A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods

Size: px
Start display at page:

Download "A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods"

Transcription

1 A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods Emmanuel Creusé, Serge Nicaise October 7, 29 Abstract We consider some (anisotropic and piecewise constant) diffusion problems in domains of R 2, approximated by a discontinuous Galerkin method with polynomials of any degree. We propose an a posteriori error estimator based on gradient recovery by averaging. It is shown that this estimator gives rise to an upper bound where the constant is one up to some additional terms that guarantee reliability. The lower bound is also established. Moreover these additional terms are negligible when the recovered gradient is superconvergent. The reliability and efficiency of the proposed estimator is confirmed by some numerical tests. Key Words A posteriori estimator, Discontinuous Galerkin finite elements. AMS (MOS) subject classification 65N3; 65N5, 65N5, Introduction Among other methods, the finite element method is one of the more popular that is commonly used in the numerical realization of different problems appearing in engineering applications, like the Laplace equation, the Lamé system, the Stokes system, the Maxwell system, etc... (see [7, 8, 23]). More recently discontinuous Galerkin finite element methods become very attractive since they present some advantages, like flexibility, adaptivity, etc... In our days a vast literature exists on the subject, we refer to [3, ] and the references cited there. Adaptive techniques based on a posteriori error estimators have become indispensable tools for such methods. For continuous Galerkin finite element methods, there now Université des Sciences et Technologies de Lille, Laboratoire Paul Painlevé UMR 8524, EPI SIMPAF - INRIA Lille Nord Europe, UFR de Mathématiques Pures et Appliquées, Cité Scientifique, Villeneuve d Ascq Cedex creuse@math.univ-lille.fr Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, Institut des Sciences et Techniques de Valenciennes, F Valenciennes Cedex 9 France, Serge.Nicaise@univvalenciennes.fr

2 exists a vast amount of literature on a posteriori error estimation for problems in mechanics or electromagnetism and obtaining locally defined a posteriori error estimates. We refer to the monographs [2, 4, 24, 3] for a good overview on this topic. On the other hand a similar theory for discontinuous methods is less developed, let us quote [5, 2, 7, 8, 9, 27, 3]. Usually upper and lower bounds are proved in order to guarantee the reliability and the efficiency of the proposed estimator. Most of the existing approaches involve constants depending on the shape regularity of the elements and/or of the jumps in the coefficients; but these dependences are often not given. Only a few number of approaches gives rise to estimates with explicit constants, let us quote [2, 6, 2, 22, 25, 26, 6] for continuous methods. For discontinuous methods, we may cite the recent papers [, 2, 9, 4, 5]. Our goal is therefore to consider second order elliptic operators with discontinuous diffusion coefficients in two-dimensional domains with mixed boundary conditions and a discontinuous Galerkin method with polynomials of any degree. Inspired from the paper [6], which treats the case of continuous diffusion coefficients approximated by a continuous Galerkin method, we further derive an a posteriori estimator with an explicit constant in the upper bound (more precisely ) up to some additional terms that are usually superconvergent and some oscillating terms. The approach, called gradient recovery by averaging [6] is based on the construction of a Zienkiewicz/Zhu estimator, namely the difference in an appropriate norm of a h u h Gu h, where h u h is the broken gradient of u h and Gu h is a H(div )-conforming approximation of this variable. Here special attention has to be paid due to the assumption that a may be discontinuous. Moreover the non conforming part of the error is managed using a Helmholtz decomposition of the error and a standard Oswald interpolation operator [9, ]. Furthermore using standard inverse inequalities, we show that our estimator is locally efficient. Two interests of this approach are first the simplicity of the construction of Gu h, and secondly its superconvergence property (validated by numerical tests). The schedule of the paper is as follows: We recall in section 2 the diffusion problem, its numerical approximation and an appropriate Helmholtz decomposition of the error. Section 3 is devoted to the introduction of the estimator based on gradient averaging and the proofs of the upper and lower bounds. The upper bound directly follows from the construction of the estimator and some results from [6], while the lower bound requires the use of some inverse inequalities and a special construction of Gu h. Finally in section 4 some numerical tests are presented that confirm the reliability and efficiency of our estimator and the superconvergence of Gu h to a u. Let us finish this introduction with some notation used in the remainder of the paper: On D, the L 2 (D)-norm will be denoted by D. In the case D =, we will drop the index. The usual norm and semi-norm of H s (D) (s ) are denoted by s,d and s,d, respectively. Finally, the notation a b and a b means the existence of positive constants C and C 2, which are independent of the mesh size, of the quantities a and b under consideration and of the coefficients of the operators such that a C 2 b and C b a C 2 b, respectively. In other words, the constants may depend on the aspect ratio of the mesh as well as the polynomial degree l (see below). 2

3 2 The boundary value problem and its discretization Let be a bounded open domain of R 2 with a Lipschitz boundary Γ that we suppose to be polygonal. We further assume that is simply connected and that Γ is connected. We consider the following elliptic second order boundary value problem with non homogeneous mixed boundary conditions: div (a u) = f in, u = g D on Γ D, a u n = g N on Γ N, where Γ = Γ D Γ N and Γ D Γ N =. For convenience we suppose that meas Γ D >. In the sequel, we suppose that a is a symmetric positive definite matrix which is piecewise constant, namely we assume that there exists a partition P of into a finite set of Lipschitz polygonal domains,, J such that, on each j, a = a j where a j is a symmetric positive definite matrix. The variational formulation of () involves the bilinear form B(u, v) = a u v and the Hilbert space H D() = {u H () : u = on Γ D }. Given f L 2 (), g D H 2 (Γ D ) and g N L 2 (Γ N ), the weak formulation consists in finding u w + HD () such that B(u, v) = fv + g N v, v HD(), Γ N (2) where w H () is a lifting for g D, i.e., w = g D on Γ D. Invoking the positiveness of a, ( ) /2 the bilinear form B is coercive on HD () with respect to the norm a /2 u 2 and this coerciveness guarantees that problem (2) has a unique solution by the Lax-Milgram lemma. 2. Discontinuous Galerkin approximated problem Following [9, 3], we consider the following discontinuous Galerkin approximation of our continuous problem: We consider a triangulation T made of triangles T whose edges are denoted by e. We assume that this triangulation is regular, i.e., for any element T, the ratio h T ρ T is bounded by a constant σ > independent of T and of the mesh size h = max T T h T, where h T is the diameter of T and ρ T the diameter of its largest inscribed ball. We further assume that T is conforming with the partition P of, i.e., the matrix a being constant 3 ()

4 on each T T, we then denote by a T the value of a restricted to an element T. With each edge e of an element T, we associate a unit normal vector n e, and n T stands for the outer unit normal vector of T. E (resp. N ) represents the set of edges (resp. vertices) of the triangulation. In the sequel, we need to distinguish between edges included into, Γ D or Γ N, in other words, we set E int = {e E : e }, E D = {e E : e Γ D }, E N = {e E : e Γ N }. For shortness, we also write E ID = E int E D. Problem (2) is approximated by the (discontinuous) finite element space: X h = { v h L 2 () v h T P l (T ), T T }, where l is a fixed positive integer. The space X h is equipped with the norm ( q DG,h := a /2 q 2 T + γ T T e E ID h e [q ] 2 e) /2, where γ is a positive parameter fixed below. Later on we also need the continuous counterpart of X h, namely we introduce as well as We further need S h = { v h C() v h T P l (T ), T T }, S h, = { v h C() v h T P (T ), T T }. X h, = { v h L 2 () v h T P (T ), T T }. For our further analysis we need to define some jumps and means through any e E of the triangulation. For e E such that e, we denote by T + and T the two elements of T containing e. Let q X h, we denote by q ±, the traces of q taken from T ±, respectively. Then we define the mean of q on e by For v [X h ] d, we denote similarly {{q}} = q+ + q. 2 {{v}} = v+ + v. 2 The jump of q on e is now defined as follows: [q ] = q + n T + + q n T. 4

5 Remark that the jump [q ] of q is vector-valued. For a boundary edge e, i. e., e, there exists a unique element T + T such that e T +. Therefore the mean and jump of q are defined by {{q}} = q + and [q ] = q + n T +. For q X h, we define its broken gradient h q in by : ( h q) T = q T, T T. With these notations, we define the bilinear form B h (.,.) as follows: B h (u h, v h ) := a u h v h ({{a h v h }} [u h ] + {{a h u h }} [v h ]) T T T e E e ID + γ [u h ] [v h ], u h, v h X h, h e e E ID e where the positive parameter γ is chosen large enough to ensure coerciveness of the bilinear form B h on X h (see, e.g., Lemma 2. of [9]), namely according to the results from [29], the choice γ > (l + )(l + 2) 2 max (a T T T e T T ) h e T yields the coerciveness of B h. The discontinuous Galerkin approximation of problem (2) reads now: Find u h X h, such that B h (u h, v h ) = F (v h ), (4) where F (v h ) = fv h + e E D e g D (γh e v h a v h n T ) + g N v h, v h X h. Γ N As our approximated scheme is a non conforming one (i.e. the solution does not belong to HD ()), as usual we need to use an appropriate Helmholtz decomposition of the error (see Lemma 3.2 of [3] or Theorem of [] in 2D). Lemma 2. (Helmholtz decomposition of the error) We have the following error decomposition a h (u u h ) = a ϕ + curl χ, (5) with χ H () such that and ϕ HD (). Moreover the next identity holds: (3) curl χ n = on Γ N, (6) a /2 h (u u h ) 2 = a /2 h ϕ 2 + a /2 curl χ 2. (7) For the detailed proof of this Lemma we refer to Lemma 2. of [9]. 5

6 3 The a posteriori error analysis based on gradient recovery by averaging Error estimators can be constructed in many different ways as, for example, using residual type error estimators which measure locally the jump of the discrete flux [9]. A different method, based on equilibrated fluxes, consists in solving local Neumann boundary value problems [2] or in using Raviart-Thomas interpolant [, 9, 4, 5]. Here, as an alternative we introduce a gradient recovery by averaging and define an error estimator based on a H(div )-conforming approximation of this variable. In comparison with [6], we here allow the case of discontinuous diffusion coefficient and use a discontinuous Galerkin method. Inspired from [6] the conforming part of the estimator η CF involves the difference between the broken gradient a h u h and its smoothed version Gu h, where Gu h is for the moment any element in Xh, 2 satisfying Gu h H(div, ) = {v L 2 () 2 : div v L 2 ()}, (8) (Gu h ) j H ( j ), j =,, J. (9) Hence conforming part of the estimator η CF is defined by η 2 CF = T T η 2 CF,T, () where the indicator η CF,T is defined by η CF,T = a /2 (a u h Gu h ) T. For the nonconforming part of the error, we associate with u h, its Oswald interpolation operator, namely the unique element w h S h defined in the following natural way (see Theorem 2.2 of [9]): to each node n of the mesh corresponding to the Lagrangian-type degrees of freedom of S h, the value of wp h is the average of the values of u h at this node n T n if it belongs to Γ N (i.e., w h (n) = T u h T (n) ) and the value of g Pn T T D at this node if it belongs to Γ D (here we assume that g D C( Γ D )). Then the non conforming indicator η NC,T is simply η NC,T = a /2 (w h u h ) T. The non conforming part of the estimator is then η 2 NC = T T η 2 NC,T. () Similarly we introduce the estimator corresponding to jumps of u h : η 2 J = e E ID η 2 J,e, 6

7 with { γ ηj,e 2 h = e [u h ] 2 e if e E int, γ h e u h g D 2 e if e E D. As in [6], we introduce some additional superconvergent security parts. In order to define them properly we recall that for a node x N, we denote by λ x the standard hat function (defined as the unique element in S h, such that λ x (y) = δ x,y for all y N ), let ω x be the patch associated with x, which is simply the support of λ x and let h x be the diameter of ω x (which is equivalent to the diameter h K of any triangle K included into ω x ). We now denote by r the element residual and for all x N, we set r = f + div (Gu h ) r x = ( ω x λ x ) ω x rλ x if x N \ N D, r x = if x N D. We further use a multilevel decomposition of S h,, namely we suppose that we start from a coarse grid T and that the successive triangulations are obtained by using the bisection method, see [28, 6]. This means that we obtain a finite sequence of nested triangulations T l, l =,, L such that T L = T. Denoting by S l the space then we have S l = { v C() v T P (T ), T T l }, S l S l+ and S h, = L l=s l = S L. Furthermore if we denote by N l the nodes of the triangulation T l, we have N l N l+. As usual for all z N l we denote by λ lz the hat function associated with z, namely the unique element in S l such that For all l we finally set λ lz (z ) = δ zz z N l. Ñ l = (N l \ N l ) {z N l : λ lz λ l z }, and Ñ = N. It should be noticed (see for instance [6]) that to each z Ñl, the corresponding hat function λ lz does not belong to S l. Now we define ρ and γ by ρ 2 = x N ρ 2 x, γ 2 = L γlz, 2 l= z Ñl\Γ D 7

8 where ρ 2 x = h 2 x r r x 2 λ x + h x ω x Gu h n g N 2 λ x, ω x Γ N γ lz = R, λ lz, R being the residual defined by R, ϕ = Gu h ϕ fϕ g N ϕ, ϕ H (). Γ N 3. Upper bound Theorem 3. Assume that there exists w h X h H () such that g D = w h ΓD. Let u w + HD () be a solution of problem (2) and let u h be its discontinuous Galerkin approximation, i.e. u h X h solution of (4). Then there exists C > such that a /2 h (u u h ) (ηcf 2 + ηnc) 2 /2 + C( ρ + γ), (2) and consequently u u h DG,h (( + ɛ)(ηcf 2 + ηnc) 2 + ηj) 2 /2 + C( + 4ɛ )/2 ( ρ + γ), ɛ >. (3) Proof: From the Helmholtz decomposition of the error we have a /2 h (u u h ) 2 = a /2 ϕ 2 + a /2 curl χ 2. (4) We are then reduced to estimate each term of this right-hand side. For the non conforming part, we proceed as in [], namely by Green s formula we have a /2 curl χ 2 = h (u u h ) curl χ = h u h curl χ + g D curl χ n Γ D = h (w h u h ) curl χ, since w h curl χ = Γ D g D curl χ n. By Cauchy-Schwarz s inequality we directly obtain a /2 curl χ 2 η NC a /2 curl χ. (5) For the conforming part, we write a /2 ϕ 2 = a h (u u h ) ϕ = (a u Gu h ) ϕ + (Gu h a h u h ) ϕ. 8

9 By Cauchy-Schwarz s inequality we obtain a /2 ϕ 2 a /2 (a h u h Gu h ) a /2 ϕ + (a u Gu h ) ϕ. (6) Using problem (2), the second term of this right-hand side is bounded by the residual, indeed (a u Gu h ) ϕ = Gu h ϕ fϕ g N ϕ = R, ϕ. Γ N Using the arguments from Theorem 4. of [6], we have R, ϕ C( ρ + γ) a /2 ϕ. (7) Coming back to the identity (4), and using the estimates (5), (6) and (7) we conclude by discrete Cauchy-Schwarz s inequality and again using (4): a /2 h (u u h ) 2 η NC a /2 curl χ + (η CF + C( ρ + γ)) a /2 ϕ (η 2 NC + η 2 CF ) /2 ( a /2 curl χ 2 + a /2 ϕ 2 ) /2 + C( ρ + γ) a /2 ϕ [(η 2 NC + η 2 CF ) /2 + C( ρ + γ)] a /2 h (u u h ). 3.2 Lower bound Our lower bound is based on the equivalence of the local L 2 -norm of any element in X h with a local L 2 -norm in the interfaces. First of all for any vertex x of one j and belonging to more than one sub-domain, we introduce the following local notation: let i, i =,, n, n 2, the sub-domains that have x as vertex. We further denote by n i the unit normal vector along the interface I i between i and i+ (modulo n if x is inside the domain ) and oriented from i and i+. Now we are able to prove the following lemma: Lemma 3.2 Assume that x is a vertex of one j and belonging to more than one subdomain, and use the notations introduced above. Then there exists a positive constant C that depends only on the geometrical situation of the i s near x such that for all v (i) R 2, i =,, n, there exist vectors g(v) (i) R 2, i =,, n satisfying and such that the following estimate holds (g(v) (i+) g(v) (i) ) n i =, i =,, n, (8) n v (i) g(v) (i) C i= n [v n] i, (9) i= 9

10 where here means the Euclidean norm and [v n] i derivative of v along the interface I i : means the jump of the normal [v n] i = (v (i+) v (i) ) n i, i =,, n. Proof: First introduce the following subspace of R 2n : W = {v = (v (i) ) n i= : v (i) R 2 and satisfying [v n] i =, i =,, n}. We take g(v) = Π W v, the orthogonal projection of v = (v (i) ) n i= into W. By construction g(v) trivially satisfies (8). On the other hand the estimate (9) is equivalent to v Π W v C n [v n] i, i= which is easily proved by a contradiction argument and the fact that we are in a finite dimensional space. Using the above lemma, we are now able to prove the asymptotic nondeterioration of the smoothed gradient if the following choice for Gu h is made: We distinguish the following different possibilities for x N. ) First for all vertex x of the mesh (i.e. vertex of at least one triangle) such that x is inside one j, we set (Gu h ) j (x) = T a T u h T (x). (2) ω x 2) Second if x belongs to the boundary of and to the boundary of only one j (hence it does not belong to the boundary of another k ), we define (Gu h ) j (x) as before. 3) If x belongs to an interface between two different sub-domain j and k but is not a vertex of these sub-domains, then we denote by n j,k the unit normal vector pointing from j to k and set t j,k the unit orthogonal vector of n j,k so that (n j,k, t j,k ) is a direct basis of R 2 ; in that case we set x T (Gu h ) j (x) n j,k = (Gu h ) k (x) n j,k = T a T u h T (x) n j,k, (2) ω x x T (Gu h ) j (x) t j,k = T a T u h T (x) t j,k, (22) ω x j (Gu h ) k (x) t j,k = ω x k T j :x T T k :x T T a T u h T (x) t j,k. (23) 4) Finally if x is a vertex of at least two sub-domains j, for the sake of simplicity we suppose that each triangle T having x as vertex is included into one j, and we take (Gu h ) j (x) = g(v) (j) j J x, (24)

11 where J x = {j {,, J} : x j }, g(v) (j) were defined in the previous Lemma 3.2 with here v given by v = (a j u h T (x)) j Jx. With these choices, we take (Gu h ) j = x N j (Gu h ) j (x)λ x, j =,, J, (25) where (Gu h ) j (x) was defined before. The main point is that by construction Gu h satisfies the requirements (8) and (9) but moreover we have the next asymptotic nondeterioration result: Theorem 3.3 If l 2, then for each element T T the following estimate holds a /2 T (Gu h a T u) T u u h DG,ωT + osc(f, ω T ), (26) where ω T denotes the patch consisting of all the triangles of T having a nonempty intersection with T and v 2 DG,ω T = a /2 h v 2 ω T + γ e [v ] 2 e, e E ID :e ω T h and osc(f, ω T ) 2 = T ω T h 2 T f Π T f 2 T, where Π T f is the L 2 (T )-orthogonal projection of f onto P (T ). Proof: By the triangle inequality we may write a /2 T (Gu h a T u) T a /2 T (Gu h a T u h ) T + a /2 T (a T u h a T u) T a /2 T (Gu h a T u h ) T + u u h DG,T. Therefore it remains to estimate the first term of this right-hand side. For that purpose, since T j for a unique j {,, J}, we may write (Gu h a T u h ) T = x T {(Gu h ) j (x) a j u h T (x)}λ x. As λ x, and since the triangulation is regular, we get a /2 T (Gu h a T u h ) T (Gu h ) j (x) a j u h T (x) h T. (27) x T We are then reduced to estimate the factor (Gu h ) j (x) a j u h T (x) for all nodes x of T. For that purpose, we distinguish four different cases:

12 ) If x j, then we use an argument similar to the one from Proposition 4.2 of [6] adapted to the DG situation. By the definition of Gu h, we have (Gu h ) j (x) = ω x T ω x T a j u h T (x), because in this case all T ω x are included into j. As a consequence, we obtain and therefore (Gu h ) j (x) a j u h T (x) = ω x (Gu h ) j (x) a j u h T (x) T ω x T a j ( u h T (x) u h T (x)), T ω x a j ( u h T (x) u h T (x)). For each T ω x, there exists a path of triangles of ω x, written T i, i =,, n such that T = T, T n = T, T i T j, i j, T i T i+ is an common edge i =,, n. Hence by the triangle inequality we can estimate n a j ( u h T (x) u h T (x)) a j ( u h Ti+ (x) u h Ti (x)). Now for each term, since a j is symmetric and positive definite, we have i= a j ( u h Ti+ (x) u h Ti (x)) {a j ( u h Ti+ (x) u h Ti (x))} n i + ( u h Ti+ (x) u h Ti (x)) t i, where n i is one fixed unit normal vector along the edge T i T i+ and t i is one fixed unit tangent vector along this edge. All together we have shown that (Gu h ) j (x) a j u h T (x) h T h T e E int :e ω x { [a j u h (x) n] e + [ hu h (x) t] e }. Using a norm equivalence and an inverse inequality we obtain (Gu h ) j (x) a j u h T (x) h T {h /2 e [a j h u h n] e e + h /2 e [u h ] e }. (28) e E int :e ω x 2) If the node x belongs to the boundary of and to the boundary of a unique j, since (Gu h ) j (x) is defined as in the first case, the above arguments lead to (28). 3) If x is a vertex of different sub-domains j, then by Lemma 3.2, we have (Gu h ) j (x) a j u h T (x) h T h T [a h u h (x) n] e, (29) e E int :e ω x 2

13 and therefore as before we conclude that (28) holds. 4) Finally if x belongs to an interface between two subdomains and is not a vertex of them, then it is not difficult to show that (29) holds (due to the regularity of the mesh), and consequently (28) is still valid. Summarizing the different cases, by (27) and (28), we have a /2 T (Gu h a T u h ) T {h /2 e [a h u h n] e e + h /2 e [u h ] e }. (3) e E int :e ω x The first term of this right hand side is a part of the standard residual error estimator and it is by now standard that (using appropriate bubble functions and Green s formula) h /2 e [a u h n] e e a h (u u h ) ωe + osc(f, ω e ), e E int. The second term is part of the DG-norm. Therefore the above estimate in (3) leads to (26). Now using the same arguments than in Proposition 4. of [6], we have Theorem 3.4 For all T T, x N and l, z N l, we have η CF,T a /2 T (u h u) T + a /2 (Gu h a u) T, ρ x a /2 (Gu h a u) ωx + osc(f, ω x ) + osc(g N, ω x ), γ lz a /2 (Gu h a u) ωlz, where osc(g N, ω x ) 2 = e ω x Γ N h e g N Π e g N 2 T, Π e g N being the L 2 (e)-orthogonal projection of g N onto P 2 (e). For the non conforming part of the estimator, we make use of Theorem 2.2 of [9] to directly obtain the Theorem 3.5 Let the assumptions of Theorem 3. be satisfied. For each element T T the following estimate holds η NC,T a /2 T u u h DG,ωT. (3) A direct consequence of these three Theorems is the next local lower bound: Theorem 3.6 Let the assumptions of Theorems 3. and 3.3 be satisfied. For each element T T the following estimate holds η CF,T + η NC;T + η J,T + x T ( ρ x + γ x ) u u h DG,ωT + osc(f, ω T ) + osc(g N, ω T ), where γ x = γ Lx recalling that L is such that N L = N. 3

14 Remark 3.7 Note that the lower bound on the non conforming estimator (see (3)) involves a constant that depends on the aspect ratio of the mesh and of the penalization parameter γ, and is specific to the discontinuous Galerkin method. Consequently it prevents the estimator to be asymptotically exact, as in the continuous Galerkin method [6]. Nevertheless the numerical tests show quite satisfactory effectivity indices (see below). As in Proposition 4.3 of [6], one has γ a /2 (Gu h a u), and therefore a global lower bound can be obtained: Theorem 3.8 Let the assumptions of Theorems 3. and 3.3 be satisfied. Then the following global lower bound holds η CF + η NC + η J + ρ + γ u u h DG,h + osc(f, ) + osc(g N, ). 4 Numerical results 4. The polynomial solution In order to illustrate our theoretical predictions, this first numerical test consists in validating our computations on a simple case, using an uniform refinement process. Let be the square (, ) 2, Γ D =, A = Id and f defined such that the exact solution u is given by : u(x, y) = (x + )(x )(y + )(y ). Let us recall that u h is the finite element solution, e(u h ) = u u h DG,h the error, η(u h ) = ηcf 2 + η2 NC + η2 J the estimator and Gu h the approximated value of a u given by (25). Computations are performed using a global mesh refinement process from a initial cartesian grid. First, it can be seen from Table that the convergence rate of the numerical method is equal to one, as theoretically expected. Then, the superconvergence property of the term Gu h u is actually observed, since the ratio Gu h u /e(u h ) goes towards zero when DoF goes towards infinity. The reliability of the estimator is ensured since the ratio in the last column, the so-called the effectivity index, converges fastly towards the constant The interior and boundary layer solution The following numerical test consists in solving the interior and boundary layer example given in [6]. Let the square (, ) 2, Γ D =, A = Id and f defined such that : u(x, y) = arctan(6(x 2 + y 2 )) 4

15 k DoF e(u h ) Gu h u e(u h ) η(u h ) e(u h ) E- 7.9E E- 5.6E E E E E E-2.83E E-2.29E-.7 Table : The polynomial solution (uniform refinement) Figure : Interior and boundary layer solution. is the exact solution (see Figure ). Let us note that the boundary layer crosses the boundary and that the loading term oscillates across it, what constitutes the difficulty of the computation. This time, an adaptive mesh refinement strategy is used based on the estimator η T = η CF,T + η NC,T + η J,T and the marking procedure η T >.75 max T η T and a standard refinement procedure with a limitation on the minimal angle. Several mesh levels are displayed of Figure 2, to show the capability of the algorithm to track the high gradients regions. Furthermore, quantitative results are displayed on Table 2. Once again, the superconvergence property of Gu h u is observed as well as the reliability of the estimator. 5

16 Figure 2: Mesh levels, and 2, interior and boundary layer solution. k DoF e(u h ) Gu h u e(u h ) η(u h ) e(u h ) E+ 4.57E E+ 7.9E E+.E E+ 8.63E E+ 5.3E E+ 3.98E-.6 Table 2: The interior and boundary layer solution (adaptive refinement). 4.3 The discontinuous case This section is devoted to the case of the discontinuous coefficient a. Namely, the domain = (, ) 2 with Γ D = Γ is decomposed into 4 sub-domains i, i =,..., 4, with = (, ) (, ), 2 = (, ) (, ), 3 = (, ) (, ) and 4 = (, ) (, ). In that case we take discontinuous coefficient a, namely we take a = a i on i, with a = a 3 = and a 2 = a 4 = C to be specified. For this second test, and using usual polar coordinates centered at (, ), the exact solution is equal to the singular function u(x, y) = r α φ(θ), where α (, ) and φ are chosen such that u is harmonic on each sub-domain i, i =,..4, and satisfies the jump conditions : [u] = and [a u.n] = on the interfaces. Non-homogeneous Dirichlet boundary conditions on Γ are fixed accordingly. It is easy to see (see for instance []) that α is the root of the transcendental equation tan α π 4 = /C. Since α <, this solution has a singular behavior around the point (, ). For this test, we also compute the standard ZZ smoothed gradient G u h belonging to S (2) h, = 6

17 { vh C() 2 v h T P 2 (T ), T T } and characterized by its value at each node of the mesh given by : (G u h )(x) = ω x T a T u h T (x). (32) x T Figures 3 and 4 show some of the meshes obtained during the local refinement process. We first can see that the case C = provides a more locally refined mesh around the singularity than the case C = 5. Moreover, tables 3 and 4 display the corresponding quantitative results. These tables show that, even in the case of a singular solution and discontinuous coefficient a, the smoothed gradient is superconvergent, while the effectivity index is around.7 (resp. 2.8) which is quite satisfactory and comparable with results from [9, 5]. Note that the superconvergence of the smoothed gradient and the convergence of the effectivity index require more iterations when C becomes larger. Nevertheless our estimator is robust with respect to C. In contrast we may notice that the standard ZZ smoothed gradient G u h is no more superconvergent to a u, as in the case a =, which is not surprising since the statement of Theorem 3.3 is not valid for G u h if a. k DoF e(u h ) Gu h u e(u h ) G u h u e(u h ) η(u h ) e(u h ) E- 9.8E-.58E E-2 7.2E- 3.7E E E- 3.99E E E- 5.35E E E- 9.35E+.75 Table 3: Discontinuous coefficient a: C = 5, γ = 2, singular solution (local refinement). k DoF e(u h ) Gu h u e(u h ) G u h u e(u h ) η(u h ) e(u h ) E- 9.99E- 2.79E E- 9.93E- 2.88E E- 9.68E- 3.59E E-2 9.4E- 5.3E E E- 9.4E Table 4: Discontinuous coefficient a: C =, γ = 5, singular solution (local refinement). 7

18 Figure 3: Mesh levels, 3 and, singular solution for C = References Figure 4: Mesh levels, 3 and, singular solution for C =. [] M. Ainsworth. A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal., 45(4): (electronic), 27. [2] M. Ainsworth and J. Oden. A posteriori error estimation in finite element analysis. John Wiley and Sons, 2. [3] D. G. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39: , 2. [4] I. Babuška and T. Strouboulis. The finite element methods and its reliability. Clarendon Press, Oxford. [5] R. Becker, P. Hansbo, and M. G. Larson. Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Meth. Appl. Mech. Engrg., 92: , 23. [6] D. Braess and J. Schöberl. Equilibrated residual error estimator for edge elements. Math. Comp., 77(262):65 672, 28. 8

19 [7] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Springer Verlag, New York, 994. [8] P. G. Ciarlet. The finite element method for elliptic problems. North-Holland, Amsterdam, 978. [9] S. Cochez-Dhondt and S. Nicaise. Equilibrated error estimators for discontinuous Galerkin methods. Numer. Meth. PDE, 24: , 28. [] B. Cockburn, G. E. Karniadakis, and C.-W. Shu. The development of discontinuous Galerkin methods, volume of Lect. Notes Comput. Sci. Eng. Springer Verlag, Berlin, 2. [] M. Costabel, M. Dauge, and S. Nicaise. Singularities of Maxwell interface problems. RAIRO Modél. Math. Anal. Numér., 33: , 999. [2] E. Creusé and S. Nicaise. Anisotropic a posteriori error estimation for the mixed discontinuous Galerkin approximation of the Stokes problem. Numer. Meth. PDE, 22: , 26. [3] E. Dari, R. Durán, C. Padra, and V. Vampa. A posteriori error estimators for nonconforming finite element methods. M2AN, 3:385 4, 996. [4] A. Ern, S. Nicaise, and M. Vohralík. An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Math. Acad. Sci. Paris, 345(2):79 72, 27. [5] A. Ern, A. F. Stephansen, and M. Vohralík. Guaranteed and robust discontinuous galerkin a posteriori error estimates for convection-diffusion-reaction problems. M3AS. submitted. [6] F. Fierro and A. Veeser. A posteriori error estimators, gradient recovery by averaging, and superconvergence. Numer. Math., 3(2): , 26. [7] P. Houston, I. Perugia, and D. Schötzau. Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator. Comput. Meth. Appl. Mech. Engrg., 94:499 5, 25. [8] P. Houston, I. Perugia, and D. Schötzau. A posteriori error estimation for discontinuous Galerkin discretization of the H(curl)-ellipic partial differential operator. IMA J. Numer. Analysis, 27:22 5, 27. [9] O. A. Karakashian and F. Pascal. A posteriori error estimates for a discontinuous Galerkin approximation of second-order problems. SIAM J. Numer. Anal., 4: , 23. 9

20 [2] P. Ladevèze and D. Leguillon. Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal., 2:485 59, 983. [2] R. Lazarov, S. Repin, and S. Tomar. Functional a posteriori error estimates for discontinuous galerkin approximations of elliptic problems. Report 26-4, Ricam, Austria, 26. [22] R. Luce and B. Wohlmuth. A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal., 42:394 44, 24. [23] P. Monk. A posteriori error indicators for Maxwell s equations. J. Comput. Appl. Math., :73 9, 998. [24] P. Monk. Finite element methods for Maxwell s equations. Numerical Mathematics and Scientific Computation. Oxford University Press, 23. [25] P. Neittaanmaäki and S. Repin. Reliable methods for computer simulation: error control and a posteriori error estimates., volume 33 of Studies in Mathematics and its applications. Elsevier, Amsterdam, 24. [26] S. Nicaise, K. Witowski, and B. I. Wohlmuth. An a posteriori error estimator for the Lamé equation based on equilibrated fluxes. IMA J. Numer. Anal., 28(2):33 353, 28. [27] B. Rivière and M. Wheeler. A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems. Comput. Math. Appl., 46():4 63, 23. [28] A. Schmidt and K. G. Siebert. Design of adaptive finite element software, volume 42 of Lecture Notes in Computational Science and Engineering. Springer-Verlag, Berlin, 25. The finite element toolbox ALBERTA, With CD-ROM (Unix/Linux). [29] K. Shahbazi. An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys., 25:4 47, 25. [3] S. Sun and M. F. Wheeler. L 2 (H ) norm a posteriori error estimation for discontinuous Galerkin approximations of reactive transport problems. J. Sci. Comput., 22-23:5 53, 25. [3] R. Verfurth. A review of a posteriori error estimation and adaptive mesh-refinement thecniques. Teubner Skripten zur Numerik,

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS CARLO LOVADINA AND ROLF STENBERG Abstract The paper deals with the a-posteriori error analysis of mixed finite element methods

More information

An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element

An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element Calcolo manuscript No. (will be inserted by the editor) An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element Dietrich Braess Faculty of Mathematics, Ruhr-University

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

Maximum-norm a posteriori estimates for discontinuous Galerkin methods

Maximum-norm a posteriori estimates for discontinuous Galerkin methods Maximum-norm a posteriori estimates for discontinuous Galerkin methods Emmanuil Georgoulis Department of Mathematics, University of Leicester, UK Based on joint work with Alan Demlow (Kentucky, USA) DG

More information

Local discontinuous Galerkin methods for elliptic problems

Local discontinuous Galerkin methods for elliptic problems COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2002; 18:69 75 [Version: 2000/03/22 v1.0] Local discontinuous Galerkin methods for elliptic problems P. Castillo 1 B. Cockburn

More information

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University

A Posteriori Error Estimation Techniques for Finite Element Methods. Zhiqiang Cai Purdue University A Posteriori Error Estimation Techniques for Finite Element Methods Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 16, 2017 Books Ainsworth & Oden, A posteriori

More information

arxiv: v2 [math.na] 23 Apr 2016

arxiv: v2 [math.na] 23 Apr 2016 Improved ZZ A Posteriori Error Estimators for Diffusion Problems: Conforming Linear Elements arxiv:508.009v2 [math.na] 23 Apr 206 Zhiqiang Cai Cuiyu He Shun Zhang May 2, 208 Abstract. In [8], we introduced

More information

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian BULLETIN OF THE GREE MATHEMATICAL SOCIETY Volume 57, 010 (1 7) On an Approximation Result for Piecewise Polynomial Functions O. arakashian Abstract We provide a new approach for proving approximation results

More information

A posteriori error estimates for non conforming approximation of eigenvalue problems

A posteriori error estimates for non conforming approximation of eigenvalue problems A posteriori error estimates for non conforming approximation of eigenvalue problems E. Dari a, R. G. Durán b and C. Padra c, a Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and CONICE,

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 37, pp. 166-172, 2010. Copyright 2010,. ISSN 1068-9613. ETNA A GRADIENT RECOVERY OPERATOR BASED ON AN OBLIQUE PROJECTION BISHNU P. LAMICHHANE Abstract.

More information

AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD

AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR THE INTERIOR PENALTY DISCONTINUOUS GALERIN METHOD D. BRAESS, T. FRAUNHOLZ, AND R. H. W. HOPPE Abstract. Interior Penalty Discontinuous Galerkin (IPDG) methods

More information

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations INTRNATIONAL JOURNAL FOR NUMRICAL MTHODS IN FLUIDS Int. J. Numer. Meth. Fluids 19007; 1:1 [Version: 00/09/18 v1.01] nergy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations

More information

Find (u,p;λ), with u 0 and λ R, such that u + p = λu in Ω, (2.1) div u = 0 in Ω, u = 0 on Γ.

Find (u,p;λ), with u 0 and λ R, such that u + p = λu in Ω, (2.1) div u = 0 in Ω, u = 0 on Γ. A POSTERIORI ESTIMATES FOR THE STOKES EIGENVALUE PROBLEM CARLO LOVADINA, MIKKO LYLY, AND ROLF STENBERG Abstract. We consider the Stokes eigenvalue problem. For the eigenvalues we derive both upper and

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS MATHEMATICS OF COMPUTATION Volume 75, Number 256, October 2006, Pages 1659 1674 S 0025-57180601872-2 Article electronically published on June 26, 2006 ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED

More information

A priori error analysis of the BEM with graded meshes for the electric eld integral equation on polyhedral surfaces

A priori error analysis of the BEM with graded meshes for the electric eld integral equation on polyhedral surfaces A priori error analysis of the BEM with graded meshes for the electric eld integral equation on polyhedral surfaces A. Bespalov S. Nicaise Abstract The Galerkin boundary element discretisations of the

More information

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 10, Number 3, Pages 551 570 c 013 Institute for Scientific Computing and Information UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT

More information

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation A local-structure-preserving local discontinuous Galerkin method for the Laplace equation Fengyan Li 1 and Chi-Wang Shu 2 Abstract In this paper, we present a local-structure-preserving local discontinuous

More information

A NOTE ON CONSTANT-FREE A POSTERIORI ERROR ESTIMATES

A NOTE ON CONSTANT-FREE A POSTERIORI ERROR ESTIMATES A NOTE ON CONSTANT-FREE A POSTERIORI ERROR ESTIMATES R. VERFÜRTH Abstract. In this note we look at constant-free a posteriori error estimates from a different perspective. We show that they can be interpreted

More information

Discontinuous Galerkin Methods: Theory, Computation and Applications

Discontinuous Galerkin Methods: Theory, Computation and Applications Discontinuous Galerkin Methods: Theory, Computation and Applications Paola. Antonietti MOX, Dipartimento di Matematica Politecnico di Milano.MO. X MODELLISTICA E CALCOLO SCIENTIICO. MODELING AND SCIENTIIC

More information

A Multigrid Method for Two Dimensional Maxwell Interface Problems

A Multigrid Method for Two Dimensional Maxwell Interface Problems A Multigrid Method for Two Dimensional Maxwell Interface Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University USA JSA 2013 Outline A

More information

Different Approaches to a Posteriori Error Analysis of the Discontinuous Galerkin Method

Different Approaches to a Posteriori Error Analysis of the Discontinuous Galerkin Method WDS'10 Proceedings of Contributed Papers, Part I, 151 156, 2010. ISBN 978-80-7378-139-2 MATFYZPRESS Different Approaces to a Posteriori Error Analysis of te Discontinuous Galerkin Metod I. Šebestová Carles

More information

ADAPTIVE HYBRIDIZED INTERIOR PENALTY DISCONTINUOUS GALERKIN METHODS FOR H(CURL)-ELLIPTIC PROBLEMS

ADAPTIVE HYBRIDIZED INTERIOR PENALTY DISCONTINUOUS GALERKIN METHODS FOR H(CURL)-ELLIPTIC PROBLEMS ADAPTIVE HYBRIDIZED INTERIOR PENALTY DISCONTINUOUS GALERKIN METHODS OR HCURL-ELLIPTIC PROBLEMS C. CARSTENSEN, R. H. W. HOPPE, N. SHARMA, AND T. WARBURTON Abstract. We develop and analyze an adaptive hybridized

More information

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS Proceedings of ALGORITMY 2009 pp. 1 10 SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS MILOSLAV VLASÁK Abstract. We deal with a numerical solution of a scalar

More information

A Mixed Nonconforming Finite Element for Linear Elasticity

A Mixed Nonconforming Finite Element for Linear Elasticity A Mixed Nonconforming Finite Element for Linear Elasticity Zhiqiang Cai, 1 Xiu Ye 2 1 Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-1395 2 Department of Mathematics and Statistics,

More information

arxiv: v1 [math.na] 29 Feb 2016

arxiv: v1 [math.na] 29 Feb 2016 EFFECTIVE IMPLEMENTATION OF THE WEAK GALERKIN FINITE ELEMENT METHODS FOR THE BIHARMONIC EQUATION LIN MU, JUNPING WANG, AND XIU YE Abstract. arxiv:1602.08817v1 [math.na] 29 Feb 2016 The weak Galerkin (WG)

More information

Adaptive methods for control problems with finite-dimensional control space

Adaptive methods for control problems with finite-dimensional control space Adaptive methods for control problems with finite-dimensional control space Saheed Akindeinde and Daniel Wachsmuth Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy

More information

MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS JUHO KÖNNÖ, DOMINIK SCHÖTZAU, AND ROLF STENBERG Abstract. We derive new a-priori and a-posteriori error estimates for mixed nite

More information

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS PARTITION OF UNITY FOR THE STOES PROBLEM ON NONMATCHING GRIDS CONSTANTIN BACUTA AND JINCHAO XU Abstract. We consider the Stokes Problem on a plane polygonal domain Ω R 2. We propose a finite element method

More information

An A Posteriori Error Estimate for Discontinuous Galerkin Methods

An A Posteriori Error Estimate for Discontinuous Galerkin Methods An A Posteriori Error Estimate for Discontinuous Galerkin Methods Mats G Larson mgl@math.chalmers.se Chalmers Finite Element Center Mats G Larson Chalmers Finite Element Center p.1 Outline We present an

More information

Recovery-Based A Posteriori Error Estimation

Recovery-Based A Posteriori Error Estimation Recovery-Based A Posteriori Error Estimation Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 2, 2011 Outline Introduction Diffusion Problems Higher Order Elements

More information

A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions

A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions A Finite Element Method Using Singular Functions for Poisson Equations: Mixed Boundary Conditions Zhiqiang Cai Seokchan Kim Sangdong Kim Sooryun Kong Abstract In [7], we proposed a new finite element method

More information

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS CHARALAMBOS MAKRIDAKIS AND RICARDO H. NOCHETTO Abstract. It is known that the energy technique for a posteriori error analysis

More information

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction

Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction Chapter 6 A posteriori error estimates for finite element approximations 6.1 Introduction The a posteriori error estimation of finite element approximations of elliptic boundary value problems has reached

More information

Enhancing eigenvalue approximation by gradient recovery on adaptive meshes

Enhancing eigenvalue approximation by gradient recovery on adaptive meshes IMA Journal of Numerical Analysis Advance Access published October 29, 2008 IMA Journal of Numerical Analysis Page 1 of 15 doi:10.1093/imanum/drn050 Enhancing eigenvalue approximation by gradient recovery

More information

A posteriori error estimates applied to flow in a channel with corners

A posteriori error estimates applied to flow in a channel with corners Mathematics and Computers in Simulation 61 (2003) 375 383 A posteriori error estimates applied to flow in a channel with corners Pavel Burda a,, Jaroslav Novotný b, Bedřich Sousedík a a Department of Mathematics,

More information

Hybridized Discontinuous Galerkin Methods

Hybridized Discontinuous Galerkin Methods Hybridized Discontinuous Galerkin Methods Theory and Christian Waluga Joint work with Herbert Egger (Uni Graz) 1st DUNE User Meeting, Stuttgart Christian Waluga (AICES) HDG Methods October 6-8, 2010 1

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

PREPRINT 2010:25. Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO

PREPRINT 2010:25. Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO PREPRINT 2010:25 Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS

More information

Polynomial-degree-robust liftings for potentials and fluxes

Polynomial-degree-robust liftings for potentials and fluxes Polynomial-degree-robust liftings for potentials and fluxes and Martin Vohraĺık Université Paris-Est, CERMICS (ENPC) and SERENA Project-Team, INRIA, France RAFEM, Hong-Kong, March 2017 Outline 1. Motivation:

More information

A NONCONFORMING PENALTY METHOD FOR A TWO DIMENSIONAL CURL-CURL PROBLEM

A NONCONFORMING PENALTY METHOD FOR A TWO DIMENSIONAL CURL-CURL PROBLEM A NONCONFORMING PENALTY METHOD FOR A TWO DIMENSIONAL CURL-CURL PROBLEM SUSANNE C. BRENNER, FENGYAN LI, AND LI-YENG SUNG Abstract. A nonconforming penalty method for a two-dimensional curl-curl problem

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Journal of Computational Mathematics Vol.28, No.2, 2010, 273 288. http://www.global-sci.org/jcm doi:10.4208/jcm.2009.10-m2870 UNIFORM SUPERCONVERGENCE OF GALERKIN METHODS FOR SINGULARLY PERTURBED PROBLEMS

More information

Multigrid Methods for Saddle Point Problems

Multigrid Methods for Saddle Point Problems Multigrid Methods for Saddle Point Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University Advances in Mathematics of Finite Elements (In

More information

A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations

A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations Bernardo Cockburn Guido anschat Dominik Schötzau June 1, 2007 Journal of Scientific Computing, Vol. 31, 2007, pp.

More information

Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations

Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations Alexandre Ern, Martin Vohralík To cite this version:

More information

A posteriori error estimates for a Maxwell type problem

A posteriori error estimates for a Maxwell type problem Russ. J. Numer. Anal. Math. Modelling, Vol. 24, No. 5, pp. 395 408 (2009) DOI 0.55/ RJNAMM.2009.025 c de Gruyter 2009 A posteriori error estimates for a Maxwell type problem I. ANJAM, O. MALI, A. MUZALEVSKY,

More information

A mixed finite element approximation of the Stokes equations with the boundary condition of type (D+N)

A mixed finite element approximation of the Stokes equations with the boundary condition of type (D+N) wwwijmercom Vol2, Issue1, Jan-Feb 2012 pp-464-472 ISSN: 2249-6645 A mixed finite element approximation of the Stokes equations with the boundary condition of type (D+N) Jaouad El-Mekkaoui 1, Abdeslam Elakkad

More information

An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl) elliptic partial differential equations

An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl) elliptic partial differential equations IMA Journal of Numerical Analysis 005) Page of 7 doi: 0.093/imanum/ An a posteriori error indicator for discontinuous Galerkin discretizations of Hcurl) elliptic partial differential equations PAUL HOUSTON

More information

Complementarity based a posteriori error estimates and their properties

Complementarity based a posteriori error estimates and their properties Complementarity based a posteriori error estimates and their properties Tomáš Vejchodský November 3, 2009 Institute of Mathematics, Czech Academy of Sciences Žitná 25, CZ-115 67 Praha 1, Czech Republic

More information

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Contents Chapter I. Introduction 7 I.1. Motivation 7 I.2. Sobolev and finite

More information

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Wayne McGee and Padmanabhan Seshaiyer Texas Tech University, Mathematics and Statistics (padhu@math.ttu.edu) Summary. In

More information

arxiv: v1 [math.na] 27 Jan 2016

arxiv: v1 [math.na] 27 Jan 2016 Virtual Element Method for fourth order problems: L 2 estimates Claudia Chinosi a, L. Donatella Marini b arxiv:1601.07484v1 [math.na] 27 Jan 2016 a Dipartimento di Scienze e Innovazione Tecnologica, Università

More information

An Equal-order DG Method for the Incompressible Navier-Stokes Equations

An Equal-order DG Method for the Incompressible Navier-Stokes Equations An Equal-order DG Method for the Incompressible Navier-Stokes Equations Bernardo Cockburn Guido anschat Dominik Schötzau Journal of Scientific Computing, vol. 40, pp. 188 10, 009 Abstract We introduce

More information

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable?

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Thomas Apel, Hans-G. Roos 22.7.2008 Abstract In the first part of the paper we discuss minimal

More information

NONSTANDARD NONCONFORMING APPROXIMATION OF THE STOKES PROBLEM, I: PERIODIC BOUNDARY CONDITIONS

NONSTANDARD NONCONFORMING APPROXIMATION OF THE STOKES PROBLEM, I: PERIODIC BOUNDARY CONDITIONS NONSTANDARD NONCONFORMING APPROXIMATION OF THE STOKES PROBLEM, I: PERIODIC BOUNDARY CONDITIONS J.-L. GUERMOND 1, Abstract. This paper analyzes a nonstandard form of the Stokes problem where the mass conservation

More information

A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES

A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES P. HANSBO Department of Applied Mechanics, Chalmers University of Technology, S-4 96 Göteborg, Sweden E-mail: hansbo@solid.chalmers.se

More information

Yongdeok Kim and Seki Kim

Yongdeok Kim and Seki Kim J. Korean Math. Soc. 39 (00), No. 3, pp. 363 376 STABLE LOW ORDER NONCONFORMING QUADRILATERAL FINITE ELEMENTS FOR THE STOKES PROBLEM Yongdeok Kim and Seki Kim Abstract. Stability result is obtained for

More information

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM ERIK BURMAN AND BENJAMIN STAMM Abstract. We propose a low order discontinuous Galerkin method for incompressible flows. Stability of the

More information

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov,

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov, LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES Sergey Korotov, Institute of Mathematics Helsinki University of Technology, Finland Academy of Finland 1 Main Problem in Mathematical

More information

A UNIFYING THEORY OF A POSTERIORI FINITE ELEMENT ERROR CONTROL

A UNIFYING THEORY OF A POSTERIORI FINITE ELEMENT ERROR CONTROL A UNIFYING THEORY OF A POSTERIORI FINITE ELEMENT ERROR CONTROL C. CARSTENSEN Abstract. Residual-based a posteriori error estimates are derived within a unified setting for lowest-order conforming, nonconforming,

More information

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes Vincent Heuveline Friedhelm Schieweck Abstract We propose a Scott-Zhang type interpolation

More information

Overlapping Schwarz Preconditioners for Spectral. Problem in H(curl)

Overlapping Schwarz Preconditioners for Spectral. Problem in H(curl) Overlapping Schwarz Preconditioners for Spectral Nédélec Elements for a Model Problem in H(curl) Technical Report TR2002-83 November 22, 2002 Department of Computer Science Courant Institute of Mathematical

More information

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS A. RÖSCH AND R. SIMON Abstract. An optimal control problem for an elliptic equation

More information

A SIMPLE TUTORIAL ON DISCONTINUOUS GALERKIN METHODS. Jennifer Proft CERMICS, ENPC. J. Proft CERMICS, ENPC

A SIMPLE TUTORIAL ON DISCONTINUOUS GALERKIN METHODS. Jennifer Proft CERMICS, ENPC. J. Proft CERMICS, ENPC A SIMPLE TUTORIAL ON DISCONTINUOUS GALERKIN METHODS Jennifer Proft Outline Definitions A simple example Issues Historical development elliptic equations hyperbolic equations Discontinuous vs. continuous

More information

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Department of Mathematics and Institute for Physical Science and Technology University of Maryland, USA www.math.umd.edu/ rhn 7th

More information

Finite volume method for nonlinear transmission problems

Finite volume method for nonlinear transmission problems Finite volume method for nonlinear transmission problems Franck Boyer, Florence Hubert To cite this version: Franck Boyer, Florence Hubert. Finite volume method for nonlinear transmission problems. Proceedings

More information

1. Introduction. We consider the model problem that seeks an unknown function u = u(x) satisfying

1. Introduction. We consider the model problem that seeks an unknown function u = u(x) satisfying A SIMPLE FINITE ELEMENT METHOD FOR LINEAR HYPERBOLIC PROBLEMS LIN MU AND XIU YE Abstract. In this paper, we introduce a simple finite element method for solving first order hyperbolic equations with easy

More information

arxiv: v3 [math.na] 8 Sep 2015

arxiv: v3 [math.na] 8 Sep 2015 A Recovery-Based A Posteriori Error Estimator for H(curl) Interface Problems arxiv:504.00898v3 [math.na] 8 Sep 205 Zhiqiang Cai Shuhao Cao Abstract This paper introduces a new recovery-based a posteriori

More information

Derivation and Analysis of Piecewise Constant Conservative Approximation for Anisotropic Diffusion Problems

Derivation and Analysis of Piecewise Constant Conservative Approximation for Anisotropic Diffusion Problems Derivation Analysis of Piecewise Constant Conservative Approximation for Anisotropic Diffusion Problems A. Agouzal, Naïma Debit o cite this version: A. Agouzal, Naïma Debit. Derivation Analysis of Piecewise

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. NUMR. ANAL. Vol. 45, No. 1, pp. 68 82 c 2007 Society for Industrial and Applied Mathematics FRAMWORK FOR TH A POSTRIORI RROR ANALYSIS OF NONCONFORMING FINIT LMNTS CARSTN CARSTNSN, JUN HU, AND ANTONIO

More information

1. Introduction. We consider the model problem: seeking an unknown function u satisfying

1. Introduction. We consider the model problem: seeking an unknown function u satisfying A DISCONTINUOUS LEAST-SQUARES FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC EQUATIONS XIU YE AND SHANGYOU ZHANG Abstract In tis paper, a discontinuous least-squares (DLS) finite element metod is introduced

More information

A u + b u + cu = f in Ω, (1.1)

A u + b u + cu = f in Ω, (1.1) A WEIGHTED H(div) LEAST-SQUARES METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS Z. CAI AND C. R. WESTPHAL Abstract. This paper presents analysis of a weighted-norm least squares finite element method for elliptic

More information

A POSTERIORI ERROR ESTIMATES FOR MAXWELL EQUATIONS

A POSTERIORI ERROR ESTIMATES FOR MAXWELL EQUATIONS A POSTERIORI ERROR ESTIMATES FOR MAXWELL EQUATIONS JOACHIM SCHÖBERL Abstract. Maxwell equations are posed as variational boundary value problems in the function space H(curl) and are discretized by Nédélec

More information

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T 2 R.H. NOCHETTO 2. Lecture 2. Adaptivity I: Design and Convergence of AFEM tarting with a conforming mesh T H, the adaptive procedure AFEM consists of loops of the form OLVE ETIMATE MARK REFINE to produce

More information

An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions

An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions Leszek Marcinkowski Department of Mathematics, Warsaw University, Banacha

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

Discrete Maximum Principle for a 1D Problem with Piecewise-Constant Coefficients Solved by hp-fem

Discrete Maximum Principle for a 1D Problem with Piecewise-Constant Coefficients Solved by hp-fem The University of Texas at El Paso Department of Mathematical Sciences Research Reports Series El Paso, Texas Research Report No. 2006-10 Discrete Maximum Principle for a 1D Problem with Piecewise-Constant

More information

STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS

STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS RAYTCHO LAZAROV AND XIU YE Abstract. In this paper, we derive two stabilized discontinuous finite element formulations, symmetric

More information

Overview. A Posteriori Error Estimates for the Biharmonic Equation. Variational Formulation and Discretization. The Biharmonic Equation

Overview. A Posteriori Error Estimates for the Biharmonic Equation. Variational Formulation and Discretization. The Biharmonic Equation Overview A Posteriori rror stimates for the Biharmonic quation R Verfürth Fakultät für Mathematik Ruhr-Universität Bochum wwwruhr-uni-bochumde/num1 Milan / February 11th, 013 The Biharmonic quation Summary

More information

A posteriori error estimates for Maxwell Equations

A posteriori error estimates for Maxwell Equations www.oeaw.ac.at A posteriori error estimates for Maxwell Equations J. Schöberl RICAM-Report 2005-10 www.ricam.oeaw.ac.at A POSTERIORI ERROR ESTIMATES FOR MAXWELL EQUATIONS JOACHIM SCHÖBERL Abstract. Maxwell

More information

element stiffness matrix, 21

element stiffness matrix, 21 Bibliography [1] R. Adams, Sobolev Spaces, Academic Press, 1975. [2] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-diemnsional nonsmooth domains, Math. Meth. Appl. Sci.,

More information

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday.

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday. MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* DOUGLAS N ARNOLD, RICHARD S FALK, and RAGNAR WINTHER Dedicated to Professor Jim Douglas, Jr on the occasion of his seventieth birthday Abstract

More information

Multigrid Methods for Maxwell s Equations

Multigrid Methods for Maxwell s Equations Multigrid Methods for Maxwell s Equations Jintao Cui Institute for Mathematics and Its Applications University of Minnesota Outline Nonconforming Finite Element Methods for a Two Dimensional Curl-Curl

More information

A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods

A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods Alexandre Ern, Annette Stephansen o cite this version: Alexandre Ern, Annette

More information

c 2008 Society for Industrial and Applied Mathematics

c 2008 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 46, No. 3, pp. 640 65 c 2008 Society for Industrial and Applied Mathematics A WEIGHTED H(div) LEAST-SQUARES METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS Z. CAI AND C. R. WESTPHAL

More information

An a posteriori error estimator for the weak Galerkin least-squares finite-element method

An a posteriori error estimator for the weak Galerkin least-squares finite-element method An a posteriori error estimator for the weak Galerkin least-squares finite-element method James H. Adler a, Xiaozhe Hu a, Lin Mu b, Xiu Ye c a Department of Mathematics, Tufts University, Medford, MA 02155

More information

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations A Least-Squares Finite Element Approximation for the Compressible Stokes Equations Zhiqiang Cai, 1 Xiu Ye 1 Department of Mathematics, Purdue University, 1395 Mathematical Science Building, West Lafayette,

More information

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION JOHNNY GUZMÁN, ABNER J. SALGADO, AND FRANCISCO-JAVIER SAYAS Abstract. The analysis of finite-element-like Galerkin discretization techniques for the

More information

Local flux mimetic finite difference methods

Local flux mimetic finite difference methods Local flux mimetic finite difference methods Konstantin Lipnikov Mikhail Shashkov Ivan Yotov November 4, 2005 Abstract We develop a local flux mimetic finite difference method for second order elliptic

More information

DG discretization of optimized Schwarz methods for Maxwell s equations

DG discretization of optimized Schwarz methods for Maxwell s equations DG discretization of optimized Schwarz methods for Maxwell s equations Mohamed El Bouajaji, Victorita Dolean,3, Martin J. Gander 3, Stéphane Lanteri, and Ronan Perrussel 4 Introduction In the last decades,

More information

A-posteriori error analysis of hp-version discontinuous Galerkin finite element methods for second-order quasilinear elliptic problems

A-posteriori error analysis of hp-version discontinuous Galerkin finite element methods for second-order quasilinear elliptic problems Report no. NA-0/1 A-posteriori error analysis of hp-version discontinuous Galerkin finite element methods for second-order quasilinear elliptic problems Paul Houston 1, Endre Süli, and Thomas P. Wihler

More information

A Posteriori Estimates for Cost Functionals of Optimal Control Problems

A Posteriori Estimates for Cost Functionals of Optimal Control Problems A Posteriori Estimates for Cost Functionals of Optimal Control Problems Alexandra Gaevskaya, Ronald H.W. Hoppe,2 and Sergey Repin 3 Institute of Mathematics, Universität Augsburg, D-8659 Augsburg, Germany

More information

Hybridized DG methods

Hybridized DG methods Hybridized DG methods University of Florida (Banff International Research Station, November 2007.) Collaborators: Bernardo Cockburn University of Minnesota Raytcho Lazarov Texas A&M University Thanks:

More information

STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY CONDITIONS IN AN EXTERIOR DOMAIN

STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY CONDITIONS IN AN EXTERIOR DOMAIN Electronic Journal of Differential Equations, Vol. 2013 2013, No. 196, pp. 1 28. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu STOKES PROBLEM

More information

Convergence analysis of a finite volume method for the Stokes system using non-conforming arguments

Convergence analysis of a finite volume method for the Stokes system using non-conforming arguments IMA Journal of Numerical Analysis (2005) 25, 523 548 doi:10.1093/imanum/dri007 Advance Access publication on February 7, 2005 Convergence analysis of a finite volume method for the Stokes system using

More information

WEAK GALERKIN FINITE ELEMENT METHOD FOR SECOND ORDER PARABOLIC EQUATIONS

WEAK GALERKIN FINITE ELEMENT METHOD FOR SECOND ORDER PARABOLIC EQUATIONS INERNAIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 13, Number 4, Pages 525 544 c 216 Institute for Scientific Computing and Information WEAK GALERKIN FINIE ELEMEN MEHOD FOR SECOND ORDER PARABOLIC

More information

ICES REPORT Analysis of the DPG Method for the Poisson Equation

ICES REPORT Analysis of the DPG Method for the Poisson Equation ICES REPORT 10-37 September 2010 Analysis of the DPG Method for the Poisson Equation by L. Demkowicz and J. Gopalakrishnan The Institute for Computational Engineering and Sciences The University of Texas

More information

WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES

WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES INERNAIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 12, Number 1, Pages 31 53 c 2015 Institute for Scientific Computing and Information WEAK GALERKIN FINIE ELEMEN MEHODS ON POLYOPAL MESHES LIN

More information

An hp-adaptive Mixed Discontinuous Galerkin FEM for Nearly Incompressible Linear Elasticity

An hp-adaptive Mixed Discontinuous Galerkin FEM for Nearly Incompressible Linear Elasticity An hp-adaptive Mixed Discontinuous Galerkin FEM for Nearly Incompressible Linear Elasticity Paul Houston 1 Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK (email: Paul.Houston@mcs.le.ac.uk)

More information

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying A DISCRETE DIVERGENCE FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU, JUNPING WANG, AND XIU YE Abstract. A discrete divergence free weak Galerkin finite element method is developed

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information