Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain

Size: px
Start display at page:

Download "Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain"

Transcription

1 Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain Stephen Edward Moore Johann Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences, Linz, Austria Numerical Analysis Seminar, JKU, January 14, 2014

2 Outline Singularities in BVP Construction of Graded Mesh FE-Scheme Error Estimates Numerical Results

3 Singularities in BVP Lu ( ) u u a ij +b i +σu = f, in Ω x i x j x j ( ) u u S1 = 0, a ij N +σu S2 = 0 Cases of Singularities: Discontinuous coefficients (a ij ). Discontinuous right-hand side (f). Jump in boundary data. Domains with corner points.

4 Domains with corner points x 2 = y x2 = y Ω β Ω ω x 1 = x Ω ω β Ω x1 = x Heart L-shape where β > π. Singularity at ω.

5 Recap... u +u = f inω R 2 u n = 0on Ω := S Find u H = W 1 2 (Ω) : L Ω (u,φ) = (f,φ) Ω, φ H where u = u R +u S ur Regular part. us = 0<λ<1γψ(r,θ) is Singular part. ψ(r,θ) = ξ(r)r λ cosλθ λ = π/β and 1/2 < λ < 1. ξ(r) smooth cut-off function.

6 Outline Singularities in BVP Construction of Graded Mesh FE-Scheme Error Estimates Numerical Results

7 Construction of Graded Mesh Aim : To construct a mesh such that node distribution becomes denser towards the singular point. x 2 = y let h > 0 r i = (ih) 1/µ, i = 0,...,N ω r x 1 = x h i = r i r i 1, i = 1,...,N S = Ω Ω β with 0 < µ < 1 and N = [h 1 ]. C 1 (ih) µ 1 1 h i h C 2(ih) µ 1 1

8 Example : 1D Graded Mesh 1D graded mesh µ r Figure : 1D graded mesh with varying µ

9 Example : L-Shape Graded Mesh graded mesh with µ = 0.4 No grading with µ = 1.0

10 Example : Curved domain ϑ i = {r i 1 r r i }, i = 1,...,N Domain with polygon x2 = y D = N i=1 ϑ i S h = Ω h ex Ω h ex ω Ω Ω x1 = x S h is located exterior to Ω (S h Ω = ) nodes x S h z D : dist(x,s) δh 2 = O(h 2 ) nodes x S h z ϑ i : dist(x,s) δh 2 i β

11 S h = N i=1 lh j nodes (l h j ) ϑ i : l h j l 0h i l h j D = : l h j l 0h where l 0,δ C(h). node description l h j Triangulation (T h ) of Ω h ex : Conditions to satisfy: 1. δ,δ T h : δ δ := {,joint vertex,joint edge} δ ϑi : l 1 h i l = e l 2 h i, e δ δ D = : l1 h l = e l 2 h, e δ 2. θ δ θ 0 = const. > 0 δ T h 3. N i := {δ T h : δ ϑ i } N 0 i where l 1,l 2,N 0 C(h).

12 S = Ω S = Ω S h = Ω h ex S h = Ω h ex Ω Ω h h Ω h ex Ω h ex Figure : dist(s,s h ) = O(h 2 ) Figure : dist(s,s h ) = O(h) bad condition number in the case of natural BC (right figure).

13 Remark R h := number of nodes = O(h 2 ). number of nodes not located in D = O(h 2 ) number of nodes (M) located in D is : M C N N N i CN 0 i Ch 2 = O(h 2 ). i=1 i=1

14 Outline Singularities in BVP Construction of Graded Mesh FE-Scheme Error Estimates Numerical Results

15 FE-Scheme Error Estimates x2 = y Ω Find u W 1 2 (Ω) : L Ω (u,φ) = (f,φ) Ω φ H S h = Ω h ex Ω Ω h ex ω β x1 = x Find ṽ H h = S 1 (Ω h ex) : L Ω (ṽ,φ) = (f,φ) Ω φ H h

16 Cea s Lemma : u ṽ 1,Ω C min φ Hh u φ 1,Ω u = γψ +w H with w W2 2(Ω) W2 2 ( Ω) Interpolant : Π h : L 2 H h ũ = Π h u = γπ h ψ +Π h w = γ ψ + w H h u ṽ 1,Ω C u ũ 1,Ω h ex For δ = T h : ψ = 0,i.e.u = w u ũ 2 1, = w w 2 1, Ch2 w 2 2,

17 CASE I : [ϑ 1 ϑ 2 ] : Show u ũ 2 1, C (h 2λ/µ γ 2 +h 2 w 2 2 ) Ideas for Proof: 1. r Ch 1/µ 2. ψ 2 1, Ch2λ/µ and ψ 2 1, Ch2λ/µ. 3. w w 2 1, Ch2 w 2 2, 4. u ũ 2 1, 4 γ 2 ( ψ 2 1, + ψ 2 1, ) +2 w w 2 1,

18 CASE II : [ϑ 1 ϑ 2 ] = : [ ] N u ũ 2 1,Ω C h 2λ µ γ (1+ 2 i 2λ h µ )+h 4 2 w 2 ex 2,Ω i=1 Ideas for Proof: 1. D 2 ψ 2 Cr 2λ 4 2. w w 2 1, Ch2 w 2 2, ( ) 3. u ũ 2 1, C hi 4r2λ 4 i γ 2 +hi 2 w 2 2, 4. sum over all triangles T h

19 For µ = 1 N i 2λ 4 C <, N. i=1 u ṽ 1,Ω h ex Ch λ f 0,Ω For µ < λ, i.e. λ µ > 1 N i=1 i 2λ µ 4 Ch 2 2λ µ u ṽ 1,Ω h ex Ch f 0,Ω

20 Outline Singularities in BVP Construction of Graded Mesh FE-Scheme Error Estimates Numerical Results

21 Construction of Graded Mesh: IGA Example : L-Shape with 2 patches { u = 0 in Ω u = g D on Ω u(x,y) = (x 2 + y 2 ) 1/3 sin((2arctan(y/x)+ π)/3). u u h L 2 = O(h 4/3 ). u u h H 1 = O(h 2/3 ). Knot Vector Ξ 1,2 = {0,0,1,1}. p = 1 (bilinear FEM). Figure : L-Shape solution on multi-patch.

22 Gradient of the solution. Ref: [

23 Knot Vector Grading: insert knots closer to singularity L 2 Error Estimate for Graded Mesh versus DOFs µ = 0.2 µ = 0.4 µ = 0.6 µ = 0.8 µ = 1.0 Errors DOFs Figure : L 2 -Errors of graded mesh plotted against DOFs.

24 µ = 0.2 µ = 0.4 µ = 0.6 µ = 0.8 µ = 1.0 H 1 Error Estimate for Graded Mesh versus DOFs Errors DOFs Figure : H 1 -Errors of graded mesh plotted against DOFs.

25 Conclusion 1. For µ = 1, the convergence rate for p 1 is u uh L 2 = O(h 4/3 ). u uh H 1 = O(h 2/3 ). 2. Knot grading with 0 < µ < 0.6 u uh L 2 = O(h 2 ). u uh H 1 = O(h). 3. Remarks on the artifacts in errors: condition number of matrix deteriorates for µ 0. related solver issues. computation of the H 1 norm close to the singularity.

Space-time Finite Element Methods for Parabolic Evolution Problems

Space-time Finite Element Methods for Parabolic Evolution Problems Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients Ulrich Langer, Martin Neumüller, Andreas Schafelner Johannes Kepler University, Linz Doctoral Program Computational

More information

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS A. RÖSCH AND R. SIMON Abstract. An optimal control problem for an elliptic equation

More information

Institut de Recherche MAthématique de Rennes

Institut de Recherche MAthématique de Rennes LMS Durham Symposium: Computational methods for wave propagation in direct scattering. - July, Durham, UK The hp version of the Weighted Regularization Method for Maxwell Equations Martin COSTABEL & Monique

More information

The CG1-DG2 method for conservation laws

The CG1-DG2 method for conservation laws for conservation laws Melanie Bittl 1, Dmitri Kuzmin 1, Roland Becker 2 MoST 2014, Germany 1 Dortmund University of Technology, Germany, 2 University of Pau, France CG1-DG2 Method - Motivation hp-adaptivity

More information

Maximum norm estimates for energy-corrected finite element method

Maximum norm estimates for energy-corrected finite element method Maximum norm estimates for energy-corrected finite element method Piotr Swierczynski 1 and Barbara Wohlmuth 1 Technical University of Munich, Institute for Numerical Mathematics, piotr.swierczynski@ma.tum.de,

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

Convergence and optimality of an adaptive FEM for controlling L 2 errors

Convergence and optimality of an adaptive FEM for controlling L 2 errors Convergence and optimality of an adaptive FEM for controlling L 2 errors Alan Demlow (University of Kentucky) joint work with Rob Stevenson (University of Amsterdam) Partially supported by NSF DMS-0713770.

More information

On a Discontinuous Galerkin Method for Surface PDEs

On a Discontinuous Galerkin Method for Surface PDEs On a Discontinuous Galerkin Method for Surface PDEs Pravin Madhavan (joint work with Andreas Dedner and Bjo rn Stinner) Mathematics and Statistics Centre for Doctoral Training University of Warwick Applied

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes Dylan Copeland 1, Ulrich Langer 2, and David Pusch 3 1 Institute of Computational Mathematics,

More information

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions Juan Gabriel Calvo Preprint No. 25-2017 PRAHA 2017 A VIRTUAL

More information

Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations

Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations Christoph Hofer and Ulrich Langer Doctoral Program Computational Mathematics Numerical

More information

Conferences Fictitious domain methods for numerical realization of unilateral problems. J.H. (jointly with T. Kozubek and R. Kučera) p.

Conferences Fictitious domain methods for numerical realization of unilateral problems. J.H. (jointly with T. Kozubek and R. Kučera) p. p. /2 Conferences 28 Fictitious domain methods for numerical realization of unilateral problems J.H. (jointly with T. Kozubek and R. Kučera) Lyon 23-24.6. 28 p. 2/2 Outline Fictitious domain methods -

More information

Interpolation in h-version finite element spaces

Interpolation in h-version finite element spaces Interpolation in h-version finite element spaces Thomas Apel Institut für Mathematik und Bauinformatik Fakultät für Bauingenieur- und Vermessungswesen Universität der Bundeswehr München Chemnitzer Seminar

More information

A posteriori error estimation in the FEM

A posteriori error estimation in the FEM A posteriori error estimation in the FEM Plan 1. Introduction 2. Goal-oriented error estimates 3. Residual error estimates 3.1 Explicit 3.2 Subdomain error estimate 3.3 Self-equilibrated residuals 3.4

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Residual and Error of Finite Element Solutions Mixed BVP of Poisson Equation

More information

CIMPA Summer School on Current Research in Finite Element Methods

CIMPA Summer School on Current Research in Finite Element Methods CIMPA Summer School on Current Research in Finite Element Methods Local zooming techniques for the finite element method Alexei Lozinski Laboratoire de mathématiques de Besançon Université de Franche-Comté,

More information

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable?

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Thomas Apel, Hans-G. Roos 22.7.2008 Abstract In the first part of the paper we discuss minimal

More information

Recovery-Based A Posteriori Error Estimation

Recovery-Based A Posteriori Error Estimation Recovery-Based A Posteriori Error Estimation Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 2, 2011 Outline Introduction Diffusion Problems Higher Order Elements

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

Detecting Interfaces in a Parabolic-Elliptic Problem

Detecting Interfaces in a Parabolic-Elliptic Problem Detecting Interfaces in a Parabolic-Elliptic Problem Bastian Gebauer bastian.gebauer@oeaw.ac.at Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences, Linz,

More information

Inexact Data-Sparse BETI Methods by Ulrich Langer. (joint talk with G. Of, O. Steinbach and W. Zulehner)

Inexact Data-Sparse BETI Methods by Ulrich Langer. (joint talk with G. Of, O. Steinbach and W. Zulehner) Inexact Data-Sparse BETI Methods by Ulrich Langer (joint talk with G. Of, O. Steinbach and W. Zulehner) Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences http://www.ricam.oeaw.ac.at

More information

ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR THE POINTWISE GRADIENT ERROR ON EACH ELEMENT IN IRREGULAR MESHES. PART II: THE PIECEWISE LINEAR CASE

ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR THE POINTWISE GRADIENT ERROR ON EACH ELEMENT IN IRREGULAR MESHES. PART II: THE PIECEWISE LINEAR CASE MATEMATICS OF COMPUTATION Volume 73, Number 246, Pages 517 523 S 0025-5718(0301570-9 Article electronically published on June 17, 2003 ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR TE POINTWISE GRADIENT

More information

Isogeometric Analysis:

Isogeometric Analysis: Isogeometric Analysis: some approximation estimates for NURBS L. Beirao da Veiga, A. Buffa, Judith Rivas, G. Sangalli Euskadi-Kyushu 2011 Workshop on Applied Mathematics BCAM, March t0th, 2011 Outline

More information

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36 Optimal multilevel preconditioning of strongly anisotropic problems. Part II: non-conforming FEM. Svetozar Margenov margenov@parallel.bas.bg Institute for Parallel Processing, Bulgarian Academy of Sciences,

More information

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T 2 R.H. NOCHETTO 2. Lecture 2. Adaptivity I: Design and Convergence of AFEM tarting with a conforming mesh T H, the adaptive procedure AFEM consists of loops of the form OLVE ETIMATE MARK REFINE to produce

More information

1 Discretizing BVP with Finite Element Methods.

1 Discretizing BVP with Finite Element Methods. 1 Discretizing BVP with Finite Element Methods In this section, we will discuss a process for solving boundary value problems numerically, the Finite Element Method (FEM) We note that such method is a

More information

A u + b u + cu = f in Ω, (1.1)

A u + b u + cu = f in Ω, (1.1) A WEIGHTED H(div) LEAST-SQUARES METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS Z. CAI AND C. R. WESTPHAL Abstract. This paper presents analysis of a weighted-norm least squares finite element method for elliptic

More information

c 2008 Society for Industrial and Applied Mathematics

c 2008 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 46, No. 3, pp. 640 65 c 2008 Society for Industrial and Applied Mathematics A WEIGHTED H(div) LEAST-SQUARES METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS Z. CAI AND C. R. WESTPHAL

More information

Local pointwise a posteriori gradient error bounds for the Stokes equations. Stig Larsson. Heraklion, September 19, 2011 Joint work with A.

Local pointwise a posteriori gradient error bounds for the Stokes equations. Stig Larsson. Heraklion, September 19, 2011 Joint work with A. Local pointwise a posteriori gradient error bounds for the Stokes equations Stig Larsson Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Heraklion, September

More information

Space time finite and boundary element methods

Space time finite and boundary element methods Space time finite and boundary element methods Olaf Steinbach Institut für Numerische Mathematik, TU Graz http://www.numerik.math.tu-graz.ac.at based on joint work with M. Neumüller, H. Yang, M. Fleischhacker,

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES On the approximation of a virtual coarse space for domain decomposition methods in two dimensions Juan Gabriel Calvo Preprint No. 31-2017 PRAHA 2017

More information

An A Posteriori Error Estimate for Discontinuous Galerkin Methods

An A Posteriori Error Estimate for Discontinuous Galerkin Methods An A Posteriori Error Estimate for Discontinuous Galerkin Methods Mats G Larson mgl@math.chalmers.se Chalmers Finite Element Center Mats G Larson Chalmers Finite Element Center p.1 Outline We present an

More information

Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems. Ulrich Langer, Martin Neumüller, Ioannis Toulopoulos. G+S Report No.

Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems. Ulrich Langer, Martin Neumüller, Ioannis Toulopoulos. G+S Report No. Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems Ulrich Langer, Martin Neumüller, Ioannis Toulopoulos G+S Report No. 56 May 017 Multipatch Space-Time Isogeometric Analysis of

More information

Adaptive methods for control problems with finite-dimensional control space

Adaptive methods for control problems with finite-dimensional control space Adaptive methods for control problems with finite-dimensional control space Saheed Akindeinde and Daniel Wachsmuth Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy

More information

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM Finite Elements February 22, 2019 In the previous sections, we introduced the concept of finite element spaces, which contain certain functions defined on a domain. Finite element spaces are examples of

More information

Preconditioned space-time boundary element methods for the heat equation

Preconditioned space-time boundary element methods for the heat equation W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods

More information

Space-time isogeometric analysis of parabolic evolution equations

Space-time isogeometric analysis of parabolic evolution equations www.oeaw.ac.at Space-time isogeometric analysis of parabolic evolution equations U. Langer, S.E. Moore, M. Neumüller RICAM-Report 2015-19 www.ricam.oeaw.ac.at SPACE-TIME ISOGEOMETRIC ANALYSIS OF PARABOLIC

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem

Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem Journal manuscript No. (will be inserted by the editor Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem Constantin Christof Christof Haubner Received:

More information

The Discontinuous Galerkin Finite Element Method

The Discontinuous Galerkin Finite Element Method The Discontinuous Galerkin Finite Element Method Michael A. Saum msaum@math.utk.edu Department of Mathematics University of Tennessee, Knoxville The Discontinuous Galerkin Finite Element Method p.1/41

More information

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé CMCS/IACS Ecole Polytechnique Federale de Lausanne Erik.Burman@epfl.ch Méthodes Numériques

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Nonconformity and the Consistency Error First Strang Lemma Abstract Error Estimate

More information

The hp-version of the boundary element method with quasi-uniform meshes in three dimensions

The hp-version of the boundary element method with quasi-uniform meshes in three dimensions The hp-version of the boundary element method with quasi-uniform meshes in three dimensions Alexei Bespalov Norbert Heuer Dedicated to Professor Ernst P. Stephan on the occasion of his 60th birthday. Abstract

More information

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT HUOYUAN DUAN, SHA LI, ROGER C. E. TAN, AND WEIYING ZHENG Abstract. To deal with the divergence-free

More information

New class of finite element methods: weak Galerkin methods

New class of finite element methods: weak Galerkin methods New class of finite element methods: weak Galerkin methods Xiu Ye University of Arkansas at Little Rock Second order elliptic equation Consider second order elliptic problem: a u = f, in Ω (1) u = 0, on

More information

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction The a posteriori error estimation of finite element approximations of elliptic boundary value problems has reached

More information

Convergence of a finite element approximation to a state constrained elliptic control problem

Convergence of a finite element approximation to a state constrained elliptic control problem Als Manuskript gedruckt Technische Universität Dresden Herausgeber: Der Rektor Convergence of a finite element approximation to a state constrained elliptic control problem Klaus Deckelnick & Michael Hinze

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

A new approach for Kirchhoff-Love plates and shells

A new approach for Kirchhoff-Love plates and shells A new approach for Kirchhoff-Love plates and shells Walter Zulehner Institute of Computational Mathematics JKU Linz, Austria AANMPDE 10 October 2-6, 2017, Paleochora, Crete, Greece Walter Zulehner (JKU

More information

Finite difference method for elliptic problems: I

Finite difference method for elliptic problems: I Finite difference method for elliptic problems: I Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω)

Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω) Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω) Thomas Apel Ariel L. Lombardi Max Winkler February 6, 2014 arxiv:1303.2960v1 [math.na] 12 Mar 2013 Abstract. The

More information

Projected Surface Finite Elements for Elliptic Equations

Projected Surface Finite Elements for Elliptic Equations Available at http://pvamu.edu/aam Appl. Appl. Math. IN: 1932-9466 Vol. 8, Issue 1 (June 2013), pp. 16 33 Applications and Applied Mathematics: An International Journal (AAM) Projected urface Finite Elements

More information

1. Let a(x) > 0, and assume that u and u h are the solutions of the Dirichlet problem:

1. Let a(x) > 0, and assume that u and u h are the solutions of the Dirichlet problem: Mathematics Chalmers & GU TMA37/MMG800: Partial Differential Equations, 011 08 4; kl 8.30-13.30. Telephone: Ida Säfström: 0703-088304 Calculators, formula notes and other subject related material are not

More information

Recovery-Based a Posteriori Error Estimators for Interface Problems: Mixed and Nonconforming Elements

Recovery-Based a Posteriori Error Estimators for Interface Problems: Mixed and Nonconforming Elements Recovery-Based a Posteriori Error Estimators for Interface Problems: Mixed and Nonconforming Elements Zhiqiang Cai Shun Zhang Department of Mathematics Purdue University Finite Element Circus, Fall 2008,

More information

INVESTIGATION OF STABILITY AND ACCURACY OF HIGH ORDER GENERALIZED FINITE ELEMENT METHODS HAOYANG LI THESIS

INVESTIGATION OF STABILITY AND ACCURACY OF HIGH ORDER GENERALIZED FINITE ELEMENT METHODS HAOYANG LI THESIS c 2014 Haoyang Li INVESTIGATION OF STABILITY AND ACCURACY OF HIGH ORDER GENERALIZED FINITE ELEMENT METHODS BY HAOYANG LI THESIS Submitted in partial fulfillment of the requirements for the degree of Master

More information

Hamburger Beiträge zur Angewandten Mathematik

Hamburger Beiträge zur Angewandten Mathematik Hamburger Beiträge zur Angewandten Mathematik Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations Klaus Deckelnick and Michael

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

Isogeometric Analysis with Geometrically Continuous Functions on Two-Patch Geometries

Isogeometric Analysis with Geometrically Continuous Functions on Two-Patch Geometries Isogeometric Analysis with Geometrically Continuous Functions on Two-Patch Geometries Mario Kapl a Vito Vitrih b Bert Jüttler a Katharina Birner a a Institute of Applied Geometry Johannes Kepler University

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 25: Introduction to Discontinuous Galerkin Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods

More information

Graded Mesh Refinement and Error Estimates of Higher Order for DGFE-solutions of Elliptic Boundary Value Problems in Polygons

Graded Mesh Refinement and Error Estimates of Higher Order for DGFE-solutions of Elliptic Boundary Value Problems in Polygons Graded Mesh Refinement and Error Estimates of Higher Order for DGFE-solutions of Elliptic Boundary Value Problems in Polygons Anna-Margarete Sändig, Miloslav Feistauer University Stuttgart, IANS Journées

More information

Introduction. J.M. Burgers Center Graduate Course CFD I January Least-Squares Spectral Element Methods

Introduction. J.M. Burgers Center Graduate Course CFD I January Least-Squares Spectral Element Methods Introduction In this workshop we will introduce you to the least-squares spectral element method. As you can see from the lecture notes, this method is a combination of the weak formulation derived from

More information

Standard Finite Elements and Weighted Regularization

Standard Finite Elements and Weighted Regularization Standard Finite Elements and Weighted Regularization A Rehabilitation Martin COSTABEL & Monique DAUGE Institut de Recherche MAthématique de Rennes http://www.maths.univ-rennes1.fr/~dauge Slides of the

More information

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V Part I: Introduction to Finite Element Methods Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Necel Winter 4/5 The Model Problem FEM Main Ingredients Wea Forms and Wea

More information

Applied/Numerical Analysis Qualifying Exam

Applied/Numerical Analysis Qualifying Exam Applied/Numerical Analysis Qualifying Exam August 9, 212 Cover Sheet Applied Analysis Part Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless,

More information

Multigrid Methods for Maxwell s Equations

Multigrid Methods for Maxwell s Equations Multigrid Methods for Maxwell s Equations Jintao Cui Institute for Mathematics and Its Applications University of Minnesota Outline Nonconforming Finite Element Methods for a Two Dimensional Curl-Curl

More information

c 2008 Society for Industrial and Applied Mathematics

c 2008 Society for Industrial and Applied Mathematics SIAM J. CONTROL OPTIM. Vol. 47, No. 3, pp. 1301 1329 c 2008 Society for Industrial and Applied Mathematics A PRIORI ERROR ESTIMATES FOR SPACE-TIME FINITE ELEMENT DISCRETIZATION OF PARABOLIC OPTIMAL CONTROL

More information

BACKGROUNDS. Two Models of Deformable Body. Distinct Element Method (DEM)

BACKGROUNDS. Two Models of Deformable Body. Distinct Element Method (DEM) BACKGROUNDS Two Models of Deformable Body continuum rigid-body spring deformation expressed in terms of field variables assembly of rigid-bodies connected by spring Distinct Element Method (DEM) simple

More information

Multigrid Method ZHONG-CI SHI. Institute of Computational Mathematics Chinese Academy of Sciences, Beijing, China. Joint work: Xuejun Xu

Multigrid Method ZHONG-CI SHI. Institute of Computational Mathematics Chinese Academy of Sciences, Beijing, China. Joint work: Xuejun Xu Multigrid Method ZHONG-CI SHI Institute of Computational Mathematics Chinese Academy of Sciences, Beijing, China Joint work: Xuejun Xu Outline Introduction Standard Cascadic Multigrid method(cmg) Economical

More information

A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS

A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS Z. LU Communicated by Gabriela Marinoschi In this paper, we discuss a

More information

PREPRINT 2010:25. Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO

PREPRINT 2010:25. Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO PREPRINT 2010:25 Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS

More information

Solution of Non-Homogeneous Dirichlet Problems with FEM

Solution of Non-Homogeneous Dirichlet Problems with FEM Master Thesis Solution of Non-Homogeneous Dirichlet Problems with FEM Francesco Züger Institut für Mathematik Written under the supervision of Prof. Dr. Stefan Sauter and Dr. Alexander Veit August 27,

More information

Thomas Apel 1, Ariel L. Lombardi 2 and Max Winkler 1

Thomas Apel 1, Ariel L. Lombardi 2 and Max Winkler 1 Mathematical Modelling and Numerical Analysis Modélisation Mathématique et Analyse Numérique Will be set by the publisher ANISOTROPIC MESH REFINEMENT IN POLYHEDRAL DOMAINS: ERROR ESTIMATES WITH DATA IN

More information

A Multigrid Method for Two Dimensional Maxwell Interface Problems

A Multigrid Method for Two Dimensional Maxwell Interface Problems A Multigrid Method for Two Dimensional Maxwell Interface Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University USA JSA 2013 Outline A

More information

VARIATIONAL AND NON-VARIATIONAL MULTIGRID ALGORITHMS FOR THE LAPLACE-BELTRAMI OPERATOR.

VARIATIONAL AND NON-VARIATIONAL MULTIGRID ALGORITHMS FOR THE LAPLACE-BELTRAMI OPERATOR. VARIATIONAL AND NON-VARIATIONAL MULTIGRID ALGORITHMS FOR THE LAPLACE-BELTRAMI OPERATOR. ANDREA BONITO AND JOSEPH E. PASCIAK Abstract. We design and analyze variational and non-variational multigrid algorithms

More information

A C 1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. Marco Verani

A C 1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. Marco Verani A C 1 virtual element method for the Cahn-Hilliard equation with polygonal meshes Marco Verani MOX, Department of Mathematics, Politecnico di Milano Joint work with: P. F. Antonietti (MOX Politecnico di

More information

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations INTRNATIONAL JOURNAL FOR NUMRICAL MTHODS IN FLUIDS Int. J. Numer. Meth. Fluids 19007; 1:1 [Version: 00/09/18 v1.01] nergy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations

More information

Condition number estimates for matrices arising in the isogeometric discretizations

Condition number estimates for matrices arising in the isogeometric discretizations www.oeaw.ac.at Condition number estimates for matrices arising in the isogeometric discretizations K. Gahalaut, S. Tomar RICAM-Report -3 www.ricam.oeaw.ac.at Condition number estimates for matrices arising

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

FINITE ELEMENT APPROXIMATION OF ELLIPTIC DIRICHLET OPTIMAL CONTROL PROBLEMS

FINITE ELEMENT APPROXIMATION OF ELLIPTIC DIRICHLET OPTIMAL CONTROL PROBLEMS Numerical Functional Analysis and Optimization, 28(7 8):957 973, 2007 Copyright Taylor & Francis Group, LLC ISSN: 0163-0563 print/1532-2467 online DOI: 10.1080/01630560701493305 FINITE ELEMENT APPROXIMATION

More information

Electric potentials with localized divergence properties

Electric potentials with localized divergence properties Electric potentials with localized divergence properties Bastian Gebauer bastian.gebauer@oeaw.ac.at Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences,

More information

IsogEometric Tearing and Interconnecting

IsogEometric Tearing and Interconnecting IsogEometric Tearing and Interconnecting Christoph Hofer and Ludwig Mitter Johannes Kepler University, Linz 26.01.2017 Doctoral Program Computational Mathematics Numerical Analysis and Symbolic Computation

More information

Finite Elements. Colin Cotter. January 18, Colin Cotter FEM

Finite Elements. Colin Cotter. January 18, Colin Cotter FEM Finite Elements January 18, 2019 The finite element Given a triangulation T of a domain Ω, finite element spaces are defined according to 1. the form the functions take (usually polynomial) when restricted

More information

7. Choice of approximating for the FE-method scalar problems

7. Choice of approximating for the FE-method scalar problems 7. Choice of approimating for the FE-method scalar problems Finite Element Method Differential Equation Weak Formulation Approimating Functions Weighted Residuals FEM - Formulation Weak form of heat flow

More information

A-posteriori error estimates for optimal control problems with state and control constraints

A-posteriori error estimates for optimal control problems with state and control constraints www.oeaw.ac.at A-posteriori error estimates for optimal control problems with state and control constraints A. Rösch, D. Wachsmuth RICAM-Report 2010-08 www.ricam.oeaw.ac.at A-POSTERIORI ERROR ESTIMATES

More information

An Introduction to the Discontinuous Galerkin Method

An Introduction to the Discontinuous Galerkin Method An Introduction to the Discontinuous Galerkin Method Krzysztof J. Fidkowski Aerospace Computational Design Lab Massachusetts Institute of Technology March 16, 2005 Computational Prototyping Group Seminar

More information

c 2014 Society for Industrial and Applied Mathematics

c 2014 Society for Industrial and Applied Mathematics MULTISCALE MODEL. SIMUL. Vol. 12, No. 4, pp. 1424 1457 c 2014 Society for Industrial and Applied Mathematics A COMBINED FINITE ELEMENT AND MULTISCALE FINITE ELEMENT METHOD FOR THE MULTISCALE ELLIPTIC PROBLEMS

More information

BEST APPROXIMATION PROPERTY IN THE W FINITE ELEMENT METHODS ON GRADED MESHES.

BEST APPROXIMATION PROPERTY IN THE W FINITE ELEMENT METHODS ON GRADED MESHES. BEST APPROXIMATION PROPERTY IN THE W 1 NORM FOR FINITE ELEMENT METHODS ON GRADED MESHES. A. DEMLOW, D. LEYKEKHMAN, A.H. SCHATZ, AND L.B. WAHLBIN Abstract. We consider finite element methods for a model

More information

Finite Element Multigrid Framework for Mimetic Finite Difference Discretizations

Finite Element Multigrid Framework for Mimetic Finite Difference Discretizations Finite Element Multigrid Framework for Mimetic Finite ifference iscretizations Xiaozhe Hu Tufts University Polytopal Element Methods in Mathematics and Engineering, October 26-28, 2015 Joint work with:

More information

Virtual Element Methods for general second order elliptic problems

Virtual Element Methods for general second order elliptic problems Virtual Element Methods for general second order elliptic problems Alessandro Russo Department of Mathematics and Applications University of Milano-Bicocca, Milan, Italy and IMATI-CNR, Pavia, Italy Workshop

More information

PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED

PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED ALAN DEMLOW Abstract. Recent results of Schatz show that standard Galerkin finite element methods employing piecewise polynomial elements of degree

More information

Maximum-norm a posteriori estimates for discontinuous Galerkin methods

Maximum-norm a posteriori estimates for discontinuous Galerkin methods Maximum-norm a posteriori estimates for discontinuous Galerkin methods Emmanuil Georgoulis Department of Mathematics, University of Leicester, UK Based on joint work with Alan Demlow (Kentucky, USA) DG

More information

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations A. Ouazzi, M. Nickaeen, S. Turek, and M. Waseem Institut für Angewandte Mathematik, LSIII, TU Dortmund, Vogelpothsweg

More information

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements W I S S E N T E C H N I K L E I D E N S C H A F T A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements Matthias Gsell and Olaf Steinbach Institute of Computational Mathematics

More information

Institut für Mathematik

Institut für Mathematik U n i v e r s i t ä t A u g s b u r g Institut für Mathematik Xuejun Xu, Huangxin Chen, Ronald H.W. Hoppe Local Multilevel Methods for Adaptive Nonconforming Finite Element Methods Preprint Nr. 21/2009

More information