Five Recent Trends in Computational PDEs

Size: px
Start display at page:

Download "Five Recent Trends in Computational PDEs"

Transcription

1 Five Recent Trends in Computational PDEs Carsten Carstensen Center Computational Science Adlershof and Department of Mathematics, Humboldt-Universität zu Berlin C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 1 / 44

2 Contributors Wolfgang Boiger Carsten Carstensen Dietmar Gallistl Joscha Gedicke Christian Merdon Daniel Peterseim Hella Rabus Mira Schedensack C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 2 / 44

3 Contents & Overview 1 Comparison of FEMs 2 Stokes Equations 3 Eigenvalue Problems 4 Variational Inequalities 5 Computational Microstructures C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 3 / 44

4 FEM Competition in PMP CFEM seeks u C P 1 (T ) C 0 () s.t. u C v C dx = CR-NCFEM seeks u CR CR 1 0(T ) s.t. NC u CR NC v CR dx = fv C dx for all v C P 1 (T ) C 0 () fv CR dx for all v CR CR 1 0(T ) RT-MFEM seeks p RT RT 0 (T ) and u RT P 0 (T ) s.t. p RT q RT dx + u RT div q RT dx = 0 for all q RT RT 0 (T ) Π 0 f + div p RT = 0 C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 4 / 44

5 Comparison Results in PMP Theorem [Braess (2010), C-Peterseim-Schedensack (2011)]: u u C u NC u CR u u C + osc(f, T ) u NC u CR hf + u p RT u NC u CR + osc(f, T ) But, in general, u NC u CR u p RT + osc(f, T ) C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 5 / 44

6 Counterexample PMP with f 2 in regular polygon M error RT MFEM CR NCFEM ndof M R M R 2 T s.t. ( ) M u p RT + osc(f, T ) u NC u CR C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 6 / 44

7 FEM Competition in 2D Elasticity CFEM seeks u C P 1 (T ; R 2 ) C 0 (; R 2 ) s.t. ε(u C ) : Cε(v C ) dx = f v C dx for all v C P 1 (T ; R 2 ) C 0 (; R 2 ) KS-NCFEM seeks u KS KS(T ) := ( P 1 (T ) C 0 () ) CR 1 0(T ) s.t. ε NC (u KS ) : Cε NC (v KS ) dx = f v KS dx for all v KS KS(T ) CR-NCFEM seeks u CR CR 1 0(T ; R 2 ) s.t. D NC u CR : CD NC v CR dx = f v CR dx for all v CR CR 1 0(T ; R 2 ) C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 7 / 44

8 Comparison Results in Elasticity σ σ C λ σ σ KS λ ( σ σ C + osc(f, T ) ) and σ σ KS + osc(f, T ) σ σ CR + osc(f, T ) [C-Rabus (2011): Adaptive CR-NCFEM in elasticity is robust as λ ] C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 8 / 44

9 Convergence Rates in Elasticity f = (1, 0) 10 1 f = (0, 0) /2 P1 10 1! (unif., "=0.3)! Av (unif., "=0.3)! (unif., "=0.49)! Av (unif., "=0.49)! (unif., "=0.499)! Av (unif., "=0.499)! (adapt., "=0.3, #=0.5)! Av (adapt., "=0.3, #=0.5)! (adapt., "=0.3, #=0.1)! Av (adapt., "=0.3, #=0.1)! (adapt., "=0.49, #=0.5)! Av (adapt., "=0.49, #=0.5)! (adapt., "=0.49, #=0.1)! Av (adapt., "=0.49, #=0.1)! (adapt., "=0.499, #=0.5)! Av (adapt., "=0.499, #=0.5) ! (adapt., "=0.499, #=0.1)! Av (adapt., "=0.499, #=0.1) C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 9 / 44 1/2 1/ /2 CR

10 Contents & Overview 1 Comparison of FEMs 2 Stokes Equations 3 Eigenvalue Problems 4 Variational Inequalities 5 Computational Microstructures C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 10 / 44

11 Stokes Equations Given f L 2 (; R 2 ), g H 1 (; R 2 ), seek u H 1 (; R 2 ) with u = g on and p L 2 0() s.t. u + p = f and div u = 0 in C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 11 / 44

12 CR-NCFEM Stokes CR-FEM seeks u CR g h + Z NC with a NC (u CR, v CR ) := D NC u CR : D NC v CR dx = F (v CR ) enforced by Lagrange multiplier p CR P 0 (T ) for all v CR Z NC := {v CR CR 1 0(T ; R 2 ) div NC v CR = 0} Energy error u u CR NC := a NC (u u CR, u u CR ) 1/2 =? C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 12 / 44

13 A Posteriori Error Estimators Stokes Eqns Helmholtz decomposition as in [Ainsworth-Dörfler (2005)] leads to ( ) 2 u u CR 2 NC f T /2 ( mid(t )) L 2 () + 1/π osc(f, T ) ( + min D NC (u CR v) v V L 2 () + div v L 2 () /c 0 + C γ osc( g/ s, E( )) u u CR 2 NC + osc2 (f, T ) + osc 2 ( g/ s, E( )) ) 2 C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 13 / 44

14 Backward Facing Step Example GUB for adaptive and uniform mesh-refinement R (adaptive) A (adaptive) PMA (adaptive) MAred (adaptive) PMred (adaptive) MP1 (adaptive) MP2 (adaptive) MP1red (adaptive) MP1redCG3 (adaptive) MP2CG10 (adaptive) R (uniform) A (uniform) PMA (uniform) MAred (uniform) PMred (uniform) MP1 (uniform) MP2 (uniform) MP1red (uniform) MP1redCG3 (uniform) MP2CG10 (uniform) C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 14 / 44

15 Pseudo Stress FEM for Stokes Equations RT-PSFEM seeks (σ PS, u PS ) PS k (T ) P k (T ; R 2 ) s.t. σ PS : dev τ PS dx + u PS div τ PS dx = v PS div σ PS dx = g τ PS νds v PS fdx for all (τ PS, v PS ) PS k (T ) P k (T ; R 2 ) PS k (T ) := (RT k (T ) RT k (T )) H(div, ; R 2 2 ) C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 15 / 44

16 AFEM for Stokes Equations SOLVE ESTIMATE MARK REFINE CRFEM [Becker-Mao, Hu-Xu, C-Peterseim-Rabus] η 2 (T ) := T f 2 L 2 (T ) + T 1/2 PSFEM [C-Gallistl-Schedensack] E E(T ) [ u CR / s] E 2 L 2 (E) η 2 (T ) := osc 2 (f, T ) + T curl(dev σ PS ) 2 L 2 (T ) + T 1/2 [dev σ PS ] E τ E 2 L 2 (E) E E(T ) C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 16 / 44

17 Optimal Convergence For σ H(div, ; R 2 2 ), f L 2 (; R 2 ), g H 1 ( ; R 2 ), APSFEM computes (u l, σ l ) with σ σ l 2 L 2 () + osc2 (f, T l ) + osc 2 ( g/ s, E l ( )) (σ, f, g) 2 A s ( T l T 0 ) 2s for ( (σ, f, g) 2 A s := sup N 2s inf σ Π RT0 (T )σ 2 L N N T T 0 N 2 () + osc 2 (f, T ) + osc 2( g/ s, E( ) )) C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 17 / 44

18 Convergence History L-Shaped Domain RT-PSFEM CR-NCFEM eta eta 10 1 η adaptive σ σ PS adaptive η uniform σ σ PS uniform η adaptive u u CR adaptive η uniform u u CR uniform ndof ndof C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 18 / 44

19 Contents & Overview 1 Comparison of FEMs 2 Stokes Equations 3 Eigenvalue Problems 4 Variational Inequalities 5 Computational Microstructures C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 19 / 44

20 Can one hear the shape of a drum? [Kac (1966)] λ 1 = left right C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 20 / 44

21 A Posteriori Error Estimators for EVP [Duran-Padra-Rodriguez (2003)] η 2 l := T T l h 2 T λ 2 l u l 2 L 2 (T ) + E E l h E [ u l ] ν E 2 L 2 (E) [Mao-Shen-Zhou (2006)] η 2 MSZ := T T l (h 2 T λ l u l +div(a l ( u l )) 2 L 2 (T ) + A l( u l ) u l 2 L 2 (T ) ) [CC-Gedicke (2011) Numer Math] η 2 CG := E E l h E [ u l ] ν E 2 L 2 (E) and µ 2 CG := T T l A l ( u l ) u l 2 L 2 (T ) C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 21 / 44

22 Optimal Convergence For any u in V := H 1 0() AFEM computes u l with for u u l 2 + λ λ l u 2 A s ( T l T 0 ) 2s u 2 A s := sup N 2s inf N 0 T N T 0 +N dist2 (u, V (T N )) < P 1 P 2 P 4 [C-Gedicke (2009 preprint), Dai-Xu-Zhou (2008)] C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 22 / 44

23 Optimal Computational Complexity - 3D l 2, l P1 l adaptive 2/3 2 P1 adaptive l 1 P2 adaptive 4/9 l 2 P2 l adaptive 1 P3 adaptive l 2 1 P3 l adaptive P4 l adaptive 2 P4 adaptive l 4/3 P4 uniform 1 l CPU time (sec) C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 23 / 44

24 Guaranteed Lower Bounds for Eigenvalues Example: (λ = 2π 2 = ) λ CR 1 + Cλ CR H λ λ < 24 = λ CR λ < 24 = λ CR λ λ CR = [C-Gedicke: Guaranteed lower bounds for eigenvalues (in prep)] [C-Gedicke-Mehrmann-Miedlar: An adaptive homotopy approach for non-selfadjoint eigenvalue problems (2011 Numer Math)] C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 24 / 44

25 Isospectral Eigenvalue Bounds λ 50 = lower bounds N left domain right domain λ 50 = upper bounds N left domain right domain C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 25 / 44

26 Contents & Overview 1 Comparison of FEMs 2 Stokes Equations 3 Eigenvalue Problems 4 Variational Inequalities 5 Computational Microstructures C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 26 / 44

27 Model Obstacle Problem Seek u K := {v V χ v} s.t. a(u, u v) F (u v) for all v K FEM seeks u h K(T ) := {v V (T ) Iχ v} s.t. a(u h, u h v h ) F (u h v h ) for all v h K(T ) Energy error u u h := a(u u h, u u h ) 1/2 =? C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 27 / 44

28 Lagrange Multiplier after Braess Define Λ h P 1 (T ) C() s.t., for all z N, Λ h ϕ z dx = fϕ ζ(z) dx u h ϕ ζ(z) dx Auxiliary Residual [Braess (2005 NumMath)], for v V, Res AUX (v) := (f Λ h )vdx Since P 1 (T ) C 0 () ker(res AUX ), Res AUX all error estimators u h vdx C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 28 / 44

29 Global Upper Bound u u h GUB := a ( a (χ u h )(JΛ h )dx }{{} overhead with a := Res AUX + Λ }{{} h JΛ h }{{} η xyz overhead for conforming χ χ h and positive interpolation Jv = ϕ z vϕ z dx/ ϕ z dx z N ) 1/2 (Efficiency holds for model scenarios [C-Merdon (2011)]) C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 29 / 44

30 L-Shaped Domain Example u(r, ϕ) := r 2/3 g(r) sin(2ϕ/3) with s := 2(r 1/4) and g(r) := max{0, min{1, 6s s 4 10s 3 + 1}} Adaptive meshes l = 0, 3, 6 C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 30 / 44

31 L-Shaped Domain Example Efficiency indices GUB/ e vs ndof for uniform (solid) and adaptive (dotted) meshes MP1 A1 B LW MFEM LS CF EQL B(r1) LW(1) C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 31 / 44

32 Contents & Overview 1 Comparison of FEMs 2 Stokes Equations 3 Eigenvalue Problems 4 Variational Inequalities 5 Computational Microstructures C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 32 / 44

33 Computational Microstructure Phase Transitions 0 0! YB 2 Cu 3 O 6+x tetrag. monocl. [C-Plecháĉ,SINUM 2001] F ! t=0.1, h=0.1 dash dotted line! t=0.1, h=0.01 dotted line! t=0.05, h=0.01 dashed line! t =0.01, h=0.01 solid line Hysteresis t [C-Plecháĉ,2001] Optimal Design Micromagnetics [C-Plecháĉ,1999] [C-Prohl,Numer Math 2001] C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 33 / 44

34 Minimisation & Relaxation E(v) := E (v) := ( ) W (Dv) + β v g 2 fv dx ( ) W (Dv) + β v g 2 fv dx C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 34 / 44

35 Comput. Microstructure Benchmark microstructure = enforced finer and finer oscillations, weak convergence but no strong convergence of infimising sequences C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 35 / 44

36 Stabilised Relaxed Simulation a l (v l, v l ) := E l (v l ) := E (v l ) a l(v l, v l ) h 1+γ max [Dv l ] h E 2 L 2 (E) for v l H 2 (T l ) E E E l () Convergence for h max 0, σ σ l L p () + β u u l L2 () + a l(u l, u l ) 0 C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 36 / 44

37 A Posteriori Error Estimate η F := min τ RT RT 0 (T ) ( σl τ RT L q () + f 2β(u l g) + div τ RT L q () satisfies for 2 q p ) σ σ l 2 L p () + β u u l 2 L 2 () η F u u l W 1,q () C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 37 / 44

38 Two-Well Benchmark ndof η F unif (h 4/5 ) η L unif (h 1 ) η F F-adapt η F R-adapt η L F-adapt η L R-adapt σ σ l 2 σ σ l 2 p F-adapt p R-adapt σ σ l 2 p unif (h 5/3 ) u u l 2 2 F-adapt u u l 2 2 R-adapt u u l 2 2 unif (h3/2 ) C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 38 / 44

39 Interface Model Problem Strong Convergence of Gradients in Relaxed Stabilized FE η H (unif) η H (unif,stab) η H (F-adapt,stab) η H (R-adapt,stab) η H (R-adapt) η H (F-adapt) ndof D(u u l ) 2 2 (F-adapt,stab) D(u u l ) 2 2 (R-adapt,stab) D(u u l ) 2 2 (unif,stab) D(u u l ) 2 2 (unif) D(u u l ) 2 2 (R-adapt) D(u u l ) 2 2 (F-adapt) C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 39 / 44

40 MFEM in Topology Optimisation µ 1 t 2 ϕ t 1 t 2 t 2 (ε + µ 1 ) t 1 (ε + µ 2 ) t ϕ µ 1 t 2 t (ϕ 2 ε) t t C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 40 / 44

41 Topology Optimisation Minimise [Bartels-C (2007)] E (v) := ϕ ( v ) dx v dx for v V = H0() 1 Maximise [C-Günther-Rabus SINUM (2011)] E (τ) := ϕ ( τ ) dx for τ Q = {τ H(div, ) : 1 + div τ = 0} C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 41 / 44

42 Topology Optimisation Minimise [Bartels-C (2007)] E (v) := ϕ ( v ) dx v dx Maximise [C-Günther-Rabus SINUM (2011)] E (τ) := ϕ ( τ ) dx for v V = H 1 0() u C P 1 (T ) C 0 () for τ Q = {τ H(div, ) : 1 + div τ = 0} σ RT Q(T ) = Q RT 0 (T ) C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 41 / 44

43 A Posteriori Error Estimate µ 2 σ σ RT min v V ϕ ( σ RT ) v ( h 1/2 2 E [ ϕ ( σ RT )] E τ E E E + h T curl ϕ ( σ RT ) 2 L 2 (T ) T T L 2 (E) ) 1/2 [C-Günther-Rabus SINUM (2011) accepted] C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 42 / 44

44 Computational Example 10 0 η ; uniform 1 H η H ; adaptive η R ; uniform 0.5 η R ; adaptive / ndof C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 43 / 44

45 Thank You for Your Attention! W. Boiger, C. Carstensen, On the Strong Convergence of Gradients in Stabilised Degenerate Convex Minimisation Problems, SINUM 47(6), 2010 W. Boiger, C. Carstensen, Stabilised FEM for Degenerate Convex Minimisation Problems Without Higher Regularity Assumptions (2011 submitted) C. Carstensen, C. Merdon, Estimator Competition for Poisson Problems, J. Comp. Math., 28, 2010 C. Carstensen, C. Merdon, A Posteriori Error Estimator Competition for Conforming Obstacle Problems (2011 submitted) C. Carstensen, D. Gallistl, M. Schedensack, Quasi Optimal Adaptive Pseudostress Approximation of the Stokes Equations (2011 submitted) C. Carstensen, D. Günther, H. Rabus, Adaptive Mixed Finite Element Method for an Optimal Design Problem (SINUM 2011 accepted) C. Carstensen, D. Peterseim, H. Rabus, Optimal Adaptive Nonconforming FEM for the Stokes Problem (2011 submitted) C. Carstensen, D. Peterseim, M. Schedensack, Comparison Results of Three First-order Finite Element Methods for the Poisson Model Problem (2011 submitted, MATHEON preprint 831) C. Carstensen (CCSA & HU Berlin) 5 Trends in CPDEs 44 / 44

Guaranteed Velocity Error Control for the Pseudostress Approximation of the Stokes Equations

Guaranteed Velocity Error Control for the Pseudostress Approximation of the Stokes Equations Guaranteed Velocity Error Control for the Pseudostress Approximation of the Stokes Equations P. Bringmann, 1 C. Carstensen, 1 C. Merdon 2 1 Department of Mathematics, Humboldt-Universität zu Berlin, Unter

More information

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Unified A Posteriori Error Control for all Nonstandard Finite Elements 1 Martin Eigel C. Carstensen, C. Löbhard, R.H.W. Hoppe Humboldt-Universität zu Berlin 19.05.2010 1 we know of Guidelines for Applicants

More information

Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates)

Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates) Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates) Carsten Carstensen Humboldt-Universität zu Berlin 2018 International Graduate Summer School on Frontiers of Applied and

More information

Axioms of Adaptivity (AoA) in Lecture 2 (sufficient for optimal convergence rates)

Axioms of Adaptivity (AoA) in Lecture 2 (sufficient for optimal convergence rates) Axioms of Adaptivity (AoA) in Lecture 2 (sufficient for optimal convergence rates) Carsten Carstensen Humboldt-Universität zu Berlin 2018 International Graduate Summer School on Frontiers of Applied and

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2013) :425 459 DOI 10.1007/s00211-012-0494-4 Numerische Mathematik Effective postprocessing for equilibration a posteriori error estimators C. Carstensen C. Merdon Received: 22 June 2011

More information

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University A Posteriori Error Estimation Techniques for Finite Element Methods Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 16, 2017 Books Ainsworth & Oden, A posteriori

More information

Medius analysis and comparison results for first-order finite element methods in linear elasticity

Medius analysis and comparison results for first-order finite element methods in linear elasticity IMA Journal of Numerical Analysis Advance Access published November 7, 2014 IMA Journal of Numerical Analysis (2014) Page 1 of 31 doi:10.1093/imanum/dru048 Medius analysis and comparison results for first-order

More information

Axioms of Adaptivity (AoA) in Lecture 1 (sufficient for optimal convergence rates)

Axioms of Adaptivity (AoA) in Lecture 1 (sufficient for optimal convergence rates) Axioms of Adaptivity (AoA) in Lecture 1 (sufficient for optimal convergence rates) Carsten Carstensen Humboldt-Universität zu Berlin 2018 International Graduate Summer School on Frontiers of Applied and

More information

Axioms of Adaptivity

Axioms of Adaptivity Axioms of Adaptivity Carsten Carstensen Humboldt-Universität zu Berlin Open-Access Reference: C-Feischl-Page-Praetorius: Axioms of Adaptivity. Computer & Mathematics with Applications 67 (2014) 1195 1253

More information

Adaptive approximation of eigenproblems: multiple eigenvalues and clusters

Adaptive approximation of eigenproblems: multiple eigenvalues and clusters Adaptive approximation of eigenproblems: multiple eigenvalues and clusters Francesca Gardini Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/gardini Banff, July 1-6,

More information

Spline Element Method for Partial Differential Equations

Spline Element Method for Partial Differential Equations for Partial Differential Equations Department of Mathematical Sciences Northern Illinois University 2009 Multivariate Splines Summer School, Summer 2009 Outline 1 Why multivariate splines for PDEs? Motivation

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2017) 136:1097 1115 DOI 10.1007/s00211-017-0866-x Numerische Mathematik Convergence of natural adaptive least squares finite element methods Carsten Carstensen 1 Eun-Jae Park 2 Philipp Bringmann

More information

NUMERICAL EXPERIMENTS FOR THE ARNOLD WINTHER MIXED FINITE ELEMENTS FOR THE STOKES PROBLEM

NUMERICAL EXPERIMENTS FOR THE ARNOLD WINTHER MIXED FINITE ELEMENTS FOR THE STOKES PROBLEM NUMERICAL EXPERIMENTS FOR THE ARNOLD WINTHER MIXED FINITE ELEMENTS FOR THE STOKES PROBLEM CARSTEN CARSTENSEN, JOSCHA GEDICKE, AND EUN-JAE PARK Abstract. The stress-velocity formulation of the stationary

More information

Convergence and optimality of an adaptive FEM for controlling L 2 errors

Convergence and optimality of an adaptive FEM for controlling L 2 errors Convergence and optimality of an adaptive FEM for controlling L 2 errors Alan Demlow (University of Kentucky) joint work with Rob Stevenson (University of Amsterdam) Partially supported by NSF DMS-0713770.

More information

AposteriorierrorestimatesinFEEC for the de Rham complex

AposteriorierrorestimatesinFEEC for the de Rham complex AposteriorierrorestimatesinFEEC for the de Rham complex Alan Demlow Texas A&M University joint work with Anil Hirani University of Illinois Urbana-Champaign Partially supported by NSF DMS-1016094 and a

More information

A posteriori error estimates in FEEC for the de Rham complex

A posteriori error estimates in FEEC for the de Rham complex A posteriori error estimates in FEEC for the de Rham complex Alan Demlow Texas A&M University joint work with Anil Hirani University of Illinois Urbana-Champaign Partially supported by NSF DMS-1016094

More information

An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element

An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element Calcolo manuscript No. (will be inserted by the editor) An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element Dietrich Braess Faculty of Mathematics, Ruhr-University

More information

Towards pressure-robust mixed methods for the incompressible Navier Stokes equations

Towards pressure-robust mixed methods for the incompressible Navier Stokes equations Mohrenstrasse 39 10117 Berlin Germany Tel. +49 30 20372 0 www.wias-berlin.de 2016-05-05, Pittsburgh Weierstrass Institute for Applied Analysis and Stochastics Towards pressure-robust mixed methods for

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS CARLO LOVADINA AND ROLF STENBERG Abstract The paper deals with the a-posteriori error analysis of mixed finite element methods

More information

Nonconforming FEM for the obstacle problem

Nonconforming FEM for the obstacle problem IMA Journal of Numerical Analysis (2017) 37, 64 93 doi: 10.1093/imanum/drw005 Advance Access publication on May 10, 2016 Nonconforming FM for the obstacle problem C. Carstensen and K. Köhler Institut für

More information

A UNIFYING THEORY OF A POSTERIORI FINITE ELEMENT ERROR CONTROL

A UNIFYING THEORY OF A POSTERIORI FINITE ELEMENT ERROR CONTROL A UNIFYING THEORY OF A POSTERIORI FINITE ELEMENT ERROR CONTROL C. CARSTENSEN Abstract. Residual-based a posteriori error estimates are derived within a unified setting for lowest-order conforming, nonconforming,

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. DOI 10.1007/s00211-015-0738-1 Numerische Mathematik A natural nonconforming FEM for the Bingham flow problem is quasi-optimal C. Carstensen 1,2 B. D. Reddy 3 M. Schedensack 4 Received: 30

More information

EXPLICIT ERROR ESTIMATES FOR COURANT, CROUZEIX-RAVIART AND RAVIART-THOMAS FINITE ELEMENT METHODS

EXPLICIT ERROR ESTIMATES FOR COURANT, CROUZEIX-RAVIART AND RAVIART-THOMAS FINITE ELEMENT METHODS EXPLICI ERROR ESIMAES FOR COURAN, CROUZEIX-RAVIAR AND RAVIAR-HOMAS FINIE ELEMEN MEHODS CARSEN CARSENSEN, JOSCHA GEDICKE, AND DONSUB RIM Abstract. he elementary analysis of this paper presents explicit

More information

Institut für Mathematik

Institut für Mathematik U n i v e r s i t ä t A u g s b u r g Institut für Mathematik Dietrich Braess, Carsten Carstensen, and Ronald H.W. Hoppe Convergence Analysis of a Conforming Adaptive Finite Element Method for an Obstacle

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS MATHEMATICS OF COMPUTATION Volume 75, Number 256, October 2006, Pages 1659 1674 S 0025-57180601872-2 Article electronically published on June 26, 2006 ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED

More information

ROBUST RESIDUAL-BASED A POSTERIORI ARNOLD-WINTHER MIXED FINITE ELEMENT ANALYSIS IN ELASTICITY

ROBUST RESIDUAL-BASED A POSTERIORI ARNOLD-WINTHER MIXED FINITE ELEMENT ANALYSIS IN ELASTICITY ROBUS RSIDUAL-BASD A POSRIORI ARNOLD-WINHR MIXD FINI LMN ANALYSIS IN LASICIY CARSN CARSNSN AND JOSCHA GDICK Abstract. his paper presents a residual-based a posteriori error estimator for the Arnold-Winther

More information

ROBUST RESIDUAL-BASED A POSTERIORI ARNOLD WINTHER MIXED FINITE ELEMENT ANALYSIS IN ELASTICITY

ROBUST RESIDUAL-BASED A POSTERIORI ARNOLD WINTHER MIXED FINITE ELEMENT ANALYSIS IN ELASTICITY ROBUS RSIDUAL-BASD A POSRIORI ARNOLD WINHR MIXD FINI LMN ANALYSIS IN LASICIY CARSN CARSNSN AND JOSCHA GDICK Abstract. his paper presents a residual-based a posteriori error estimator for the Arnold Winther

More information

c 2012 Society for Industrial and Applied Mathematics

c 2012 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 5, No. 2, pp. 522 543 c 22 Society for Industrial and Applied Mathematics MIXED FINITE ELEMENT METHOD FOR A DEGENERATE CONVEX VARIATIONAL PROBLEM FROM TOPOLOGY OPTIMIZATION CARSTEN

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

EXPLICIT ERROR ESTIMATES FOR COURANT, CROUZEIX-RAVIART AND RAVIART-THOMAS FINITE ELEMENT METHODS

EXPLICIT ERROR ESTIMATES FOR COURANT, CROUZEIX-RAVIART AND RAVIART-THOMAS FINITE ELEMENT METHODS EXPLICI ERROR ESIMAES FOR COURAN, CROUZEIX-RAVIAR AND RAVIAR-HOMAS FINIE ELEMEN MEHODS CARSEN CARSENSEN, JOSCHA GEDICKE, AND DONSUB RIM Abstract. he elementary analysis of this paper presents explicit

More information

arxiv: v2 [math.na] 23 Apr 2016

arxiv: v2 [math.na] 23 Apr 2016 Improved ZZ A Posteriori Error Estimators for Diffusion Problems: Conforming Linear Elements arxiv:508.009v2 [math.na] 23 Apr 206 Zhiqiang Cai Cuiyu He Shun Zhang May 2, 208 Abstract. In [8], we introduced

More information

Recovery-Based A Posteriori Error Estimation

Recovery-Based A Posteriori Error Estimation Recovery-Based A Posteriori Error Estimation Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 2, 2011 Outline Introduction Diffusion Problems Higher Order Elements

More information

An optimal adaptive finite element method. Rob Stevenson Korteweg-de Vries Institute for Mathematics Faculty of Science University of Amsterdam

An optimal adaptive finite element method. Rob Stevenson Korteweg-de Vries Institute for Mathematics Faculty of Science University of Amsterdam An optimal adaptive finite element method Rob Stevenson Korteweg-de Vries Institute for Mathematics Faculty of Science University of Amsterdam Contents model problem + (A)FEM newest vertex bisection convergence

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. NUMR. ANAL. Vol. 45, No. 1, pp. 68 82 c 2007 Society for Industrial and Applied Mathematics FRAMWORK FOR TH A POSTRIORI RROR ANALYSIS OF NONCONFORMING FINIT LMNTS CARSTN CARSTNSN, JUN HU, AND ANTONIO

More information

Discontinuous Petrov-Galerkin Methods

Discontinuous Petrov-Galerkin Methods Discontinuous Petrov-Galerkin Methods Friederike Hellwig 1st CENTRAL School on Analysis and Numerics for Partial Differential Equations, November 12, 2015 Motivation discontinuous Petrov-Galerkin (dpg)

More information

A posteriori error estimates for non conforming approximation of eigenvalue problems

A posteriori error estimates for non conforming approximation of eigenvalue problems A posteriori error estimates for non conforming approximation of eigenvalue problems E. Dari a, R. G. Durán b and C. Padra c, a Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and CONICE,

More information

Recovery-Based a Posteriori Error Estimators for Interface Problems: Mixed and Nonconforming Elements

Recovery-Based a Posteriori Error Estimators for Interface Problems: Mixed and Nonconforming Elements Recovery-Based a Posteriori Error Estimators for Interface Problems: Mixed and Nonconforming Elements Zhiqiang Cai Shun Zhang Department of Mathematics Purdue University Finite Element Circus, Fall 2008,

More information

A POSTERIORI ERROR ESTIMATORS FOR CONVECTION-DIFFUSION EIGENVALUE PROBLEMS

A POSTERIORI ERROR ESTIMATORS FOR CONVECTION-DIFFUSION EIGENVALUE PROBLEMS A POSERIORI ERROR ESIMAORS FOR CONVECION-DIFFUSION EIGENVALUE PROBLEMS JOSCHA GEDICKE AND CARSEN CARSENSEN Abstract. A posteriori error estimators for convection-diffusion eigenvalue model problems are

More information

Traces and Duality Lemma

Traces and Duality Lemma Traces and Duality Lemma Recall the duality lemma with H / ( ) := γ 0 (H ()) defined as the trace space of H () endowed with minimal extension norm; i.e., for w H / ( ) L ( ), w H / ( ) = min{ ŵ H () ŵ

More information

An A Posteriori Error Estimate for Discontinuous Galerkin Methods

An A Posteriori Error Estimate for Discontinuous Galerkin Methods An A Posteriori Error Estimate for Discontinuous Galerkin Methods Mats G Larson mgl@math.chalmers.se Chalmers Finite Element Center Mats G Larson Chalmers Finite Element Center p.1 Outline We present an

More information

arxiv: v1 [math.na] 2 Sep 2015

arxiv: v1 [math.na] 2 Sep 2015 The lower bound property of the Morley element eigenvalues arxiv:1509.00566v1 [math.na] Sep 015 Yidu Yang, Hao Li, Hai Bi School of Mathematics and Computer Science, Guizhou Normal University, Guiyang,

More information

Space-time Finite Element Methods for Parabolic Evolution Problems

Space-time Finite Element Methods for Parabolic Evolution Problems Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients Ulrich Langer, Martin Neumüller, Andreas Schafelner Johannes Kepler University, Linz Doctoral Program Computational

More information

A posteriori error control for the binary Mumford Shah model

A posteriori error control for the binary Mumford Shah model A posteriori error control for the binary Mumford Shah model Benjamin Berkels 1, Alexander Effland 2, Martin Rumpf 2 1 AICES Graduate School, RWTH Aachen University, Germany 2 Institute for Numerical Simulation,

More information

PREPRINT 2010:25. Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO

PREPRINT 2010:25. Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO PREPRINT 2010:25 Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS

More information

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T 2 R.H. NOCHETTO 2. Lecture 2. Adaptivity I: Design and Convergence of AFEM tarting with a conforming mesh T H, the adaptive procedure AFEM consists of loops of the form OLVE ETIMATE MARK REFINE to produce

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 37, pp. 166-172, 2010. Copyright 2010,. ISSN 1068-9613. ETNA A GRADIENT RECOVERY OPERATOR BASED ON AN OBLIQUE PROJECTION BISHNU P. LAMICHHANE Abstract.

More information

THE PATCH RECOVERY FOR FINITE ELEMENT APPROXIMATION OF ELASTICITY PROBLEMS UNDER QUADRILATERAL MESHES. Zhong-Ci Shi and Xuejun Xu.

THE PATCH RECOVERY FOR FINITE ELEMENT APPROXIMATION OF ELASTICITY PROBLEMS UNDER QUADRILATERAL MESHES. Zhong-Ci Shi and Xuejun Xu. DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS SERIES B Volume 9, Number, January 2008 pp. 63 82 THE PATCH RECOVERY FOR FINITE ELEMENT APPROXIMATION OF ELASTICITY PROBLEMS UNDER

More information

Mathematisches Forschungsinstitut Oberwolfach. Advanced Computational Engineering

Mathematisches Forschungsinstitut Oberwolfach. Advanced Computational Engineering Mathematisches Forschungsinstitut Oberwolfach Report No. 09/2012 DOI: 10.4171/OWR/2012/09 Advanced Computational Engineering Organised by Olivier Allix, Cachan Carsten Carstensen, Berlin Jörg Schröder,

More information

ROBUST RESIDUAL-BASED A POSTERIORI ARNOLD-WINTHER MIXED FINITE ELEMENT ANALYSIS IN ELASTICITY

ROBUST RESIDUAL-BASED A POSTERIORI ARNOLD-WINTHER MIXED FINITE ELEMENT ANALYSIS IN ELASTICITY ROBUS RSIDUAL-BASD A POSRIORI ARNOLD-WINHR MIXD FINI LMN ANALYSIS IN LASICIY CARSN CARSNSN AND JOSCHA GDICK Abstract. his paper presents a residual-based a posteriori error estimator for the Arnold-Winther

More information

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems.

Goal. Robust A Posteriori Error Estimates for Stabilized Finite Element Discretizations of Non-Stationary Convection-Diffusion Problems. Robust A Posteriori Error Estimates for Stabilized Finite Element s of Non-Stationary Convection-Diffusion Problems L. Tobiska and R. Verfürth Universität Magdeburg Ruhr-Universität Bochum www.ruhr-uni-bochum.de/num

More information

Multigrid Methods for Saddle Point Problems

Multigrid Methods for Saddle Point Problems Multigrid Methods for Saddle Point Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University Advances in Mathematics of Finite Elements (In

More information

AN ADAPTIVE HOMOTOPY APPROACH FOR NON-SELFADJOINT EIGENVALUE PROBLEMS

AN ADAPTIVE HOMOTOPY APPROACH FOR NON-SELFADJOINT EIGENVALUE PROBLEMS AN ADAPTIVE HOMOTOPY APPROACH FOR NON-SELFADJOINT EIGENVALUE PROBLEMS C. CARSTENSEN, J. GEDICKE, V. MEHRMANN, AND A. MIEDLAR Abstract. This paper presents three different adaptive algorithms for eigenvalue

More information

Numerical Solution of Nonsmooth Problems and Application to Damage Evolution and Optimal Insulation

Numerical Solution of Nonsmooth Problems and Application to Damage Evolution and Optimal Insulation Numerical Solution of Nonsmooth Problems and Application to Damage Evolution and Optimal Insulation Sören Bartels University of Freiburg, Germany Joint work with G. Buttazzo (U Pisa), L. Diening (U Bielefeld),

More information

A posteriori estimators for obstacle problems by the hypercircle method

A posteriori estimators for obstacle problems by the hypercircle method A posteriori estimators for obstacle problems by the hypercircle method Dietrich Braess 1 Ronald H.W. Hoppe 2,3 Joachim Schöberl 4 January 9, 2008 Abstract A posteriori error estimates for the obstacle

More information

Computer simulation of multiscale problems

Computer simulation of multiscale problems Progress in the SSF project CutFEM, Geometry, and Optimal design Computer simulation of multiscale problems Axel Målqvist and Daniel Elfverson University of Gothenburg and Uppsala University Umeå 2015-05-20

More information

On Multigrid for Phase Field

On Multigrid for Phase Field On Multigrid for Phase Field Carsten Gräser (FU Berlin), Ralf Kornhuber (FU Berlin), Rolf Krause (Uni Bonn), and Vanessa Styles (University of Sussex) Interphase 04 Rome, September, 13-16, 2004 Synopsis

More information

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction The a posteriori error estimation of finite element approximations of elliptic boundary value problems has reached

More information

Approximation of fluid-structure interaction problems with Lagrange multiplier

Approximation of fluid-structure interaction problems with Lagrange multiplier Approximation of fluid-structure interaction problems with Lagrange multiplier Daniele Boffi Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/boffi May 30, 2016 Outline

More information

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016 Mixed Finite Element Methods Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016 Linear elasticity Given the load f : Ω R n, find the displacement u : Ω R n and the

More information

A Posteriori Existence in Numerical Computations

A Posteriori Existence in Numerical Computations Oxford University Computing Laboratory OXMOS: New Frontiers in the Mathematics of Solids OXPDE: Oxford Centre for Nonlinear PDE January, 2007 Introduction Non-linear problems are handled via the implicit

More information

Maximum-norm a posteriori estimates for discontinuous Galerkin methods

Maximum-norm a posteriori estimates for discontinuous Galerkin methods Maximum-norm a posteriori estimates for discontinuous Galerkin methods Emmanuil Georgoulis Department of Mathematics, University of Leicester, UK Based on joint work with Alan Demlow (Kentucky, USA) DG

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

Multiscale methods for time-harmonic acoustic and elastic wave propagation

Multiscale methods for time-harmonic acoustic and elastic wave propagation Multiscale methods for time-harmonic acoustic and elastic wave propagation Dietmar Gallistl (joint work with D. Brown and D. Peterseim) Institut für Angewandte und Numerische Mathematik Karlsruher Institut

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

arxiv: v1 [math.na] 19 Dec 2017

arxiv: v1 [math.na] 19 Dec 2017 Arnold-Winther Mixed Finite Elements for Stokes Eigenvalue Problems Joscha Gedicke Arbaz Khan arxiv:72.0686v [math.na] 9 Dec 207 Abstract This paper is devoted to study the Arnold-Winther mixed finite

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2011) 118:401 427 DOI 10.1007/s00211-011-0367-2 Numerische Mathematik An oscillation-free adaptive FM for symmetric eigenvalue problems Carsten Carstensen Joscha Gedicke Received: 12 March

More information

A posteriori error estimates for a Maxwell type problem

A posteriori error estimates for a Maxwell type problem Russ. J. Numer. Anal. Math. Modelling, Vol. 24, No. 5, pp. 395 408 (2009) DOI 0.55/ RJNAMM.2009.025 c de Gruyter 2009 A posteriori error estimates for a Maxwell type problem I. ANJAM, O. MALI, A. MUZALEVSKY,

More information

A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators

A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators Jeff Ovall University of Kentucky Mathematics www.math.uky.edu/ jovall jovall@ms.uky.edu Kentucky Applied and

More information

LECTURE 3: DISCRETE GRADIENT FLOWS

LECTURE 3: DISCRETE GRADIENT FLOWS LECTURE 3: DISCRETE GRADIENT FLOWS Department of Mathematics and Institute for Physical Science and Technology University of Maryland, USA Tutorial: Numerical Methods for FBPs Free Boundary Problems and

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (203) 24:309 335 DOI 0.007/s002-02-053-5 Numerische Mathematik A posteriori error estimates for nonconforming finite element methods for fourth-order problems on rectangles Carsten Carstensen

More information

b i (x) u + c(x)u = f in Ω,

b i (x) u + c(x)u = f in Ω, SIAM J. NUMER. ANAL. Vol. 39, No. 6, pp. 1938 1953 c 2002 Society for Industrial and Applied Mathematics SUBOPTIMAL AND OPTIMAL CONVERGENCE IN MIXED FINITE ELEMENT METHODS ALAN DEMLOW Abstract. An elliptic

More information

Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis

Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis ZAMM Z. Angew. Math. Mech. 84, No. 1, 3 21 (2004) / DOI 10.1002/amm.200410101 Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis Plenary lecture

More information

Workshop on CENTRAL Trends in PDEs Vienna, November 12-13, 2015

Workshop on CENTRAL Trends in PDEs Vienna, November 12-13, 2015 Workshop on CENTRAL Trends in PDEs Vienna, November 12-13, 2015 Venue: Sky Lounge, 12th floor, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, Vienna Thursday, November 12, 2015 14:00-14:30 Registration

More information

A Posteriori Existence in Adaptive Computations

A Posteriori Existence in Adaptive Computations Report no. 06/11 A Posteriori Existence in Adaptive Computations Christoph Ortner This short note demonstrates that it is not necessary to assume the existence of exact solutions in an a posteriori error

More information

AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD

AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR THE INTERIOR PENALTY DISCONTINUOUS GALERIN METHOD D. BRAESS, T. FRAUNHOLZ, AND R. H. W. HOPPE Abstract. Interior Penalty Discontinuous Galerkin (IPDG) methods

More information

Mathematisches Forschungsinstitut Oberwolfach. Numerical Solution of PDE Eigenvalue Problems

Mathematisches Forschungsinstitut Oberwolfach. Numerical Solution of PDE Eigenvalue Problems Mathematisches Forschungsinstitut Oberwolfach Report No. 56/2013 DOI: 10.4171/OWR/2013/56 Numerical Solution of PDE Eigenvalue Problems Organised by Andrew Knyazev, Cambridge MA Volker Mehrmann, Berlin

More information

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Department of Mathematics and Institute for Physical Science and Technology University of Maryland, USA www.math.umd.edu/ rhn 7th

More information

An Adaptive Mixed Finite Element Method using the Lagrange Multiplier Technique

An Adaptive Mixed Finite Element Method using the Lagrange Multiplier Technique An Adaptive Mixed Finite Element Method using the Lagrange Multiplier Technique by Michael Gagnon A Project Report Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY ABHELSINKI UNIVERSITY OF TECHNOLOGY TECHNISCHE UNIVERSITÄT HELSINKI UNIVERSITE DE TECHNOLOGIE D HELSINKI A posteriori error analysis for the Morley plate element Jarkko Niiranen Department of Structural

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Residual and Error of Finite Element Solutions Mixed BVP of Poisson Equation

More information

Applied Numerical Mathematics

Applied Numerical Mathematics Applied Numerical Mathematics 59 009) 119 130 Contents lists available at ScienceDirect Applied Numerical Mathematics www.elsevier.com/locate/apnum Convergence of adaptive finite element methods in computational

More information

FEniCS Course. Lecture 8: A posteriori error estimates and adaptivity. Contributors André Massing Marie Rognes

FEniCS Course. Lecture 8: A posteriori error estimates and adaptivity. Contributors André Massing Marie Rognes FEniCS Course Lecture 8: A posteriori error estimates and adaptivity Contributors André Massing Marie Rognes 1 / 24 A priori estimates If u H k+1 (Ω) and V h = P k (T h ) then u u h Ch k u Ω,k+1 u u h

More information

Space-time sparse discretization of linear parabolic equations

Space-time sparse discretization of linear parabolic equations Space-time sparse discretization of linear parabolic equations Roman Andreev August 2, 200 Seminar for Applied Mathematics, ETH Zürich, Switzerland Support by SNF Grant No. PDFMP2-27034/ Part of PhD thesis

More information

Least-Squares Finite Element Methods

Least-Squares Finite Element Methods Pavel В. Bochev Max D. Gunzburger Least-Squares Finite Element Methods Spri ringer Contents Part I Survey of Variational Principles and Associated Finite Element Methods 1 Classical Variational Methods

More information

Hybridized DG methods

Hybridized DG methods Hybridized DG methods University of Florida (Banff International Research Station, November 2007.) Collaborators: Bernardo Cockburn University of Minnesota Raytcho Lazarov Texas A&M University Thanks:

More information

A POSTERIORI ERROR ESTIMATION FOR NON-CONFORMING QUADRILATERAL FINITE ELEMENTS

A POSTERIORI ERROR ESTIMATION FOR NON-CONFORMING QUADRILATERAL FINITE ELEMENTS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 2, Number, Pages 8 c 2005 Institute for Scientific Computing and Information A POSTERIORI ERROR ESTIMATION FOR NON-CONFORMING QUADRILATERAL

More information

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires MIXED FINITE ELEMENTS FOR PLATES Ricardo G. Durán Universidad de Buenos Aires - Necessity of 2D models. - Reissner-Mindlin Equations. - Finite Element Approximations. - Locking. - Mixed interpolation or

More information

A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods

A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods Emmanuel Creusé, Serge Nicaise October 7, 29 Abstract We consider some (anisotropic and piecewise

More information

Numerical Solution of PDEs: Bounds for Functional Outputs and Certificates

Numerical Solution of PDEs: Bounds for Functional Outputs and Certificates Numerical Solution of PDEs: Bounds for Functional Outputs and Certificates J. Peraire Massachusetts Institute of Technology, USA ASC Workshop, 22-23 August 2005, Stanford University People MIT: A.T. Patera,

More information

Mimetic Finite Difference methods

Mimetic Finite Difference methods Mimetic Finite Difference methods An introduction Andrea Cangiani Università di Roma La Sapienza Seminario di Modellistica Differenziale Numerica 2 dicembre 2008 Andrea Cangiani (IAC CNR) mimetic finite

More information

The Virtual Element Method: an introduction with focus on fluid flows

The Virtual Element Method: an introduction with focus on fluid flows The Virtual Element Method: an introduction with focus on fluid flows L. Beirão da Veiga Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca VEM people (or group representatives): P.

More information

WELL POSEDNESS OF PROBLEMS I

WELL POSEDNESS OF PROBLEMS I Finite Element Method 85 WELL POSEDNESS OF PROBLEMS I Consider the following generic problem Lu = f, where L : X Y, u X, f Y and X, Y are two Banach spaces We say that the above problem is well-posed (according

More information

Symmetry-Free, p-robust Equilibrated Error Indication for the hp-version of the FEM in Nearly Incompressible Linear Elasticity

Symmetry-Free, p-robust Equilibrated Error Indication for the hp-version of the FEM in Nearly Incompressible Linear Elasticity Computational Methods in Applied Mathematics Vol. 13 (2013), No. 3, pp. 291 304 c 2013 Institute of Mathematics, NAS of Belarus Doi: 10.1515/cmam-2013-0007 Symmetry-Free, p-robust Equilibrated Error Indication

More information

An hp-adaptive Mixed Discontinuous Galerkin FEM for Nearly Incompressible Linear Elasticity

An hp-adaptive Mixed Discontinuous Galerkin FEM for Nearly Incompressible Linear Elasticity An hp-adaptive Mixed Discontinuous Galerkin FEM for Nearly Incompressible Linear Elasticity Paul Houston 1 Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK (email: Paul.Houston@mcs.le.ac.uk)

More information

MORTAR MULTISCALE FINITE ELEMENT METHODS FOR STOKES-DARCY FLOWS

MORTAR MULTISCALE FINITE ELEMENT METHODS FOR STOKES-DARCY FLOWS MORTAR MULTISCALE FINITE ELEMENT METHODS FOR STOKES-DARCY FLOWS VIVETTE GIRAULT, DANAIL VASSILEV, AND IVAN YOTOV Abstract. We investigate mortar multiscale numerical methods for coupled Stokes and Darcy

More information

Constrained Minimization and Multigrid

Constrained Minimization and Multigrid Constrained Minimization and Multigrid C. Gräser (FU Berlin), R. Kornhuber (FU Berlin), and O. Sander (FU Berlin) Workshop on PDE Constrained Optimization Hamburg, March 27-29, 2008 Matheon Outline Successive

More information

Adaptive methods for control problems with finite-dimensional control space

Adaptive methods for control problems with finite-dimensional control space Adaptive methods for control problems with finite-dimensional control space Saheed Akindeinde and Daniel Wachsmuth Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy

More information

Mathematical modelling of elastoplasticity

Mathematical modelling of elastoplasticity Mathematical modelling of elastoplasticity School of Engineering and Natural Sciences University of Iceland, Reykjavik email: jan.valdman@gmail.com Ostrava, May 10-14, 2010 Outline 1 Rheological models

More information

A very short introduction to the Finite Element Method

A very short introduction to the Finite Element Method A very short introduction to the Finite Element Method Till Mathis Wagner Technical University of Munich JASS 2004, St Petersburg May 4, 2004 1 Introduction This is a short introduction to the finite element

More information

Polynomial-degree-robust liftings for potentials and fluxes

Polynomial-degree-robust liftings for potentials and fluxes Polynomial-degree-robust liftings for potentials and fluxes and Martin Vohraĺık Université Paris-Est, CERMICS (ENPC) and SERENA Project-Team, INRIA, France RAFEM, Hong-Kong, March 2017 Outline 1. Motivation:

More information