Recovery-Based a Posteriori Error Estimators for Interface Problems: Mixed and Nonconforming Elements

Size: px
Start display at page:

Download "Recovery-Based a Posteriori Error Estimators for Interface Problems: Mixed and Nonconforming Elements"

Transcription

1 Recovery-Based a Posteriori Error Estimators for Interface Problems: Mixed and Nonconforming Elements Zhiqiang Cai Shun Zhang Department of Mathematics Purdue University Finite Element Circus, Fall 2008, RPI

2 Outline Introductions A Model Problem Guidelines of Recovery-Based Error Estimators Interface Problems Mixed FEM for Interface Problems Nonconforming FEM for Interface Problems Conclusions

3 A Priori Error Estimation Continuous Problem Lu = f in Ω Discrete Problem L h u h = f h a Priori Error Estimation u u h C(u)h α 0 as h 0 Error Control ɛ u u h ɛ

4 A Posteriori Error Estimations A Posteriori Error Estimations Indicator ηk (u h ) - a computable quantity for each K T Estimator η(u h ) = ( K T η2 K Error Control: Reliability Bound ) 1/2 u u h C r η + h.o.t Adaptive Control of Meshing: Efficiency Bound η K c e u u h K + h.o.t K T η C e u u h + h.o.t

5 A Posteriori Error Estimations Robustness C r and C e are independent of the parameters inherent in the differential equations, such as jumps of the diffusion coefficients, reaction/convetion parameters, e.t.c Effectivity Constant η u u h If the effectivity constant is close to 1, the estimator is accurate.

6 Recovery-Based Estimators Recovery-based Estimators: σ(u h ) is a quantity of mathematical or physical meaning, such as gradient, flux or stress, recover it to get G(σ(u h )) in an appropriate function space with an appropriate norm (most time the energy norm from the differential equation) η G = G(σ(u h )) σ(u h ) Possible Good Quality of Recovery-based Estimators: η Effectivity constant is close to 1 u u h

7 An Analysis of a Model Problem Diffusion Equations (A u) = f Ω Smoothness of the Problem Solution: u H 1 (Ω) Continuous (in the weak sense) Gradient: u H(curl; Ω) Tangential Component is Continuous Flux: σ = A u H(div; Ω) Normal Component is Continuous

8 Guidelines of Recovery-Based Error Estimators Recover a quantity whose continuity is violated by the discretization method (Conforming FEM, Mixed Methods, Nonconforming Element Methods...) In the corresponding conforming finite element space( without introducing unnecessary continuity), Measure the difference in the right norm (Energy Norm) as the indicator.

9 Interface Problems (a(x) u) = f in Ω R d u = 0 on Γ D a u n = 0 on Γ N a(x) is positive piecewise constant w.r.t Ω = n i=1 Ω i, a(x) = a i > 0 in Ω i

10 Low Order Mixed FEM for Interface Problems The corresponding mixed variational formulation is to find (σ, u) H N (div; Ω) L 2 (Ω) such that { (a 1 σ, τ ) ( τ, u) = 0 τ H N (div; Ω), ( σ, v) = (f, v) v L 2 (Ω). Discrete Problem: The mixed finite element method is to find (σ m, u m ) RT 0 P 0 such that { (a 1 σ m, τ ) ( τ, u m ) = 0 τ RT 0, ( σ m, v) = (f, v) v P 0.

11 Mixed FEM for Interface Problems Comparison of Continuous and Discrete Solutions: Solution u H 1 D (Ω) u h P 0 H 1 D (Ω) Gradient u H(curl; Ω) a 1 σ m H(curl; Ω) Flux σ = a u H(div; Ω) σ m RT 0 H(div; Ω) Quantity to recover: the Gradient (from a 1 σ m ). In what space? H(curl; Ω)-conforming element spaces ND (Nedlec edge element spaces of type 1 and 2) What if recover in global continuous space S 2 1? Will introduce unnecessary over refinements! S 1 = {v : v C 0 (Ω), v K P 1 (K ), K T }

12 Robust Gradient Recovery Error Estimators for Interface Problems: Mixed FEs L 2 -Projection Gradient Recovery: Find ρ m ND 2 such that (a ρ m, τ ) = (σ m, τ ) τ ND 2. Explicit Recovery: See Cai & Zhang 08 for details. Error Estimator: η m,k = a 1/2 ρ m +a 1/2 σ m 0,K, η m = a 1/2 ρ m +a 1/2 σ m 0,Ω,

13 Robust Gradient Recovery Error Estimators for Interface Problems: Mixed FEs Robustness: C e and C r is independent of the jumps of the coefficients across the interfaces Ce 1 η m + h.o.t a 1/2 u + a 1/2 σ m 0,Ω C r η m + h.o.t Accurateness: Observed in numerical tests that the effectivity index is close to 1. No over refinements along the interface!

14 A Benchmark Test Ptoblem interface problem { (a u) = f in Ω = ( 1, 1) 2 u = g on Ω with a = R in (0, 1) 2 ( 1, 0) 2 and 1 in ( 1, 0) (0, 1) (0, 1) ( 1, 0) exact solution u(r, θ) = r α µ(θ) H 1+α ɛ (Ω) with cos(( π 2 σ)α) cos((θ π 2 + ρ)α) if 0 θ π 2, π cos(ρα) cos((θ π + σ)α) if µ(θ) = 2 θ π, cos(σα) cos((θ π ρ)α) if π θ 3π 2, cos(( π 2 ρ)α) cos((θ 3π 2 + σ)α) if 3π 2 θ 2π. example α = 0.1 u H 1.1 ɛ (Ω) R , ρ = π/4, and σ

15 Numerical Results by Robust Gradient Recovery Error Estimators: Mixed FEs η m,rt / k 1/2 u 0 and k 1/2 u+k 1/2 σ m 0 / k 1/2 u η m,rt / k 1/2 u 0 k 1/2 u+k 1/2 σ m 0 / k 1/2 u reference line with slope 1/ number of nodes Figure: mesh generated by η m Figure: error and η m

16 Gradient/Flux Recovery Error Estimators in Continuous S 2 1 Let σ m be the solution, and let ρ m,f S 2 1 and ρ m,g S 2 1 satisfy the following problems (a 1 ρ m,f, τ ) = (a 1 σ m, τ ) τ S 2 1 and (aρ m,g, τ ) = (σ m, τ ) τ S 2 1, respectively. Then the corresponding error estimators are defined by η m,cb,f = a 1/2 (σ m ρ m,f ) 0,Ω η m,cb,g = a 1/2 σ m + a 1/2 ρ m,g 0,Ω.

17 Gradient/Flux Recovery Error Estimators in Continuous S 2 1 Lots of over refinements along the interface because of recovering in a space asking too much continuity! Figure: mesh by η m,cb,f Figure: mesh by η m,cb,g

18 Linear Nonconforming FEM for Interface Problems Variational Problem: To find u HD 1 (Ω), such that (a u, v) = (f, v) v H 1 D (Ω) Linear Nonconforming FE Space(Crouzeix-Raviart): V nc = {v L 2 (Ω) : v K P 1 (K ) K T, and v is continuous at m e e E Ω, v = 0 onγ D } Discrete Problem: The nonconforming finite element method is to find u nc V nc such that (a h u nc, h v nc ) = (f, v nc ) v nc V nc

19 Nonconforming FEM for Interface Problems Comparison of Continuous and Discrete Solutions: Solution u H 1 D (Ω) u h V nc H 1 D (Ω) Gradient u H(curl; Ω) h u nc H(curl; Ω) Flux σ = a u H(div; Ω) a h u nc H(div; Ω) Quantities to recover: Both the Gradient (from h u nc ) and the Flux (from a h u nc ). In what spaces? the Gradient in H(curl; Ω)-conforming element spaces ND and the Flux in H(div; Ω)-conforming element spaces What if in S1 2? Will introduce unnecessary refinements!

20 Robust Gradient/Gradient Recovery Error Estimators for Interface Problems: Nonconforming FEs L 2 -Projection Gradient Recovery: Find ρ nc ND 1 such that (a ρ nc, τ ) = (a h u nc, τ ) τ ND 1. L 2 -Projection Flux Recovery: Find σ nc RT 0 such that (a 1 σ nc, τ ) = ( h u nc, τ ) τ RT 0. Explicit Recovery: See Cai & Zhang 08 for details. Error Estimator: with η 2 nc = c 2 η 2 nc,1 + (1 c2 )η 2 nc,2 for 0 < c < 1. η nc,1 = a 1/2 σ nc + a 1/2 h u nc 0,Ω η nc,2 = a 1/2 (ρ nc + h u nc ) 0,Ω

21 Robust Gradient Recovery Error Estimators for Interface Problems: Mixed FEs Robustness: C e and C r is independent of the jumps of the coefficients across the interfaces Ce 1 η nc + h.o.t a 1/2 u a 1/2 h u nc 0,Ω C r η nc + h.o.t Accurateness: Observed in numerical tests that the effectivity constant is close to 1. No over refinements along the interface!

22 Numerical Results by Robust Gradient/Flux Recovery Error Estimators: Nonconforming FEs The test problem is the same interface problem introduced before. η nc / k 1/2 u 0 and k 1/2 ( u h u nc ) 0 / k 1/2 u η nc / k 1/2 u 0 k 1/2 ( u h u nc ) 0 / k 1/2 u reference line with slope 1/ number of nodes Figure: mesh generated by η nc Figure: error and η nc

23 Gradient/Flux Recovery Error Estimators in Continuous S1 2 for Nonconforming FEs let ρ nc,f S 2 1 and ρ nc,g S 2 1 satisfy the following problems (a 1 ρ nc,f, τ ) = ( h u nc, τ ) τ S 2 1 and (aρ nc,g, τ ) = (a h u nc, τ ) τ S 2 1. Then the corresponding error estimators are defined by η nc,cb,f = a 1/2 h u nc + a 1/2 ρ nc,f 0,Ω η nc,cb,g = a 1/2 ( h u nc ρ nc,g ) 0,Ω.

24 Gradient/Flux Recovery Error Estimators in Continuous S1 2 for Nonconforming FEs Lots of over refinements along the interface because of recovering in a space aking for too much continuity! Figure: mesh by η m,cb,f Figure: mesh by η m,cb,g

25 Conclusions Guidelines for choose quantities, spaces in recovery based a posteriori error estimators Robust recovery error estimators for lower order mixed and nonconforming elements

Recovery-Based A Posteriori Error Estimation

Recovery-Based A Posteriori Error Estimation Recovery-Based A Posteriori Error Estimation Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 2, 2011 Outline Introduction Diffusion Problems Higher Order Elements

More information

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University A Posteriori Error Estimation Techniques for Finite Element Methods Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 16, 2017 Books Ainsworth & Oden, A posteriori

More information

arxiv: v2 [math.na] 23 Apr 2016

arxiv: v2 [math.na] 23 Apr 2016 Improved ZZ A Posteriori Error Estimators for Diffusion Problems: Conforming Linear Elements arxiv:508.009v2 [math.na] 23 Apr 206 Zhiqiang Cai Cuiyu He Shun Zhang May 2, 208 Abstract. In [8], we introduced

More information

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Martin Eigel C. Carstensen, C. Löbhard, R.H.W. Hoppe Humboldt-Universität zu Berlin 19.05.2010 1 we know of Guidelines for Applicants

More information

An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element

An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element Calcolo manuscript No. (will be inserted by the editor) An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element Dietrich Braess Faculty of Mathematics, Ruhr-University

More information

arxiv: v3 [math.na] 8 Sep 2015

arxiv: v3 [math.na] 8 Sep 2015 A Recovery-Based A Posteriori Error Estimator for H(curl) Interface Problems arxiv:504.00898v3 [math.na] 8 Sep 205 Zhiqiang Cai Shuhao Cao Abstract This paper introduces a new recovery-based a posteriori

More information

Adaptive approximation of eigenproblems: multiple eigenvalues and clusters

Adaptive approximation of eigenproblems: multiple eigenvalues and clusters Adaptive approximation of eigenproblems: multiple eigenvalues and clusters Francesca Gardini Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/gardini Banff, July 1-6,

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS CARLO LOVADINA AND ROLF STENBERG Abstract The paper deals with the a-posteriori error analysis of mixed finite element methods

More information

Adaptive methods for control problems with finite-dimensional control space

Adaptive methods for control problems with finite-dimensional control space Adaptive methods for control problems with finite-dimensional control space Saheed Akindeinde and Daniel Wachsmuth Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy

More information

An Adaptive Mixed Finite Element Method using the Lagrange Multiplier Technique

An Adaptive Mixed Finite Element Method using the Lagrange Multiplier Technique An Adaptive Mixed Finite Element Method using the Lagrange Multiplier Technique by Michael Gagnon A Project Report Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment

More information

An A Posteriori Error Estimate for Discontinuous Galerkin Methods

An A Posteriori Error Estimate for Discontinuous Galerkin Methods An A Posteriori Error Estimate for Discontinuous Galerkin Methods Mats G Larson mgl@math.chalmers.se Chalmers Finite Element Center Mats G Larson Chalmers Finite Element Center p.1 Outline We present an

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS MATHEMATICS OF COMPUTATION Volume 75, Number 256, October 2006, Pages 1659 1674 S 0025-57180601872-2 Article electronically published on June 26, 2006 ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS

A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS Z. LU Communicated by Gabriela Marinoschi In this paper, we discuss a

More information

Spline Element Method for Partial Differential Equations

Spline Element Method for Partial Differential Equations for Partial Differential Equations Department of Mathematical Sciences Northern Illinois University 2009 Multivariate Splines Summer School, Summer 2009 Outline 1 Why multivariate splines for PDEs? Motivation

More information

arxiv: v1 [math.na] 9 Oct 2018

arxiv: v1 [math.na] 9 Oct 2018 PRIMAL-DUAL REDUCED BASIS METHODS FOR CONVEX MINIMIZATION VARIATIONAL PROBLEMS: ROBUST TRUE SOLUTION A POSTERIORI ERROR CERTIFICATION AND ADAPTIVE GREEDY ALGORITHMS arxiv:1810.04073v1 [math.na] 9 Oct 2018

More information

Convergence and optimality of an adaptive FEM for controlling L 2 errors

Convergence and optimality of an adaptive FEM for controlling L 2 errors Convergence and optimality of an adaptive FEM for controlling L 2 errors Alan Demlow (University of Kentucky) joint work with Rob Stevenson (University of Amsterdam) Partially supported by NSF DMS-0713770.

More information

Multigrid Methods for Maxwell s Equations

Multigrid Methods for Maxwell s Equations Multigrid Methods for Maxwell s Equations Jintao Cui Institute for Mathematics and Its Applications University of Minnesota Outline Nonconforming Finite Element Methods for a Two Dimensional Curl-Curl

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY ABHELSINKI UNIVERSITY OF TECHNOLOGY TECHNISCHE UNIVERSITÄT HELSINKI UNIVERSITE DE TECHNOLOGIE D HELSINKI A posteriori error analysis for Kirchhoff plate elements Jarkko Niiranen Laboratory of Structural

More information

A u + b u + cu = f in Ω, (1.1)

A u + b u + cu = f in Ω, (1.1) A WEIGHTED H(div) LEAST-SQUARES METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS Z. CAI AND C. R. WESTPHAL Abstract. This paper presents analysis of a weighted-norm least squares finite element method for elliptic

More information

c 2008 Society for Industrial and Applied Mathematics

c 2008 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 46, No. 3, pp. 640 65 c 2008 Society for Industrial and Applied Mathematics A WEIGHTED H(div) LEAST-SQUARES METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS Z. CAI AND C. R. WESTPHAL

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

Divergence-free or curl-free finite elements for solving the curl-div system

Divergence-free or curl-free finite elements for solving the curl-div system Divergence-free or curl-free finite elements for solving the curl-div system Alberto Valli Dipartimento di Matematica, Università di Trento, Italy Joint papers with: Ana Alonso Rodríguez Dipartimento di

More information

On a Discontinuous Galerkin Method for Surface PDEs

On a Discontinuous Galerkin Method for Surface PDEs On a Discontinuous Galerkin Method for Surface PDEs Pravin Madhavan (joint work with Andreas Dedner and Bjo rn Stinner) Mathematics and Statistics Centre for Doctoral Training University of Warwick Applied

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Residual and Error of Finite Element Solutions Mixed BVP of Poisson Equation

More information

Local pointwise a posteriori gradient error bounds for the Stokes equations. Stig Larsson. Heraklion, September 19, 2011 Joint work with A.

Local pointwise a posteriori gradient error bounds for the Stokes equations. Stig Larsson. Heraklion, September 19, 2011 Joint work with A. Local pointwise a posteriori gradient error bounds for the Stokes equations Stig Larsson Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Heraklion, September

More information

Axioms of Adaptivity (AoA) in Lecture 2 (sufficient for optimal convergence rates)

Axioms of Adaptivity (AoA) in Lecture 2 (sufficient for optimal convergence rates) Axioms of Adaptivity (AoA) in Lecture 2 (sufficient for optimal convergence rates) Carsten Carstensen Humboldt-Universität zu Berlin 2018 International Graduate Summer School on Frontiers of Applied and

More information

Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain

Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain Stephen Edward Moore Johann Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences,

More information

A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods

A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods Emmanuel Creusé, Serge Nicaise October 7, 29 Abstract We consider some (anisotropic and piecewise

More information

Nitsche-type Mortaring for Maxwell s Equations

Nitsche-type Mortaring for Maxwell s Equations Nitsche-type Mortaring for Maxwell s Equations Joachim Schöberl Karl Hollaus, Daniel Feldengut Computational Mathematics in Engineering at the Institute for Analysis and Scientific Computing Vienna University

More information

Solving the curl-div system using divergence-free or curl-free finite elements

Solving the curl-div system using divergence-free or curl-free finite elements Solving the curl-div system using divergence-free or curl-free finite elements Alberto Valli Dipartimento di Matematica, Università di Trento, Italy or: Why I say to my students that divergence-free finite

More information

Source Reconstruction for 3D Bioluminescence Tomography with Sparse regularization

Source Reconstruction for 3D Bioluminescence Tomography with Sparse regularization 1/33 Source Reconstruction for 3D Bioluminescence Tomography with Sparse regularization Xiaoqun Zhang xqzhang@sjtu.edu.cn Department of Mathematics/Institute of Natural Sciences, Shanghai Jiao Tong University

More information

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems.

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems. Robust A Posteriori Error Estimates for Stabilized Finite Element s of Non-Stationary Convection-Diffusion Problems L. Tobiska and R. Verfürth Universität Magdeburg Ruhr-Universität Bochum www.ruhr-uni-bochum.de/num

More information

A Multigrid Method for Two Dimensional Maxwell Interface Problems

A Multigrid Method for Two Dimensional Maxwell Interface Problems A Multigrid Method for Two Dimensional Maxwell Interface Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University USA JSA 2013 Outline A

More information

Hybridized DG methods

Hybridized DG methods Hybridized DG methods University of Florida (Banff International Research Station, November 2007.) Collaborators: Bernardo Cockburn University of Minnesota Raytcho Lazarov Texas A&M University Thanks:

More information

Divergence-conforming multigrid methods for incompressible flow problems

Divergence-conforming multigrid methods for incompressible flow problems Divergence-conforming multigrid methods for incompressible flow problems Guido Kanschat IWR, Universität Heidelberg Prague-Heidelberg-Workshop April 28th, 2015 G. Kanschat (IWR, Uni HD) Hdiv-DG Práha,

More information

Three remarks on anisotropic finite elements

Three remarks on anisotropic finite elements Three remarks on anisotropic finite elements Thomas Apel Universität der Bundeswehr München Workshop Numerical Analysis for Singularly Perturbed Problems dedicated to the 60th birthday of Martin Stynes

More information

Maximum-norm a posteriori estimates for discontinuous Galerkin methods

Maximum-norm a posteriori estimates for discontinuous Galerkin methods Maximum-norm a posteriori estimates for discontinuous Galerkin methods Emmanuil Georgoulis Department of Mathematics, University of Leicester, UK Based on joint work with Alan Demlow (Kentucky, USA) DG

More information

Institut de Recherche MAthématique de Rennes

Institut de Recherche MAthématique de Rennes LMS Durham Symposium: Computational methods for wave propagation in direct scattering. - July, Durham, UK The hp version of the Weighted Regularization Method for Maxwell Equations Martin COSTABEL & Monique

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

arxiv: v1 [math.na] 19 Dec 2017

arxiv: v1 [math.na] 19 Dec 2017 Arnold-Winther Mixed Finite Elements for Stokes Eigenvalue Problems Joscha Gedicke Arbaz Khan arxiv:72.0686v [math.na] 9 Dec 207 Abstract This paper is devoted to study the Arnold-Winther mixed finite

More information

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires MIXED FINITE ELEMENTS FOR PLATES Ricardo G. Durán Universidad de Buenos Aires - Necessity of 2D models. - Reissner-Mindlin Equations. - Finite Element Approximations. - Locking. - Mixed interpolation or

More information

Polynomial-degree-robust liftings for potentials and fluxes

Polynomial-degree-robust liftings for potentials and fluxes Polynomial-degree-robust liftings for potentials and fluxes and Martin Vohraĺık Université Paris-Est, CERMICS (ENPC) and SERENA Project-Team, INRIA, France RAFEM, Hong-Kong, March 2017 Outline 1. Motivation:

More information

Robust A Posteriori Error Estimation for Finite Element Approximation to H(curl) Problem

Robust A Posteriori Error Estimation for Finite Element Approximation to H(curl) Problem Robust A Posteriori Error Estimation for Finite Element Approximation to H(curl) Problem Zhiqiang Cai Shuhao Cao Rob Falgout Abstract In this paper, we introduce a novel a posteriori error estimator for

More information

Chapter 1. Introduction and Background. 1.1 Introduction

Chapter 1. Introduction and Background. 1.1 Introduction Chapter 1 Introduction and Background 1.1 Introduction Over the past several years the numerical approximation of partial differential equations (PDEs) has made important progress because of the rapid

More information

Axioms of Adaptivity

Axioms of Adaptivity Axioms of Adaptivity Carsten Carstensen Humboldt-Universität zu Berlin Open-Access Reference: C-Feischl-Page-Praetorius: Axioms of Adaptivity. Computer & Mathematics with Applications 67 (2014) 1195 1253

More information

Different Approaches to a Posteriori Error Analysis of the Discontinuous Galerkin Method

Different Approaches to a Posteriori Error Analysis of the Discontinuous Galerkin Method WDS'10 Proceedings of Contributed Papers, Part I, 151 156, 2010. ISBN 978-80-7378-139-2 MATFYZPRESS Different Approaces to a Posteriori Error Analysis of te Discontinuous Galerkin Metod I. Šebestová Carles

More information

MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS JUHO KÖNNÖ, DOMINIK SCHÖTZAU, AND ROLF STENBERG Abstract. We derive new a-priori and a-posteriori error estimates for mixed nite

More information

A Mixed Nonconforming Finite Element for Linear Elasticity

A Mixed Nonconforming Finite Element for Linear Elasticity A Mixed Nonconforming Finite Element for Linear Elasticity Zhiqiang Cai, 1 Xiu Ye 2 1 Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-1395 2 Department of Mathematics and Statistics,

More information

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations A. Ouazzi, M. Nickaeen, S. Turek, and M. Waseem Institut für Angewandte Mathematik, LSIII, TU Dortmund, Vogelpothsweg

More information

A first-order system Petrov-Galerkin discretisation for a reaction-diffusion problem on a fitted mesh

A first-order system Petrov-Galerkin discretisation for a reaction-diffusion problem on a fitted mesh A first-order system Petrov-Galerkin discretisation for a reaction-diffusion problem on a fitted mesh James Adler, Department of Mathematics Tufts University Medford, MA 02155 Scott MacLachlan Department

More information

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO PREPRINT 2010:23 A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

Five Recent Trends in Computational PDEs

Five Recent Trends in Computational PDEs Five Recent Trends in Computational PDEs Carsten Carstensen Center Computational Science Adlershof and Department of Mathematics, Humboldt-Universität zu Berlin C. Carstensen (CCSA & HU Berlin) 5 Trends

More information

Evolutionary Multiobjective. Optimization Methods for the Shape Design of Industrial Electromagnetic Devices. P. Di Barba, University of Pavia, Italy

Evolutionary Multiobjective. Optimization Methods for the Shape Design of Industrial Electromagnetic Devices. P. Di Barba, University of Pavia, Italy Evolutionary Multiobjective Optimization Methods for the Shape Design of Industrial Electromagnetic Devices P. Di Barba, University of Pavia, Italy INTRODUCTION Evolutionary Multiobjective Optimization

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

On two fractional step finite volume and finite element schemes for reactive low Mach number flows

On two fractional step finite volume and finite element schemes for reactive low Mach number flows Fourth International Symposium on Finite Volumes for Complex Applications - Problems and Perspectives - July 4-8, 2005 / Marrakech, Morocco On two fractional step finite volume and finite element schemes

More information

Finite Element Multigrid Framework for Mimetic Finite Difference Discretizations

Finite Element Multigrid Framework for Mimetic Finite Difference Discretizations Finite Element Multigrid Framework for Mimetic Finite ifference iscretizations Xiaozhe Hu Tufts University Polytopal Element Methods in Mathematics and Engineering, October 26-28, 2015 Joint work with:

More information

FEniCS Course. Lecture 8: A posteriori error estimates and adaptivity. Contributors André Massing Marie Rognes

FEniCS Course. Lecture 8: A posteriori error estimates and adaptivity. Contributors André Massing Marie Rognes FEniCS Course Lecture 8: A posteriori error estimates and adaptivity Contributors André Massing Marie Rognes 1 / 24 A priori estimates If u H k+1 (Ω) and V h = P k (T h ) then u u h Ch k u Ω,k+1 u u h

More information

AposteriorierrorestimatesinFEEC for the de Rham complex

AposteriorierrorestimatesinFEEC for the de Rham complex AposteriorierrorestimatesinFEEC for the de Rham complex Alan Demlow Texas A&M University joint work with Anil Hirani University of Illinois Urbana-Champaign Partially supported by NSF DMS-1016094 and a

More information

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T 2 R.H. NOCHETTO 2. Lecture 2. Adaptivity I: Design and Convergence of AFEM tarting with a conforming mesh T H, the adaptive procedure AFEM consists of loops of the form OLVE ETIMATE MARK REFINE to produce

More information

A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators

A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators Jeff Ovall University of Kentucky Mathematics www.math.uky.edu/ jovall jovall@ms.uky.edu Kentucky Applied and

More information

A posteriori error estimates in FEEC for the de Rham complex

A posteriori error estimates in FEEC for the de Rham complex A posteriori error estimates in FEEC for the de Rham complex Alan Demlow Texas A&M University joint work with Anil Hirani University of Illinois Urbana-Champaign Partially supported by NSF DMS-1016094

More information

Axioms of Adaptivity (AoA) in Lecture 1 (sufficient for optimal convergence rates)

Axioms of Adaptivity (AoA) in Lecture 1 (sufficient for optimal convergence rates) Axioms of Adaptivity (AoA) in Lecture 1 (sufficient for optimal convergence rates) Carsten Carstensen Humboldt-Universität zu Berlin 2018 International Graduate Summer School on Frontiers of Applied and

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

A primer on Numerical methods for elasticity

A primer on Numerical methods for elasticity A primer on Numerical methods for elasticity Douglas N. Arnold, University of Minnesota Complex materials: Mathematical models and numerical methods Oslo, June 10 12, 2015 One has to resort to the indignity

More information

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT HUOYUAN DUAN, SHA LI, ROGER C. E. TAN, AND WEIYING ZHENG Abstract. To deal with the divergence-free

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University Hyperbolic Systems of Conservation Laws in One Space Dimension I - Basic concepts Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 The Scalar Conservation

More information

Anisotropic meshes for PDEs: a posteriori error analysis and mesh adaptivity

Anisotropic meshes for PDEs: a posteriori error analysis and mesh adaptivity ICAM 2013, Heraklion, 17 September 2013 Anisotropic meshes for PDEs: a posteriori error analysis and mesh adaptivity Simona Perotto MOX-Modeling and Scientific Computing Department of Mathematics, Politecnico

More information

Towards pressure-robust mixed methods for the incompressible Navier Stokes equations

Towards pressure-robust mixed methods for the incompressible Navier Stokes equations Mohrenstrasse 39 10117 Berlin Germany Tel. +49 30 20372 0 www.wias-berlin.de 2016-05-05, Pittsburgh Weierstrass Institute for Applied Analysis and Stochastics Towards pressure-robust mixed methods for

More information

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Department of Mathematics and Institute for Physical Science and Technology University of Maryland, USA www.math.umd.edu/ rhn 7th

More information

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé CMCS/IACS Ecole Polytechnique Federale de Lausanne Erik.Burman@epfl.ch Méthodes Numériques

More information

Biological Transportation Networks PDE Modeling and Numerics

Biological Transportation Networks PDE Modeling and Numerics MÜNSTER Biological Transportation Networks PDE Modeling and Numerics joint work with Martin Burger () Jan Haskovec (KAUST) Peter Markowich (KAUST/Cambridge) Benoît Perthame (LLJLUPMC) Data-Rich Phenomena

More information

A Posteriori Error Estimates for Weak Galerkin Finite Element Methods for Second Order Elliptic Problems

A Posteriori Error Estimates for Weak Galerkin Finite Element Methods for Second Order Elliptic Problems DOI 10.1007/s10915-013-9771-3 A Posteriori Error Estimates for Weak Galerkin Finite Element Methods for Second Order Elliptic Problems Long Chen Junping Wang Xiu Ye Received: 29 January 2013 / Revised:

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY ABHELSINKI UNIVERSITY OF TECHNOLOGY TECHNISCHE UNIVERSITÄT HELSINKI UNIVERSITE DE TECHNOLOGIE D HELSINKI A posteriori error analysis for the Morley plate element Jarkko Niiranen Department of Structural

More information

Some Remarks on the Reissner Mindlin Plate Model

Some Remarks on the Reissner Mindlin Plate Model Some Remarks on the Reissner Mindlin Plate Model Alexandre L. Madureira LNCC Brazil Talk at the Workshop of Numerical Analysis of PDEs LNCC February 10, 2003 1 Outline The 3D Problem and its Modeling Full

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2013) :425 459 DOI 10.1007/s00211-012-0494-4 Numerische Mathematik Effective postprocessing for equilibration a posteriori error estimators C. Carstensen C. Merdon Received: 22 June 2011

More information

Numerical lower bounds on eigenvalues of elliptic operators

Numerical lower bounds on eigenvalues of elliptic operators Numerical lower bounds on eigenvalues of elliptic operators Tomáš Vejchodský (vejchod@math.cas.cz) Institute of Mathematics Czech Academy of Sciences INSTITUTEofMATHEMATICS Czech Academy of Sciences EMS

More information

Space-time Finite Element Methods for Parabolic Evolution Problems

Space-time Finite Element Methods for Parabolic Evolution Problems Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients Ulrich Langer, Martin Neumüller, Andreas Schafelner Johannes Kepler University, Linz Doctoral Program Computational

More information

STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS

STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS RAYTCHO LAZAROV AND XIU YE Abstract. In this paper, we derive two stabilized discontinuous finite element formulations, symmetric

More information

Solving a magnetic diffusion equation by the Mixed Hybrid Finite Element method.

Solving a magnetic diffusion equation by the Mixed Hybrid Finite Element method. Solving a magnetic diffusion equation by the Mixed Hybrid Finite Element method. Corinne Aymard, Christophe Fochesato CEA, DAM, DIF, F-91297 Arpajon CEA/DAM/DIF 6 juillet 2010 1 Outline Objectives Model

More information

Upscaling Wave Computations

Upscaling Wave Computations Upscaling Wave Computations Xin Wang 2010 TRIP Annual Meeting 2 Outline 1 Motivation of Numerical Upscaling 2 Overview of Upscaling Methods 3 Future Plan 3 Wave Equations scalar variable density acoustic

More information

arxiv: v1 [math.na] 4 Jun 2014

arxiv: v1 [math.na] 4 Jun 2014 MIXE GENERALIZE MULTISCALE FINITE ELEMENT METHOS AN APPLICATIONS ERIC T. CHUNG, YALCHIN EFENIEV, AN CHA SHING LEE arxiv:1406.0950v1 [math.na] 4 Jun 2014 Abstract. In this paper, we present a mixed Generalized

More information

Cell Conservative Flux Recovery and A Posteriori Error Estimate of Vertex-Centered Finite Volume Methods

Cell Conservative Flux Recovery and A Posteriori Error Estimate of Vertex-Centered Finite Volume Methods Advances in Applied Mathematics and Mechanics Adv. Appl. Math. Mech., Vol. 5, No. 5, pp. 705-727 DOI: 10.4208/aamm.12-m1279 October 2013 Cell Conservative Flux Recovery and A Posteriori Error Estimate

More information

A posteriori error estimates for Maxwell Equations

A posteriori error estimates for Maxwell Equations www.oeaw.ac.at A posteriori error estimates for Maxwell Equations J. Schöberl RICAM-Report 2005-10 www.ricam.oeaw.ac.at A POSTERIORI ERROR ESTIMATES FOR MAXWELL EQUATIONS JOACHIM SCHÖBERL Abstract. Maxwell

More information

Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates)

Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates) Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates) Carsten Carstensen Humboldt-Universität zu Berlin 2018 International Graduate Summer School on Frontiers of Applied and

More information

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying A DISCRETE DIVERGENCE FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU, JUNPING WANG, AND XIU YE Abstract. A discrete divergence free weak Galerkin finite element method is developed

More information

arxiv: v1 [math.na] 29 Feb 2016

arxiv: v1 [math.na] 29 Feb 2016 EFFECTIVE IMPLEMENTATION OF THE WEAK GALERKIN FINITE ELEMENT METHODS FOR THE BIHARMONIC EQUATION LIN MU, JUNPING WANG, AND XIU YE Abstract. arxiv:1602.08817v1 [math.na] 29 Feb 2016 The weak Galerkin (WG)

More information

An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information.

An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information. An example of Bayesian reasoning Consider the one-dimensional deconvolution problem with various degrees of prior information. Model: where g(t) = a(t s)f(s)ds + e(t), a(t) t = (rapidly). The problem,

More information

Trefftz-Discontinuous Galerkin Methods for Maxwell s Equations

Trefftz-Discontinuous Galerkin Methods for Maxwell s Equations Trefftz-Discontinuous Galerkin Methods for Maxwell s Equations Ilaria Perugia Faculty of Mathematics, University of Vienna Vienna P D E Ralf Hiptmair (ETH Zürich), Andrea Moiola (University of Reading)

More information

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations INTRNATIONAL JOURNAL FOR NUMRICAL MTHODS IN FLUIDS Int. J. Numer. Meth. Fluids 19007; 1:1 [Version: 00/09/18 v1.01] nergy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations

More information

Mixed Hybrid Finite Element Method: an introduction

Mixed Hybrid Finite Element Method: an introduction Mixed Hybrid Finite Element Method: an introduction First lecture Annamaria Mazzia Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università di Padova mazzia@dmsa.unipd.it Scuola

More information

Finite Element Modeling of Electromagnetic Systems

Finite Element Modeling of Electromagnetic Systems Finite Element Modeling of Electromagnetic Systems Mathematical and numerical tools Unit of Applied and Computational Electromagnetics (ACE) Dept. of Electrical Engineering - University of Liège - Belgium

More information

Traces and Duality Lemma

Traces and Duality Lemma Traces and Duality Lemma Recall the duality lemma with H / ( ) := γ 0 (H ()) defined as the trace space of H () endowed with minimal extension norm; i.e., for w H / ( ) L ( ), w H / ( ) = min{ ŵ H () ŵ

More information

Partially Penalized Immersed Finite Element Methods for Parabolic Interface Problems

Partially Penalized Immersed Finite Element Methods for Parabolic Interface Problems Partially Penalized Immersed Finite Element Methods for Parabolic Interface Problems Tao Lin, Qing Yang and Xu Zhang Abstract We present partially penalized immersed finite element methods for solving

More information

A Moving-Mesh Finite Element Method and its Application to the Numerical Solution of Phase-Change Problems

A Moving-Mesh Finite Element Method and its Application to the Numerical Solution of Phase-Change Problems A Moving-Mesh Finite Element Method and its Application to the Numerical Solution of Phase-Change Problems M.J. Baines Department of Mathematics, The University of Reading, UK M.E. Hubbard P.K. Jimack

More information

A priori error analysis of the BEM with graded meshes for the electric eld integral equation on polyhedral surfaces

A priori error analysis of the BEM with graded meshes for the electric eld integral equation on polyhedral surfaces A priori error analysis of the BEM with graded meshes for the electric eld integral equation on polyhedral surfaces A. Bespalov S. Nicaise Abstract The Galerkin boundary element discretisations of the

More information

A posteriori error estimation of approximate boundary fluxes

A posteriori error estimation of approximate boundary fluxes COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2008; 24:421 434 Published online 24 May 2007 in Wiley InterScience (www.interscience.wiley.com)..1014 A posteriori error estimation

More information

A Posteriori Estimates for Cost Functionals of Optimal Control Problems

A Posteriori Estimates for Cost Functionals of Optimal Control Problems A Posteriori Estimates for Cost Functionals of Optimal Control Problems Alexandra Gaevskaya, Ronald H.W. Hoppe,2 and Sergey Repin 3 Institute of Mathematics, Universität Augsburg, D-8659 Augsburg, Germany

More information