotropic case: Step 1: Pointwise optimization Given at a point a mesh density d = (m ζ m θ ) 1, find numerically at each node the: - optimal stretching direction, - optimal stretching strength. Build the reduced error model based on these outputs. Step 2: constrained global optimization Minimize the reduced error model with respect to mesh density.

27 27 A VARIATIONAL MODEL FOR EULER EQUATIONS A simplifying assumption: pure Galerkin formulation W and φ ( H 1 (Ω) ) 5,Vh is included in V. Ω φ.f(w )dω Ω φ F(W ).nd Ω = 0. Ω φ h.f h (W h )dω Ω φ h Fh (W h ).nd Ω = 0 where F h (W ) is the interpolate of F, i.e. F h (W h ) = Π h F(W h ), and same for Fh (W h ).

28 28 Replace φ by φ h = Π h φ: Ω φ h.f h (W h )dω φ h Fh (W h ).nd Ω = Ω φ h.f(w )dω φ h F(W ).nd Ω Ω Boundary data are involved inside F(W ) and F h (W ) Assumption: these terms can be split in W -dependant terms, denoted respectively by F out (W ) and F h out (Wh ), and constant terms, denoted F in and F h in. Ω

29 29 Therefore: φ h.f h (W h )dω out φ h Fh (Wh ).nd Ω = Ω Ω φ h.f(w )dω φ h F out (W ).nd Ω Ω Ω

30 30 Error estimate Assumption: both W and φ are several time continuously differentiable. φ h.(f h (W h ) Π h F(W ))dω Ω φ h ( F out h (Wh ) Π h F out (W )).nd Ω = Ω φ h.(f(w ) Π h F(W ))dω Ω φ h ( F out (W ) Π h F out (W )).nd Ω. Ω The left-hand side will be inverted and the right-hand side will be expanded to get the error estimate.

31 31 Interpolation errors We recall that Π h F(W ) = F h (W ). The left-hand side writes: LHS = Ω Ω φ h.(f h (W h ) F h (W ))dω φ h ( F h out (Wh ) out F h (W )).nd Ω.

32 32 We linearize it as follows: F LHS = φ h.(π h Ω W (W h W ))dω φ h (Π F out h h W (W h W )).nd Ω. Ω Where the derivatives F values of W. F h out W and W are evaluated from vertex LHS = A h (W )(W h Π h W )

33 33 LHS = A h (W )(W h Π h W ) Assumption:the Jacobian A h (W ) of the discretized Euler system is invertible. The implicit error W h Π h W is the unique solution of: W h Π h W = (A h (W )) 1 RHS.

34 34 In the right-hand side: RHS = φ h.(f(w ) Π h F(W ))dω Ω φ h ( F out (W ) Π h F out (W )).nd Ω Ω we recall that φ h = Π h φ and we add and substract a φ term: RHS = RHS 1 + RHS 2 with: RHS 1 = Ω Ω (Π h φ φ).(f(w ) Π h F(W ))dω (Π h φ φ)( F out (W ) Π h F out (W )).nd Ω

35 35 Assuming smoothness of φ and F(W ), we deduce that on Ω, interpolation errors are of order two and their gradients are of order one, same on boundary, and RHS 1 is thus of order three. RHS 1 const.h 3 The second term writes: RHS 2 = Ω Ω φ.(f(w ) Π h F(W ))dω φ( F out (W ) Π h F out (W )).nd Ω

36 36 and we transform it as follows: RHS 2 = ( φ).(f(w ) Π h F(W ))dω Ω + φ(f(w ) Π h F(W )).nd Ω Ω φ( F out (W ) Π h F out (W )).nd Ω Ω Same as for elliptic (easier): RHS 2 const.h 2. RHS 2 = h 2 (G(W,d),φ) + R, R = o(h 2 ).

37 37 Provisional conclusion The above study shows that the implicit error W h Π h W is a linear function of the interpolation error W Π h W. A first option consists in reducing the interpolation error. This option is studied in Sections 4 and 5. In Section 6 we shall define how to minimize with the implicit error by introducing an adjoint.

38 38 Implicit error reduction, general case Ψ W (W,d)Y = G(W,d), W is the unknown, d mesh density, Y implicit error. ( Ψ j = Ψ (W,d)Y G(W,d) = 0 ( W ) Ψ W (W,d) Π J Y (Y,d) = 0 W Y G) d (W,d) which can be solved as for elliptic case. Π + J d (Y,d) = 0

39 39 CONCLUSION This talk proposes rather sophisticated algorithms involving: flow solver, local error evaluation, sensitivity analysis by Automated Differentiation, adjoint and gradient based optimization, controlled generation of next mesh, interpolation of solution, till a convergence of a global loop is attained. These sophisticated algorithms will not bring only robustness, but also efficiency.

CONTINUOUS MESH ADAPTATION MODELS FOR CFD

CONTINUOUS MESH ADAPTATION MODELS FOR CFD Computational Fluid Dynamics JOURNAL CONTINUOUS MESH ADAPTATION MODELS FOR CFD Youssef Mesri, 1 Frédéric Alauzet, 3 Adrien Loseille, 3 Laurent Hascoët, 1 Bruno Koobus, 1,2 Alain Dervieux 1 Abstract Continuous

More information

Sensitivity analysis by adjoint Automatic Differentiation and Application

Sensitivity analysis by adjoint Automatic Differentiation and Application Sensitivity analysis by adjoint Automatic Differentiation and Application Anca Belme Massimiliano Martinelli Laurent Hascoët Valérie Pascual Alain Dervieux INRIA Sophia-Antipolis Project TROPICS Alain.Dervieux@inria.fr

More information

Automatic Differentiation for Optimum Design, Applied to Sonic Boom Reduction

Automatic Differentiation for Optimum Design, Applied to Sonic Boom Reduction Automatic Differentiation for Optimum Design, Applied to Sonic Boom Reduction Laurent Hascoët, Mariano Vázquez, Alain Dervieux Laurent.Hascoet@sophia.inria.fr Tropics Project, INRIA Sophia-Antipolis AD

More information

Goal-oriented error control of stochastic system approximations using metric-based anisotropic adaptations

Goal-oriented error control of stochastic system approximations using metric-based anisotropic adaptations arxiv:1805.00370v1 [math.na] 24 Apr 2018 Goal-oriented error control of stochastic system approximations using metric-based anisotropic adaptations J. Van Langenhove Sorbonne Universités, UPMC Univ Paris

More information

TOWARD THE SOLUTION OF KKT SYSTEMS IN AERODYNAMICAL SHAPE OPTIMISATION

TOWARD THE SOLUTION OF KKT SYSTEMS IN AERODYNAMICAL SHAPE OPTIMISATION CIRM, Marseille, 7-10 juillet 2003 1 TOWARD THE SOLUTION OF KKT SYSTEMS IN AERODYNAMICAL SHAPE OPTIMISATION Alain Dervieux, François Courty, INRIA, Sophia-Antipolis e-mail: alain.dervieux@sophia.inria.fr

More information

MULTILEVEL FUNCTIONAL PRECONDITIONING FOR SHAPE OPTIMISATION. F. Courty, A. Dervieux

MULTILEVEL FUNCTIONAL PRECONDITIONING FOR SHAPE OPTIMISATION. F. Courty, A. Dervieux MULTILEVEL FUNCTIONAL PRECONDITIONING FOR SHAPE OPTIMISATION F. Courty, A. Dervieux INRIA, Centre de Sophia-Antipolis, BP 93, 2004 Route des Lucioles, 06902 Sophia-Antipolis Cedex, France Francois.Courty@inria.fr,

More information

A Hybrid Method for the Wave Equation. beilina

A Hybrid Method for the Wave Equation.   beilina A Hybrid Method for the Wave Equation http://www.math.unibas.ch/ beilina 1 The mathematical model The model problem is the wave equation 2 u t 2 = (a 2 u) + f, x Ω R 3, t > 0, (1) u(x, 0) = 0, x Ω, (2)

More information

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable?

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Thomas Apel, Hans-G. Roos 22.7.2008 Abstract In the first part of the paper we discuss minimal

More information

Certification of Derivatives Computed by Automatic Differentiation

Certification of Derivatives Computed by Automatic Differentiation Certification of Derivatives Computed by Automatic Differentiation Mauricio Araya Polo & Laurent Hascoët Project TROPCS WSEAS, Cancún, México, May 13, 2005 1 Plan ntroduction (Background) Automatic Differentiation

More information

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO PREPRINT 2010:23 A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction The a posteriori error estimation of finite element approximations of elliptic boundary value problems has reached

More information

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying A DISCRETE DIVERGENCE FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU, JUNPING WANG, AND XIU YE Abstract. A discrete divergence free weak Galerkin finite element method is developed

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics: Overview and Recent Results

Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics: Overview and Recent Results Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics: Overview and Recent Results Krzysztof J. Fidkowski University of Michigan David L. Darmofal Massachusetts Institute of

More information

A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS

A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS Z. LU Communicated by Gabriela Marinoschi In this paper, we discuss a

More information

An Introduction to the Discontinuous Galerkin Method

An Introduction to the Discontinuous Galerkin Method An Introduction to the Discontinuous Galerkin Method Krzysztof J. Fidkowski Aerospace Computational Design Lab Massachusetts Institute of Technology March 16, 2005 Computational Prototyping Group Seminar

More information

Overlapping Schwarz preconditioners for Fekete spectral elements

Overlapping Schwarz preconditioners for Fekete spectral elements Overlapping Schwarz preconditioners for Fekete spectral elements R. Pasquetti 1, L. F. Pavarino 2, F. Rapetti 1, and E. Zampieri 2 1 Laboratoire J.-A. Dieudonné, CNRS & Université de Nice et Sophia-Antipolis,

More information

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Aravind Balan, Michael Woopen and Georg May AICES Graduate School, RWTH Aachen University, Germany 22nd AIAA Computational

More information

An Optimization-based Framework for Controlling Discretization Error through Anisotropic h-adaptation

An Optimization-based Framework for Controlling Discretization Error through Anisotropic h-adaptation An Optimization-based Framework for Controlling Discretization Error through Anisotropic h-adaptation Masayuki Yano and David Darmofal Aerospace Computational Design Laboratory Massachusetts Institute

More information

Intrinsic finite element modeling of a linear membrane shell problem

Intrinsic finite element modeling of a linear membrane shell problem arxiv:3.39v [math.na] 5 Mar Intrinsic finite element modeling of a linear membrane shell problem Peter Hansbo Mats G. Larson Abstract A Galerkin finite element method for the membrane elasticity problem

More information

Ultraconvergence of ZZ Patch Recovery at Mesh Symmetry Points

Ultraconvergence of ZZ Patch Recovery at Mesh Symmetry Points Ultraconvergence of ZZ Patch Recovery at Mesh Symmetry Points Zhimin Zhang and Runchang Lin Department of Mathematics, Wayne State University Abstract. The ultraconvergence property of the Zienkiewicz-Zhu

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

arxiv: v2 [math.na] 23 Apr 2016

arxiv: v2 [math.na] 23 Apr 2016 Improved ZZ A Posteriori Error Estimators for Diffusion Problems: Conforming Linear Elements arxiv:508.009v2 [math.na] 23 Apr 206 Zhiqiang Cai Cuiyu He Shun Zhang May 2, 208 Abstract. In [8], we introduced

More information

A globally convergent numerical method and adaptivity for an inverse problem via Carleman estimates

A globally convergent numerical method and adaptivity for an inverse problem via Carleman estimates A globally convergent numerical method and adaptivity for an inverse problem via Carleman estimates Larisa Beilina, Michael V. Klibanov Chalmers University of Technology and Gothenburg University, Gothenburg,

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem

A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem Larisa Beilina Michael V. Klibanov December 18, 29 Abstract

More information

Solving a magnetic diffusion equation by the Mixed Hybrid Finite Element method.

Solving a magnetic diffusion equation by the Mixed Hybrid Finite Element method. Solving a magnetic diffusion equation by the Mixed Hybrid Finite Element method. Corinne Aymard, Christophe Fochesato CEA, DAM, DIF, F-91297 Arpajon CEA/DAM/DIF 6 juillet 2010 1 Outline Objectives Model

More information

Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain

Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain Stephen Edward Moore Johann Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences,

More information

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T 2 R.H. NOCHETTO 2. Lecture 2. Adaptivity I: Design and Convergence of AFEM tarting with a conforming mesh T H, the adaptive procedure AFEM consists of loops of the form OLVE ETIMATE MARK REFINE to produce

More information

PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED

PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED ALAN DEMLOW Abstract. Recent results of Schatz show that standard Galerkin finite element methods employing piecewise polynomial elements of degree

More information

A multigrid method for large scale inverse problems

A multigrid method for large scale inverse problems A multigrid method for large scale inverse problems Eldad Haber Dept. of Computer Science, Dept. of Earth and Ocean Science University of British Columbia haber@cs.ubc.ca July 4, 2003 E.Haber: Multigrid

More information

Anisotropic mesh refinement for discontinuous Galerkin methods in two-dimensional aerodynamic flow simulations

Anisotropic mesh refinement for discontinuous Galerkin methods in two-dimensional aerodynamic flow simulations INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2008; 56:2111 2138 Published online 4 September 2007 in Wiley InterScience (www.interscience.wiley.com)..1608 Anisotropic

More information

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS CHARALAMBOS MAKRIDAKIS AND RICARDO H. NOCHETTO Abstract. It is known that the energy technique for a posteriori error analysis

More information

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov,

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov, LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES Sergey Korotov, Institute of Mathematics Helsinki University of Technology, Finland Academy of Finland 1 Main Problem in Mathematical

More information

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé CMCS/IACS Ecole Polytechnique Federale de Lausanne Erik.Burman@epfl.ch Méthodes Numériques

More information

SUPERCONVERGENCE ANALYSIS OF THE LINEAR FINITE ELEMENT METHOD AND A GRADIENT RECOVERY POSTPROCESSING ON ANISOTROPIC MESHES

SUPERCONVERGENCE ANALYSIS OF THE LINEAR FINITE ELEMENT METHOD AND A GRADIENT RECOVERY POSTPROCESSING ON ANISOTROPIC MESHES MATHEMATICS OF COMPUTATION Volume 84, Number 29, January 205, Pages 89 7 S 0025-578(204)02846-9 Article electronically published on May 28, 204 SUPERCONVERGENCE ANALYSIS OF THE LINEAR FINITE ELEMENT METHOD

More information

Some improvements of Xfem for cracked domains

Some improvements of Xfem for cracked domains Some improvements of Xfem for cracked domains E. Chahine 1, P. Laborde 2, J. Pommier 1, Y. Renard 3 and M. Salaün 4 (1) INSA Toulouse, laboratoire MIP, CNRS UMR 5640, Complexe scientifique de Rangueil,

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Residual and Error of Finite Element Solutions Mixed BVP of Poisson Equation

More information

Is My CFD Mesh Adequate? A Quantitative Answer

Is My CFD Mesh Adequate? A Quantitative Answer Is My CFD Mesh Adequate? A Quantitative Answer Krzysztof J. Fidkowski Gas Dynamics Research Colloqium Aerospace Engineering Department University of Michigan January 26, 2011 K.J. Fidkowski (UM) GDRC 2011

More information

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence 1 CONVERGENCE THEOR G. ALLAIRE CMAP, Ecole Polytechnique 1. Maximum principle 2. Oscillating test function 3. Two-scale convergence 4. Application to homogenization 5. General theory H-convergence) 6.

More information

Anisotropic meshes for PDEs: a posteriori error analysis and mesh adaptivity

Anisotropic meshes for PDEs: a posteriori error analysis and mesh adaptivity ICAM 2013, Heraklion, 17 September 2013 Anisotropic meshes for PDEs: a posteriori error analysis and mesh adaptivity Simona Perotto MOX-Modeling and Scientific Computing Department of Mathematics, Politecnico

More information

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology 7th World Congress on Computational Mechanics

More information

Nodal O(h 4 )-superconvergence of piecewise trilinear FE approximations

Nodal O(h 4 )-superconvergence of piecewise trilinear FE approximations Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-12 INSTITTE of MATHEMATICS Academy of Sciences Czech Republic Nodal O(h 4 )-superconvergence of piecewise trilinear FE approximations Antti Hannukainen

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS CARLO LOVADINA AND ROLF STENBERG Abstract The paper deals with the a-posteriori error analysis of mixed finite element methods

More information

Three remarks on anisotropic finite elements

Three remarks on anisotropic finite elements Three remarks on anisotropic finite elements Thomas Apel Universität der Bundeswehr München Workshop Numerical Analysis for Singularly Perturbed Problems dedicated to the 60th birthday of Martin Stynes

More information

QUELQUES APPLICATIONS D UN SCHEMA SCHEMA MIXTE-ELEMENT-VOLUME A LA LES, A L ACOUSTIQUE, AUX INTERFACES

QUELQUES APPLICATIONS D UN SCHEMA SCHEMA MIXTE-ELEMENT-VOLUME A LA LES, A L ACOUSTIQUE, AUX INTERFACES 1 QUELQUES APPLICATIONS D UN SCHEMA SCHEMA MIXTE-ELEMENT-VOLUME A LA LES, A L ACOUSTIQUE, AUX INTERFACES O. ALLAIN(*), A. DERVIEUX(**), I. ABALAKIN(***), S. CAMARRI(****), H. GUILLARD(**), B. KOOBUS(*****),

More information

ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR THE POINTWISE GRADIENT ERROR ON EACH ELEMENT IN IRREGULAR MESHES. PART II: THE PIECEWISE LINEAR CASE

ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR THE POINTWISE GRADIENT ERROR ON EACH ELEMENT IN IRREGULAR MESHES. PART II: THE PIECEWISE LINEAR CASE MATEMATICS OF COMPUTATION Volume 73, Number 246, Pages 517 523 S 0025-5718(0301570-9 Article electronically published on June 17, 2003 ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR TE POINTWISE GRADIENT

More information

A Second Order Discontinuous Galerkin Fast Sweeping Method for Eikonal Equations

A Second Order Discontinuous Galerkin Fast Sweeping Method for Eikonal Equations A Second Order Discontinuous Galerkin Fast Sweeping Method for Eikonal Equations Fengyan Li, Chi-Wang Shu, Yong-Tao Zhang 3, and Hongkai Zhao 4 ABSTRACT In this paper, we construct a second order fast

More information

A short introduction to FreeFem++

A short introduction to FreeFem++ A short introduction to FreeFem++ M. Ersoy Basque Center for Applied Mathematics 12 November 2010 Outline of the talk Outline of the talk 1 Introduction 2 HOW TO solve steady pdes : e.g. Laplace equation

More information

DISCRETE MAXIMUM PRINCIPLES in THE FINITE ELEMENT SIMULATIONS

DISCRETE MAXIMUM PRINCIPLES in THE FINITE ELEMENT SIMULATIONS DISCRETE MAXIMUM PRINCIPLES in THE FINITE ELEMENT SIMULATIONS Sergey Korotov BCAM Basque Center for Applied Mathematics http://www.bcamath.org 1 The presentation is based on my collaboration with several

More information

Numerical analysis and a-posteriori error control for a new nonconforming quadrilateral linear finite element

Numerical analysis and a-posteriori error control for a new nonconforming quadrilateral linear finite element Numerical analysis and a-posteriori error control for a new nonconforming quadrilateral linear finite element M. Grajewski, J. Hron, S. Turek Matthias.Grajewski@math.uni-dortmund.de, jaroslav.hron@math.uni-dortmund.de,

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

Finite difference method for elliptic problems: I

Finite difference method for elliptic problems: I Finite difference method for elliptic problems: I Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

Discretization Error Reduction through r Adaptation in CFD

Discretization Error Reduction through r Adaptation in CFD Discretization Error Reduction through r Adaptation in CFD ASME Verification and Validation Symposium May 13 15, 2015 William C. Tyson, Christopher J. Roy, Joseph M. Derlaga, and Charles W. Jackson Aerospace

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain March 4-5, 2015 Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain M. Bonnasse-Gahot 1,2, H. Calandra 3, J. Diaz 1 and S. Lanteri 2

More information

A Primal-Dual Weak Galerkin Finite Element Method for Second Order Elliptic Equations in Non-Divergence Form

A Primal-Dual Weak Galerkin Finite Element Method for Second Order Elliptic Equations in Non-Divergence Form A Primal-Dual Weak Galerkin Finite Element Method for Second Order Elliptic Equations in Non-Divergence Form Chunmei Wang Visiting Assistant Professor School of Mathematics Georgia Institute of Technology

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 25: Introduction to Discontinuous Galerkin Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods

More information

Analysis of an Adaptive Finite Element Method for Recovering the Robin Coefficient

Analysis of an Adaptive Finite Element Method for Recovering the Robin Coefficient Analysis of an Adaptive Finite Element Method for Recovering the Robin Coefficient Yifeng Xu 1 Jun Zou 2 Abstract Based on a new a posteriori error estimator, an adaptive finite element method is proposed

More information

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Motivation Numerical methods Numerical tests Conclusions A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Xiaofeng Cai Department of Mathematics

More information

Matrix construction: Singular integral contributions

Matrix construction: Singular integral contributions Matrix construction: Singular integral contributions Seminar Boundary Element Methods for Wave Scattering Sophie Haug ETH Zurich November 2010 Outline 1 General concepts in singular integral computation

More information

Polynomial Preserving Recovery for Quadratic Elements on Anisotropic Meshes

Polynomial Preserving Recovery for Quadratic Elements on Anisotropic Meshes Polynomial Preserving Recovery for Quadratic Elements on Anisotropic Meshes Can Huang, 1 Zhimin Zhang 1, 1 Department of Mathematics, Wayne State University, Detroit, Michigan 480 College of Mathematics

More information

Un problème inverse: l identification du profil de courant dans un Tokamak

Un problème inverse: l identification du profil de courant dans un Tokamak Un problème inverse: l identification du profil de courant dans un Tokamak Blaise Faugeras en collaboration avec J. Blum et C. Boulbe Université de Nice Sophia Antipolis Laboratoire J.-A. Dieudonné Nice,

More information

Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods

Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods Contents Ralf Hartmann Institute of Aerodynamics and Flow Technology DLR (German Aerospace Center) Lilienthalplatz 7, 3808

More information

Solving PDEs with freefem++

Solving PDEs with freefem++ Solving PDEs with freefem++ Tutorials at Basque Center BCA Olivier Pironneau 1 with Frederic Hecht, LJLL-University of Paris VI 1 March 13, 2011 Do not forget That everything about freefem++ is at www.freefem.org

More information

Chapter 2. General concepts. 2.1 The Navier-Stokes equations

Chapter 2. General concepts. 2.1 The Navier-Stokes equations Chapter 2 General concepts 2.1 The Navier-Stokes equations The Navier-Stokes equations model the fluid mechanics. This set of differential equations describes the motion of a fluid. In the present work

More information

A Posteriori Estimates for Cost Functionals of Optimal Control Problems

A Posteriori Estimates for Cost Functionals of Optimal Control Problems A Posteriori Estimates for Cost Functionals of Optimal Control Problems Alexandra Gaevskaya, Ronald H.W. Hoppe,2 and Sergey Repin 3 Institute of Mathematics, Universität Augsburg, D-8659 Augsburg, Germany

More information

Solving Time-Harmonic Scattering Problems by the Ultra Weak Variational Formulation

Solving Time-Harmonic Scattering Problems by the Ultra Weak Variational Formulation Introduction Solving Time-Harmonic Scattering Problems by the Ultra Weak Variational Formulation Plane waves as basis functions Peter Monk 1 Tomi Huttunen 2 1 Department of Mathematical Sciences University

More information

1 Exercise: Linear, incompressible Stokes flow with FE

1 Exercise: Linear, incompressible Stokes flow with FE Figure 1: Pressure and velocity solution for a sinking, fluid slab impinging on viscosity contrast problem. 1 Exercise: Linear, incompressible Stokes flow with FE Reading Hughes (2000), sec. 4.2-4.4 Dabrowski

More information

A posteriori error estimates applied to flow in a channel with corners

A posteriori error estimates applied to flow in a channel with corners Mathematics and Computers in Simulation 61 (2003) 375 383 A posteriori error estimates applied to flow in a channel with corners Pavel Burda a,, Jaroslav Novotný b, Bedřich Sousedík a a Department of Mathematics,

More information

PRECONDITIONED SOLUTION OF STATE GRADIENT CONSTRAINED ELLIPTIC OPTIMAL CONTROL PROBLEMS

PRECONDITIONED SOLUTION OF STATE GRADIENT CONSTRAINED ELLIPTIC OPTIMAL CONTROL PROBLEMS PRECONDITIONED SOLUTION OF STATE GRADIENT CONSTRAINED ELLIPTIC OPTIMAL CONTROL PROBLEMS Roland Herzog Susann Mach January 30, 206 Elliptic optimal control problems with pointwise state gradient constraints

More information

Maximum norm estimates for energy-corrected finite element method

Maximum norm estimates for energy-corrected finite element method Maximum norm estimates for energy-corrected finite element method Piotr Swierczynski 1 and Barbara Wohlmuth 1 Technical University of Munich, Institute for Numerical Mathematics, piotr.swierczynski@ma.tum.de,

More information

Goal-oriented error control of the iterative solution of finite element equations

Goal-oriented error control of the iterative solution of finite element equations J. Numer. Math., Vol. 0, No. 0, pp. 1 31 (2009) DOI 10.1515/ JNUM.2009.000 c de Gruyter 2009 Prepared using jnm.sty [Version: 20.02.2007 v1.3] Goal-oriented error control of the iterative solution of finite

More information

A BIVARIATE SPLINE METHOD FOR SECOND ORDER ELLIPTIC EQUATIONS IN NON-DIVERGENCE FORM

A BIVARIATE SPLINE METHOD FOR SECOND ORDER ELLIPTIC EQUATIONS IN NON-DIVERGENCE FORM A BIVARIAE SPLINE MEHOD FOR SECOND ORDER ELLIPIC EQUAIONS IN NON-DIVERGENCE FORM MING-JUN LAI AND CHUNMEI WANG Abstract. A bivariate spline method is developed to numerically solve second order elliptic

More information

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment Alastair J. Radcliffe Andreas Dedner Timo Betcke Warwick University, Coventry University College of London (UCL) U.K. Radcliffe

More information

Part IV: Numerical schemes for the phase-filed model

Part IV: Numerical schemes for the phase-filed model Part IV: Numerical schemes for the phase-filed model Jie Shen Department of Mathematics Purdue University IMS, Singapore July 29-3, 29 The complete set of governing equations Find u, p, (φ, ξ) such that

More information

ANISOTROPIC MEASURES OF THIRD ORDER DERIVATIVES AND THE QUADRATIC INTERPOLATION ERROR ON TRIANGULAR ELEMENTS

ANISOTROPIC MEASURES OF THIRD ORDER DERIVATIVES AND THE QUADRATIC INTERPOLATION ERROR ON TRIANGULAR ELEMENTS SIAM J. SCI. COMPUT. Vol. 29, No. 2, pp. 756 78 c 2007 Society for Industrial and Applied Mathematics ANISOTROPIC MEASURES OF THIRD ORDER DERIVATIVES AND THE QUADRATIC INTERPOLATION ERROR ON TRIANGULAR

More information

A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators

A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators Jeff Ovall University of Kentucky Mathematics www.math.uky.edu/ jovall jovall@ms.uky.edu Kentucky Applied and

More information

Nonparametric density estimation for elliptic problems with random perturbations

Nonparametric density estimation for elliptic problems with random perturbations Nonparametric density estimation for elliptic problems with random perturbations, DqF Workshop, Stockholm, Sweden, 28--2 p. /2 Nonparametric density estimation for elliptic problems with random perturbations

More information

Applications of the periodic unfolding method to multi-scale problems

Applications of the periodic unfolding method to multi-scale problems Applications of the periodic unfolding method to multi-scale problems Doina Cioranescu Université Paris VI Santiago de Compostela December 14, 2009 Periodic unfolding method and multi-scale problems 1/56

More information

Edwin van der Weide and Magnus Svärd. I. Background information for the SBP-SAT scheme

Edwin van der Weide and Magnus Svärd. I. Background information for the SBP-SAT scheme Edwin van der Weide and Magnus Svärd I. Background information for the SBP-SAT scheme As is well-known, stability of a numerical scheme is a key property for a robust and accurate numerical solution. Proving

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

Airfoil shape optimization using adjoint method and automatic differentiation

Airfoil shape optimization using adjoint method and automatic differentiation Airfoil shape optimization using adjoint method and automatic differentiation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 5665

More information

On angle conditions in the finite element method. Institute of Mathematics, Academy of Sciences Prague, Czech Republic

On angle conditions in the finite element method. Institute of Mathematics, Academy of Sciences Prague, Czech Republic On angle conditions in the finite element method Michal Křížek Institute of Mathematics, Academy of Sciences Prague, Czech Republic Joint work with Jan Brandts (University of Amsterdam), Antti Hannukainen

More information

Progress in Mesh-Adaptive Discontinuous Galerkin Methods for CFD

Progress in Mesh-Adaptive Discontinuous Galerkin Methods for CFD Progress in Mesh-Adaptive Discontinuous Galerkin Methods for CFD German Aerospace Center Seminar Krzysztof Fidkowski Department of Aerospace Engineering The University of Michigan May 4, 2009 K. Fidkowski

More information

Shock Reflection-Diffraction, Nonlinear Conservation Laws of Mixed Type, and von Neumann s Conjectures 1

Shock Reflection-Diffraction, Nonlinear Conservation Laws of Mixed Type, and von Neumann s Conjectures 1 Contents Preface xi I Shock Reflection-Diffraction, Nonlinear Conservation Laws of Mixed Type, and von Neumann s Conjectures 1 1 Shock Reflection-Diffraction, Nonlinear Partial Differential Equations of

More information

The Discontinuous Galerkin Finite Element Method

The Discontinuous Galerkin Finite Element Method The Discontinuous Galerkin Finite Element Method Michael A. Saum msaum@math.utk.edu Department of Mathematics University of Tennessee, Knoxville The Discontinuous Galerkin Finite Element Method p.1/41

More information

On the p-laplacian and p-fluids

On the p-laplacian and p-fluids LMU Munich, Germany Lars Diening On the p-laplacian and p-fluids Lars Diening On the p-laplacian and p-fluids 1/50 p-laplacian Part I p-laplace and basic properties Lars Diening On the p-laplacian and

More information

An a posteriori error estimator for the weak Galerkin least-squares finite-element method

An a posteriori error estimator for the weak Galerkin least-squares finite-element method An a posteriori error estimator for the weak Galerkin least-squares finite-element method James H. Adler a, Xiaozhe Hu a, Lin Mu b, Xiu Ye c a Department of Mathematics, Tufts University, Medford, MA 02155

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

Numerical Methods for Large-Scale Nonlinear Systems

Numerical Methods for Large-Scale Nonlinear Systems Numerical Methods for Large-Scale Nonlinear Systems Handouts by Ronald H.W. Hoppe following the monograph P. Deuflhard Newton Methods for Nonlinear Problems Springer, Berlin-Heidelberg-New York, 2004 Num.

More information

Adjoint code development and optimization using automatic differentiation (AD)

Adjoint code development and optimization using automatic differentiation (AD) Adjoint code development and optimization using automatic differentiation (AD) Praveen. C Computational and Theoretical Fluid Dynamics Division National Aerospace Laboratories Bangalore - 560 037 CTFD

More information

The CG1-DG2 method for conservation laws

The CG1-DG2 method for conservation laws for conservation laws Melanie Bittl 1, Dmitri Kuzmin 1, Roland Becker 2 MoST 2014, Germany 1 Dortmund University of Technology, Germany, 2 University of Pau, France CG1-DG2 Method - Motivation hp-adaptivity

More information

THE PATCH RECOVERY FOR FINITE ELEMENT APPROXIMATION OF ELASTICITY PROBLEMS UNDER QUADRILATERAL MESHES. Zhong-Ci Shi and Xuejun Xu.

THE PATCH RECOVERY FOR FINITE ELEMENT APPROXIMATION OF ELASTICITY PROBLEMS UNDER QUADRILATERAL MESHES. Zhong-Ci Shi and Xuejun Xu. DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS SERIES B Volume 9, Number, January 2008 pp. 63 82 THE PATCH RECOVERY FOR FINITE ELEMENT APPROXIMATION OF ELASTICITY PROBLEMS UNDER

More information

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York)

Zdzislaw Brzeźniak. Department of Mathematics University of York. joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) Navier-Stokes equations with constrained L 2 energy of the solution Zdzislaw Brzeźniak Department of Mathematics University of York joint works with Mauro Mariani (Roma 1) and Gaurav Dhariwal (York) Stochastic

More information

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS A. RÖSCH AND R. SIMON Abstract. An optimal control problem for an elliptic equation

More information

The Data-Dependence graph of Adjoint Codes

The Data-Dependence graph of Adjoint Codes The Data-Dependence graph of Adjoint Codes Laurent Hascoët INRIA Sophia-Antipolis November 19th, 2012 (INRIA Sophia-Antipolis) Data-Deps of Adjoints 19/11/2012 1 / 14 Data-Dependence graph of this talk

More information

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that 1 Stokes s Theorem Let D R 2 be a connected compact smooth domain, so that D is a smooth embedded circle. Given a smooth function f : D R, define fdx dy fdxdy, D where the left-hand side is the integral

More information

Continuous adjoint based error estimation and r-refinement for the active-flux method

Continuous adjoint based error estimation and r-refinement for the active-flux method Continuous adjoint based error estimation and r-refinement for the active-flux method Kaihua Ding, Krzysztof J. Fidkowski and Philip L. Roe Department of Aerospace Engineering, University of Michigan,

More information