Local discontinuous Galerkin methods for elliptic problems

Size: px
Start display at page:

Download "Local discontinuous Galerkin methods for elliptic problems"

Transcription

1 COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2002; 18:69 75 [Version: 2000/03/22 v1.0] Local discontinuous Galerkin methods for elliptic problems P. Castillo 1 B. Cockburn 1, I. Perugia 2, D. Schötzau 1 1 School of Mathematics, University of Minnesota, 127 Vincent Hall, Minneapolis, MN 55455, USA 2 Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, Pavia, Italy Commun. Numer. Meth. Engng., Vol. 18, pp , 2002 SUMMARY In this paper, we review the development of local discontinuous Galerkin methods for elliptic problems. We explain the derivation of these methods and present the corresponding error estimates; we also mention how to couple them with standard conforming finite element methods. Numerical examples are displayed which confirm the theoretical results and show that the coupling works very well. Copyright c 2002 John Wiley & Sons, Ltd. key words: Finite element methods, discontinuous Galerkin methods, elliptic problems. 1. Introduction Over the last years, discontinuous Galerkin (DG) methods have been successfully applied to a variety of problems where convection phenomena play an important role (see [10] and the references therein for state-of-the-art surveys on DG methods). However, the need to extend these methods to problems in which also diffusion must be taken into account has recently created a renewed interest in DG techniques for elliptic problems; see, e.g., [2, 12, 14]. In this paper, we review the development of one of those methods, namely, the local discontinuous Galerkin (LDG) method. The LDG method was introduced in [11] in the context of convectiondiffusion systems, as generalization of the method proposed in [3] for the compressible Navier- Stokes equations. The LDG method was then further developed and analyzed in [5, 6]; for purely elliptic problems, it has been recently investigated in [4] and [7]. The advantage of applying the LDG method to elliptic problems relies on the ease with which it handles hanging nodes, elements of general shapes, and local spaces of different types; these properties render the LDG method ideally suited for hp-adaptivity and allow it to be easily coupled with other Supported in part by the NSF (DMS ) and by the University of Minnesota Supercomputing Institute. This work was carried out when the author was a Visiting Professor at the University of Minnesota. Copyright c 2002 John Wiley & Sons, Ltd. Received Revised

2 70 LDG METHODS FOR ELLIPTIC PROBLEMS methods. Indeed, the coupling of LDG methods with conforming finite elements (and the performance of the resulting method in the presence of meshes with hanging nodes) is analyzed and numerically tested in [13]; the motivation for this coupling comes from an application in the framework of rotating electrical machines, see [1]. An extension of the LDG method to the Stokes system, where the discretization of the divergence-free condition on the velocity is the main difficulty, was proposed and analyzed in [8]. Extensions to Maxwell s equations are currently under way. 2. The LDG discretization To illustrate the definition of the LDG method, consider the classical model elliptic problem: u = f in Ω, u = g D on Γ D, u n = g N n on Γ N. Here, Ω is a bounded domain in R d, d = 2, 3, and n is the outward unit normal to its boundary Ω = Γ D Γ N. We begin by introducing the auxiliary variable q = u, and by rewriting our model problem as follows: q = u, q = f, in Ω. Let now T be a triangulation of Ω into elements {}; it may have hanging nodes and elements of various shapes. The LDG method determines an approximation (q h, u h ) to (q, u) belonging to the local finite element space Q() U(), typically consisting of polynomials, for each T. This approximate solution is obtained by imposing that, for all (r, v) Q() U(), q h r dx = u h r dx + û h r n ds, q h v dx = fv dx + v q h n ds. Here, n is the outward unit normal to and û h and q h are the so-called numerical fluxes which are discrete approximations to the traces of u and q on the boundary of the elements. The name numerical fluxes is borrowed from the high-resolution schemes for non-linear hyperbolic conservation laws; in that framework, they are also called approximate Riemann solvers. Both numerical fluxes û h and q h are needed in order to achieve a stable and accurate scheme. To define these numerical fluxes, we have to introduce some notation. Let + and be two adjacent elements of T ; let x be an arbitrary point of the set e = + (which is not necessarily an entire edge of an element in T ) and let n + and n be the corresponding outward unit normals at that point. Let (s, w) be a function smooth inside each element ± and denote by (s ±, w ± ) the traces of (s, w) on e from the interior of ±. Then, for a scalar function w and a vector-valued function s, we define the mean values { } and jumps [ ] at x e as {w } := (w + + w )/2, {s } := (s + + s )/2, [w] := w + n + + w n, [s] := s + n + + s n. If e is inside the domain, the numerical fluxes q h and û h are defined by q h := {q h } α[u h ] β[q h ], û h := {u h } + β [u h ],

3 LDG METHODS FOR ELLIPTIC PROBLEMS 71 with a scalar parameter α and a vector-valued parameter β to be properly chosen, whereas on the boundary, we take { { q + h q h := α(u+ h n+ + g D n ) on Γ D, g D on Γ D, and û h := g N on Γ N, u + h on Γ N. This completes the definition of the LDG method. A few important points concerning this method need to be briefly discussed: The aim of the parameters α and β in the definition of the numerical fluxes is to render the formulation stable and to enhance its accuracy. For the method to be well defined, we must have α > 0, whereas β can be arbitrary. The LDG method defines a unique solution under very mild compatibility conditions on the local spaces Q() and U(); in fact, it is enough to have U() Q() (see [4]). The inter-element continuity of the approximate solution as well as the Dirichlet and Neumann boundary conditions are enforced in a weak sense only through the numerical fluxes. The LDG method can be considered to be a mixed finite element method. However, the fact that the numerical flux û h is independent of q h allows us to actually eliminate the variable q h from the equations in an element-by-element fashion. This local solvability gives the name to the LDG method; it is not shared, by classical or stabilized mixed finite element methods. Extensions of the LDG method to more general elliptic problems which include variable diffusion tensors as well as lower order terms can be done in a straightforward way by applying the techniques developed in [6]. 3. Error estimates A complete error analysis of the LDG method has been carried out in the case where the local spaces are taken as standard polynomial spaces with possibly different approximation degrees, Q() = P l () d, U() = P k (), with k 1 and l = k or l = k 1. We discuss the cases l = k and l = k 1 separately, giving rise to equal-order elements and mixed-order elements, respectively. Our theoretical results for the local spaces above, are summarized in Table I below; h denotes the biggest diameter of the elements of the triangulation T. Table I. Orders of convergence of the L 2 -errors in q and u for smooth solutions and k 1. α Q() U() L 2 -error in q L 2 -error in u O(1) P k () d P k () k k + 1/2 O(1/h) P k () d P k () k k + 1 O(1) P k 1 () d P k () k 1/2 k O(1/h) P k 1 () d P k () k k + 1 Equal-order elements. In this case, it has been proved in [4] that the orders of convergence of the L 2 -norms of the errors in q and u are k and k + 1, respectively, provided that the parameters α and β are taken to be of order O(h 1 ) and O(1), respectively. These orders

4 72 LDG METHODS FOR ELLIPTIC PROBLEMS were actually observed numerically in the experiments reported in [4]. For α of order O(1), the theoretical orders of convergence k and k + 1/2 were obtained in [4], resulting in a loss of h in the approximation of u. However, no degradation in the order of convergence for u was actually observed on unstructured triangular meshes in the numerical results reported in [4] and [13]. Furthermore, it has been shown in [7] that on Cartesian grids, with a special choice of the numerical fluxes (for which α is of order O(1) and β is such that β n = 1 2 ) and for equal-order elements with Q k -polynomials, the LDG method super-converges and the orders of convergence k in q and k + 1 in u are obtained. A similar phenomenon has not been observed on unstructured grids. Mixed-order elements. LDG methods with lower approximation degree for q h (i.e., with l = k 1) have been first analyzed in [8] in the context of the Stokes problem. These results immediately carry over to the model problem considered here: with α of order O(1/h) and β of order O(1), the same orders of convergence k in q and k+1 in u as for equal-order elements are achieved. In this case, the error estimates are optimal from both an approximation point of view and in terms of the smoothness requirements on the exact solution. However, numerical tests in [8] and [13] indicate that the use of equal-order elements is not less efficient. Coupling with conforming finite elements. When the LDG methods described above are coupled with the standard conforming finite element method that uses polynomials of degree k, the orders of convergence are identical to those reported in the above paragraphs; see [13]. 4. Numerical experiments Results on an L-shaped domain. First, we report the results of two numerical experiments from [4]. We solve the model problem on an L-shaped domain, using a sequence of unstructured triangular meshes created from consecutive global refinement. The initial coarse mesh consists of 22 elements. The parameter α is chosen as 1/h, and β such that β n = 1 2. Table II. H 5 -solution on L-shaped domain: Orders of convergence of the L 2 -errors in q and u. k L 2 -error in q L 2 -error in u h h/2 h/4 h/8 h h/2 h/4 h/ In Table II, we show the orders of convergence in the L 2 -errors of q and u for the LDG method using equal-order elements of degree k = 1,..., 5, for a solution belonging to H 5 (Ω). The numerical orders are obtained from the errors of two consecutive meshes. The expected orders of min(4, k) and min(5, k + 1), respectively, are clearly visible. In Table III, we report results for the exact solution expressed in polar coordinates by u(r, θ) = r γ sin (γθ), with γ = 2/3, that exhibits a singularity at the reentrant corner of the L-shaped domain. The results show that we get orders close to 2 3 and 4 3. These are the

5 LDG METHODS FOR ELLIPTIC PROBLEMS 73 same orders that are obtained with a standard conforming method, for which the orders of convergence in the H 1 (Ω)- and L 2 (Ω)-norm are 2 3 ε and 4 3 ε, respectively, for all ε > 0. Table III. Singular solution on L-shaped domain: Orders of convergence of the L 2 -errors in q and u. k L 2 -error in q L 2 -error in u h h/2 h/4 h/8 h h/2 h/4 h/ Coupling with conforming finite elements. In the following numerical example, taken from [13], we consider the situation where the LDG method is applied only in a sub-domain Ω LDG Ω and a conforming method is used in the remaining part Ω conf = Ω \ Ω LDG. The corresponding coupled method, introduced in [1] and analyzed in [13], combines the ease with which the LDG method handles hanging nodes with the lower computational cost of standard conforming finite elements. This approach is also very promising in the context of multi-physics or multi-material problems, where the practitioner might want to use a DG method only in certain parts of the computational domain. Figure 1. Meshes used in the numerical experiments: Non-nested grids with 256 and 1024 elements and hanging nodes on the line y = 0. The LDG region Ω LDG is shadowed. The coupling across the common interior interface Γ of Ω LDG and Ω conf is achieved as follows. On the LDG side, the interface Γ is considered as a Dirichlet boundary with datum given by the trace on Γ of the approximation from the conforming side, whereas on the conforming side Γ is considered as a Neumann boundary, with datum given by the corresponding flux from the LDG side; see [13] for details. We solve the model problem on Ω = ( 1, 1) ( 1, 1), using a sequence of non-nested grids with decreasing mesh-sizes with a reduction factor 2. The grids are obtained by meshing independently the two subregions ( 1, 1) ( 1, 0) and ( 1, 1) (0, 1), giving rise to possibly non-matching grids along the line y = 0. We define the LDG region Ω LDG on each mesh as the union of all the elements having at least one vertex on the line y = 0. The domain Ω LDG

6 74 LDG METHODS FOR ELLIPTIC PROBLEMS contains all the hanging nodes and shrinks towards the line y = 0 as h goes to zero; the second and third meshes are depicted in Figure 1. In Table IV, we display the L 2 -errors in q and u obtained when the LDG method with equal-order P 1 -elements is applied in Ω LDG, and standard conforming P 1 -elements are used in Ω conf. The results show that the errors converge with the optimal orders, as expected, and that the coupling of LDG and conforming methods with a shrinking LDG region can be successfully carried out. Table IV. Convergence for the coupled method and P 1 -elements; α = 1, β = O(1). reduction L 2 -norm of q L 2 -norm of u in mesh-size h error reduction error reduction e e e e e e e e Conclusions The results of an error analysis of the LDG method for elliptic problems have been reviewed and numerical experiments have been presented, showing the sharpness of the theoretical estimates. It has also been indicated how to couple LDG and conforming finite element methods, in order to exploit the advantages of the LDG method with a reduced computational cost. REFERENCES 1. P. Alotto, A. Bertoni, I. Perugia, and D. Schötzau, Discontinuous finite element methods for the simulation of rotating electrical machines, COMPEL, 20 (2001), D. Arnold, F. Brezzi, B. Cockburn, and D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Num. Anal., to appear. 3. F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131 (1997), pp P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Num. Anal., 38 (2000), P. Castillo, B. Cockburn, D. Schötzau, and C. Schwab, An optimal a priori error estimate for the hp-version of the local discontinuous Galerkin method for convection diffusion problems, Math. Comp., to appear. 6. B. Cockburn and C. Dawson, Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions, Proceedings of the X Conference on the Mathematics of Finite Elements and Applications: MAFELAP X, J. Whitemann, ed., Elsevier, 2000, pp B. Cockburn, G. anschat, I. Perugia, and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Num. Anal., 39 (2001), B. Cockburn, G. anschat, D. Schötzau, and C. Schwab, Local discontinuous Galerkin methods for the Stokes system, SIAM J. Num. Anal., to appear. 9. B. Cockburn, G. arniadakis, and C.-W. Shu, The development of discontinuous Galerkin methods, in Discontinuous Galerkin Methods: Theory, Computation and Applications, B. Cockburn, G. arniadakis, and C.-W. Shu, eds., vol. 11 of Lect. Notes Comput. Sci. Eng., Springer Verlag, 2000, pp B. Cockburn, G. arniadakis, and C.-W. Shu, eds., Discontinuous Galerkin Methods. Theory, Computation and Applications, vol. 11 of Lect. Notes Comput. Sci. Eng., Springer Verlag, 2000.

7 LDG METHODS FOR ELLIPTIC PROBLEMS B. Cockburn and C.-W. Shu, The local discontinuous Galerkin finite element method for convection diffusion systems, SIAM J. Num. Anal., 35 (1998), pp J. Oden, I. Babuška, and C. Baumann, A discontinuous hp finite element method for diffusion problems, J. Comput. Phys., 146 (1998), pp I. Perugia and D. Schötzau, On the coupling of local discontinuous Galerkin and conforming finite element methods, J. Sci. Comp., to appear. 14. B. Rivière, M. Wheeler and V. Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I, Computational Geosciences, 3 (1999),

A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations

A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations Bernardo Cockburn Guido anschat Dominik Schötzau June 1, 2007 Journal of Scientific Computing, Vol. 31, 2007, pp.

More information

A SIMPLE TUTORIAL ON DISCONTINUOUS GALERKIN METHODS. Jennifer Proft CERMICS, ENPC. J. Proft CERMICS, ENPC

A SIMPLE TUTORIAL ON DISCONTINUOUS GALERKIN METHODS. Jennifer Proft CERMICS, ENPC. J. Proft CERMICS, ENPC A SIMPLE TUTORIAL ON DISCONTINUOUS GALERKIN METHODS Jennifer Proft Outline Definitions A simple example Issues Historical development elliptic equations hyperbolic equations Discontinuous vs. continuous

More information

IMA Preprint Series # 2146

IMA Preprint Series # 2146 AN ANALYSIS OF THE MINIMAL DISSIPATION LOCAL DISCONTINUOUS GALERKIN METHOD FOR CONVECTION-DIFFUSION PROBLEMS By Bernardo Cockburn and Bo Dong IMA Preprint Series # 2146 ( November 2006 ) INSTITUTE FOR

More information

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation A local-structure-preserving local discontinuous Galerkin method for the Laplace equation Fengyan Li 1 and Chi-Wang Shu 2 Abstract In this paper, we present a local-structure-preserving local discontinuous

More information

An Equal-order DG Method for the Incompressible Navier-Stokes Equations

An Equal-order DG Method for the Incompressible Navier-Stokes Equations An Equal-order DG Method for the Incompressible Navier-Stokes Equations Bernardo Cockburn Guido anschat Dominik Schötzau Journal of Scientific Computing, vol. 40, pp. 188 10, 009 Abstract We introduce

More information

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations INTRNATIONAL JOURNAL FOR NUMRICAL MTHODS IN FLUIDS Int. J. Numer. Meth. Fluids 19007; 1:1 [Version: 00/09/18 v1.01] nergy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations

More information

Superconvergence and H(div) Projection for Discontinuous Galerkin Methods

Superconvergence and H(div) Projection for Discontinuous Galerkin Methods INTRNATIONAL JOURNAL FOR NUMRICAL MTHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2000; 00:1 6 [Version: 2000/07/27 v1.0] Superconvergence and H(div) Projection for Discontinuous Galerkin Methods Peter Bastian

More information

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying A DISCRETE DIVERGENCE FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU, JUNPING WANG, AND XIU YE Abstract. A discrete divergence free weak Galerkin finite element method is developed

More information

Discontinuous Galerkin Methods: Theory, Computation and Applications

Discontinuous Galerkin Methods: Theory, Computation and Applications Discontinuous Galerkin Methods: Theory, Computation and Applications Paola. Antonietti MOX, Dipartimento di Matematica Politecnico di Milano.MO. X MODELLISTICA E CALCOLO SCIENTIICO. MODELING AND SCIENTIIC

More information

Fourier Type Error Analysis of the Direct Discontinuous Galerkin Method and Its Variations for Diffusion Equations

Fourier Type Error Analysis of the Direct Discontinuous Galerkin Method and Its Variations for Diffusion Equations J Sci Comput (0) 5:68 655 DOI 0.007/s095-0-9564-5 Fourier Type Error Analysis of the Direct Discontinuous Galerkin Method and Its Variations for Diffusion Equations Mengping Zhang Jue Yan Received: 8 September

More information

Mixed Discontinuous Galerkin Methods for Darcy Flow

Mixed Discontinuous Galerkin Methods for Darcy Flow Journal of Scientific Computing, Volumes 22 and 23, June 2005 ( 2005) DOI: 10.1007/s10915-004-4150-8 Mixed Discontinuous Galerkin Methods for Darcy Flow F. Brezzi, 1,2 T. J. R. Hughes, 3 L. D. Marini,

More information

Fourier analysis for discontinuous Galerkin and related methods. Abstract

Fourier analysis for discontinuous Galerkin and related methods. Abstract Fourier analysis for discontinuous Galerkin and related methods Mengping Zhang and Chi-Wang Shu Abstract In this paper we review a series of recent work on using a Fourier analysis technique to study the

More information

Discontinuous Galerkin Methods: Theory, Computation and Applications

Discontinuous Galerkin Methods: Theory, Computation and Applications Discontinuous Galerkin Methods: Theory, Computation and Applications Paola. Antonietti MOX, Dipartimento di Matematica Politecnico di Milano.MO. X MODELLISTICA E CALCOLO SCIENTIICO. MODELING AND SCIENTIIC

More information

A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES

A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES P. HANSBO Department of Applied Mechanics, Chalmers University of Technology, S-4 96 Göteborg, Sweden E-mail: hansbo@solid.chalmers.se

More information

Discontinuous Galerkin method for a class of elliptic multi-scale problems

Discontinuous Galerkin method for a class of elliptic multi-scale problems INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 000; 00: 6 [Version: 00/09/8 v.0] Discontinuous Galerkin method for a class of elliptic multi-scale problems Ling Yuan

More information

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS Proceedings of ALGORITMY 2009 pp. 1 10 SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS MILOSLAV VLASÁK Abstract. We deal with a numerical solution of a scalar

More information

A Multigrid Method for Two Dimensional Maxwell Interface Problems

A Multigrid Method for Two Dimensional Maxwell Interface Problems A Multigrid Method for Two Dimensional Maxwell Interface Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University USA JSA 2013 Outline A

More information

arxiv: v1 [math.na] 29 Feb 2016

arxiv: v1 [math.na] 29 Feb 2016 EFFECTIVE IMPLEMENTATION OF THE WEAK GALERKIN FINITE ELEMENT METHODS FOR THE BIHARMONIC EQUATION LIN MU, JUNPING WANG, AND XIU YE Abstract. arxiv:1602.08817v1 [math.na] 29 Feb 2016 The weak Galerkin (WG)

More information

computations. Furthermore, they ehibit strong superconvergence of DG solutions and flues for hyperbolic [,, 3] and elliptic [] problems. Adjerid et al

computations. Furthermore, they ehibit strong superconvergence of DG solutions and flues for hyperbolic [,, 3] and elliptic [] problems. Adjerid et al Superconvergence of Discontinuous Finite Element Solutions for Transient Convection-diffusion Problems Slimane Adjerid Department of Mathematics Virginia Polytechnic Institute and State University Blacksburg,

More information

THE COMPACT DISCONTINUOUS GALERKIN (CDG) METHOD FOR ELLIPTIC PROBLEMS

THE COMPACT DISCONTINUOUS GALERKIN (CDG) METHOD FOR ELLIPTIC PROBLEMS SIAM J. SCI. COMPUT. Vol. 30, No. 4, pp. 1806 1824 c 2008 Society for Industrial and Applied Mathematics THE COMPACT DISCONTINUOUS GALERKIN (CDG) METHOD FOR ELLIPTIC PROBLEMS J. PERAIRE AND P.-O. PERSSON

More information

Chapter 1. Introduction and Background. 1.1 Introduction

Chapter 1. Introduction and Background. 1.1 Introduction Chapter 1 Introduction and Background 1.1 Introduction Over the past several years the numerical approximation of partial differential equations (PDEs) has made important progress because of the rapid

More information

Local flux mimetic finite difference methods

Local flux mimetic finite difference methods Local flux mimetic finite difference methods Konstantin Lipnikov Mikhail Shashkov Ivan Yotov November 4, 2005 Abstract We develop a local flux mimetic finite difference method for second order elliptic

More information

Hybridized DG methods

Hybridized DG methods Hybridized DG methods University of Florida (Banff International Research Station, November 2007.) Collaborators: Bernardo Cockburn University of Minnesota Raytcho Lazarov Texas A&M University Thanks:

More information

A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS BERNARDO COCKBURN, JAYADEEP GOPALAKRISHNAN, AND FRANCISCO-JAVIER SAYAS

A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS BERNARDO COCKBURN, JAYADEEP GOPALAKRISHNAN, AND FRANCISCO-JAVIER SAYAS A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS BERNARDO COCBURN, JAYADEEP GOPALARISHNAN, AND FRANCISCO-JAVIER SAYAS Abstract. We introduce a new technique for the error analysis of hybridizable discontinuous

More information

Unified Hybridization Of Discontinuous Galerkin, Mixed, And Continuous Galerkin Methods For Second Order Elliptic Problems.

Unified Hybridization Of Discontinuous Galerkin, Mixed, And Continuous Galerkin Methods For Second Order Elliptic Problems. Unified Hybridization Of Discontinuous Galerkin, Mixed, And Continuous Galerkin Methods For Second Order Elliptic Problems. Stefan Girke WWU Münster Institut für Numerische und Angewandte Mathematik 10th

More information

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang Abstract This paper deals with

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS CARLO LOVADINA AND ROLF STENBERG Abstract The paper deals with the a-posteriori error analysis of mixed finite element methods

More information

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian BULLETIN OF THE GREE MATHEMATICAL SOCIETY Volume 57, 010 (1 7) On an Approximation Result for Piecewise Polynomial Functions O. arakashian Abstract We provide a new approach for proving approximation results

More information

Hybridized Discontinuous Galerkin Methods

Hybridized Discontinuous Galerkin Methods Hybridized Discontinuous Galerkin Methods Theory and Christian Waluga Joint work with Herbert Egger (Uni Graz) 1st DUNE User Meeting, Stuttgart Christian Waluga (AICES) HDG Methods October 6-8, 2010 1

More information

Multigrid Methods for Maxwell s Equations

Multigrid Methods for Maxwell s Equations Multigrid Methods for Maxwell s Equations Jintao Cui Institute for Mathematics and Its Applications University of Minnesota Outline Nonconforming Finite Element Methods for a Two Dimensional Curl-Curl

More information

DISCONTINUOUS GALERKIN METHOD FOR TIME DEPENDENT PROBLEMS: SURVEY AND RECENT DEVELOPMENTS

DISCONTINUOUS GALERKIN METHOD FOR TIME DEPENDENT PROBLEMS: SURVEY AND RECENT DEVELOPMENTS DISCONTINUOUS GALERKIN METHOD FOR TIME DEPENDENT PROBLEMS: SURVEY AND RECENT DEVELOPMENTS CHI-WANG SHU Abstract. In these lectures we give a general survey on discontinuous Galerkin methods for solving

More information

STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS

STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS RAYTCHO LAZAROV AND XIU YE Abstract. In this paper, we derive two stabilized discontinuous finite element formulations, symmetric

More information

AN OPTIMALLY ACCURATE SPECTRAL VOLUME FORMULATION WITH SYMMETRY PRESERVATION

AN OPTIMALLY ACCURATE SPECTRAL VOLUME FORMULATION WITH SYMMETRY PRESERVATION AN OPTIMALLY ACCURATE SPECTRAL VOLUME FORMULATION WITH SYMMETRY PRESERVATION Fareed Hussain Mangi*, Umair Ali Khan**, Intesab Hussain Sadhayo**, Rameez Akbar Talani***, Asif Ali Memon* ABSTRACT High order

More information

ANALYSIS OF AN INTERFACE STABILISED FINITE ELEMENT METHOD: THE ADVECTION-DIFFUSION-REACTION EQUATION

ANALYSIS OF AN INTERFACE STABILISED FINITE ELEMENT METHOD: THE ADVECTION-DIFFUSION-REACTION EQUATION ANALYSIS OF AN INTERFACE STABILISED FINITE ELEMENT METHOD: THE ADVECTION-DIFFUSION-REACTION EQUATION GARTH N. WELLS Abstract. Analysis of an interface stabilised finite element method for the scalar advectiondiffusion-reaction

More information

A DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC INTERFACE PROBLEMS WITH APPLICATION TO ELECTROPORATION

A DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC INTERFACE PROBLEMS WITH APPLICATION TO ELECTROPORATION A DISCONTINUOUS GALERIN METHOD FOR ELLIPTIC INTERFACE PROBLEMS WITH APPLICATION TO ELECTROPORATION GRÉGORY GUYOMARC H AND CHANG-OC LEE Abstract. We present a discontinuous Galerkin (DG) method to solve

More information

A Two-grid Method for Coupled Free Flow with Porous Media Flow

A Two-grid Method for Coupled Free Flow with Porous Media Flow A Two-grid Method for Coupled Free Flow with Porous Media Flow Prince Chidyagwai a and Béatrice Rivière a, a Department of Computational and Applied Mathematics, Rice University, 600 Main Street, Houston,

More information

arxiv: v2 [math.na] 23 Apr 2016

arxiv: v2 [math.na] 23 Apr 2016 Improved ZZ A Posteriori Error Estimators for Diffusion Problems: Conforming Linear Elements arxiv:508.009v2 [math.na] 23 Apr 206 Zhiqiang Cai Cuiyu He Shun Zhang May 2, 208 Abstract. In [8], we introduced

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations

Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations Discontinuous Galerkin Method for interface problem of coupling different order elliptic equations Igor Mozolevski, Endre Süli Federal University of Santa Catarina, Brazil Oxford University Computing Laboratory,

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 25: Introduction to Discontinuous Galerkin Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods

More information

On Dual-Weighted Residual Error Estimates for p-dependent Discretizations

On Dual-Weighted Residual Error Estimates for p-dependent Discretizations On Dual-Weighted Residual Error Estimates for p-dependent Discretizations Aerospace Computational Design Laboratory Report TR-11-1 Masayuki Yano and David L. Darmofal September 21, 2011 Abstract This report

More information

DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR THE WAVE EQUATION. SIAM J. Numer. Anal., Vol. 44, pp , 2006

DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR THE WAVE EQUATION. SIAM J. Numer. Anal., Vol. 44, pp , 2006 DISCONTINUOUS GALERIN INITE ELEMENT METHOD OR THE WAVE EQUATION MARCUS J. GROTE, ANNA SCHNEEBELI, AND DOMINI SCHÖTZAU SIAM J. Numer. Anal., Vol. 44, pp. 408-43, 006 Abstract. The symmetric interior penalty

More information

Find (u,p;λ), with u 0 and λ R, such that u + p = λu in Ω, (2.1) div u = 0 in Ω, u = 0 on Γ.

Find (u,p;λ), with u 0 and λ R, such that u + p = λu in Ω, (2.1) div u = 0 in Ω, u = 0 on Γ. A POSTERIORI ESTIMATES FOR THE STOKES EIGENVALUE PROBLEM CARLO LOVADINA, MIKKO LYLY, AND ROLF STENBERG Abstract. We consider the Stokes eigenvalue problem. For the eigenvalues we derive both upper and

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1 On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1 Jie Shen Department of Mathematics, Penn State University University Park, PA 1682 Abstract. We present some

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

1. Introduction. We consider the model problem that seeks an unknown function u = u(x) satisfying

1. Introduction. We consider the model problem that seeks an unknown function u = u(x) satisfying A SIMPLE FINITE ELEMENT METHOD FOR LINEAR HYPERBOLIC PROBLEMS LIN MU AND XIU YE Abstract. In this paper, we introduce a simple finite element method for solving first order hyperbolic equations with easy

More information

STABILIZED HP-DGFEM FOR INCOMPRESSIBLE FLOW. Math. Models Methods Appl. Sci., Vol. 13, pp , 2003

STABILIZED HP-DGFEM FOR INCOMPRESSIBLE FLOW. Math. Models Methods Appl. Sci., Vol. 13, pp , 2003 Mathematical Models and Methods in Applied Sciences c World Scientiic Publishing Company STABILIZED HP-DGFEM FOR INCOMPRESSIBLE FLOW D. SCHÖTZAU1 C. SCHWAB 2 A. TOSELLI 2 1 Department o Mathematics, University

More information

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM ERIK BURMAN AND BENJAMIN STAMM Abstract. We propose a low order discontinuous Galerkin method for incompressible flows. Stability of the

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information

FROM GODUNOV TO A UNIFIED HYBRIDIZED DISCONTINUOUS GALERKIN FRAMEWORK FOR PARTIAL DIFFERENTIAL EQUATIONS

FROM GODUNOV TO A UNIFIED HYBRIDIZED DISCONTINUOUS GALERKIN FRAMEWORK FOR PARTIAL DIFFERENTIAL EQUATIONS FROM GODUNOV TO A UNIFIED HYBRIDIZED DISCONTINUOUS GALERKIN FRAMEWORK FOR PARTIAL DIFFERENTIAL EQUATIONS TAN BUI-THANH Abstract. By revisiting the basic Godunov approach for linear system of hyperbolic

More information

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Christian Waluga 1 advised by Prof. Herbert Egger 2 Prof. Wolfgang Dahmen 3 1 Aachen Institute for Advanced Study in Computational

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS MATHEMATICS OF COMPUTATION Volume 75, Number 256, October 2006, Pages 1659 1674 S 0025-57180601872-2 Article electronically published on June 26, 2006 ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED

More information

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS CHARALAMBOS MAKRIDAKIS AND RICARDO H. NOCHETTO Abstract. It is known that the energy technique for a posteriori error analysis

More information

The direct discontinuous Galerkin method with symmetric structure for diffusion problems

The direct discontinuous Galerkin method with symmetric structure for diffusion problems Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 1 The direct discontinuous Galerkin method with symmetric structure for diffusion problems Chad Nathaniel Vidden

More information

Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes

Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes Comparison of V-cycle Multigrid Method for Cell-centered Finite Difference on Triangular Meshes Do Y. Kwak, 1 JunS.Lee 1 Department of Mathematics, KAIST, Taejon 305-701, Korea Department of Mathematics,

More information

SUPERCONVERGENCE OF DG METHOD FOR ONE-DIMENSIONAL SINGULARLY PERTURBED PROBLEMS *1)

SUPERCONVERGENCE OF DG METHOD FOR ONE-DIMENSIONAL SINGULARLY PERTURBED PROBLEMS *1) Journal of Computational Mathematics, Vol.5, No., 007, 185 00. SUPERCONVERGENCE OF DG METHOD FOR ONE-DIMENSIONAL SINGULARLY PERTURBED PROBLEMS *1) Ziqing Xie (College of Mathematics and Computer Science,

More information

Finite element approximation on quadrilateral meshes

Finite element approximation on quadrilateral meshes COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2001; 17:805 812 (DOI: 10.1002/cnm.450) Finite element approximation on quadrilateral meshes Douglas N. Arnold 1;, Daniele

More information

A positivity-preserving high order discontinuous Galerkin scheme for convection-diffusion equations

A positivity-preserving high order discontinuous Galerkin scheme for convection-diffusion equations A positivity-preserving high order discontinuous Galerkin scheme for convection-diffusion equations Sashank Srinivasan a, Jonathan Poggie a, Xiangxiong Zhang b, a School of Aeronautics and Astronautics,

More information

On the solution of incompressible two-phase ow by a p-version discontinuous Galerkin method

On the solution of incompressible two-phase ow by a p-version discontinuous Galerkin method COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2006; 22:741 751 Published online 13 December 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cnm.846

More information

Yongdeok Kim and Seki Kim

Yongdeok Kim and Seki Kim J. Korean Math. Soc. 39 (00), No. 3, pp. 363 376 STABLE LOW ORDER NONCONFORMING QUADRILATERAL FINITE ELEMENTS FOR THE STOKES PROBLEM Yongdeok Kim and Seki Kim Abstract. Stability result is obtained for

More information

Interior penalty tensor-product preconditioners for high-order discontinuous Galerkin discretizations

Interior penalty tensor-product preconditioners for high-order discontinuous Galerkin discretizations Interior penalty tensor-product preconditioners for high-order discontinuous Galerkin discretizations Will Pazner Brown University, 8 George St., Providence, RI, 9, U.S.A. Per-Olof Persson University of

More information

Superconvergence of the Direct Discontinuous Galerkin Method for Convection-Diffusion Equations

Superconvergence of the Direct Discontinuous Galerkin Method for Convection-Diffusion Equations Superconvergence of the Direct Discontinuous Galerkin Method for Convection-Diffusion Equations Waixiang Cao, Hailiang Liu, Zhimin Zhang,3 Division of Applied and Computational Mathematics, Beijing Computational

More information

Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods

Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods Contents Ralf Hartmann Institute of Aerodynamics and Flow Technology DLR (German Aerospace Center) Lilienthalplatz 7, 3808

More information

1. Introduction. We consider the model problem: seeking an unknown function u satisfying

1. Introduction. We consider the model problem: seeking an unknown function u satisfying A DISCONTINUOUS LEAST-SQUARES FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC EQUATIONS XIU YE AND SHANGYOU ZHANG Abstract In tis paper, a discontinuous least-squares (DLS) finite element metod is introduced

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes Vincent Heuveline Friedhelm Schieweck Abstract We propose a Scott-Zhang type interpolation

More information

INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR GRIDS. 1. Introduction

INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR GRIDS. 1. Introduction Trends in Mathematics Information Center for Mathematical Sciences Volume 9 Number 2 December 2006 Pages 0 INTERGRID OPERATORS FOR THE CELL CENTERED FINITE DIFFERENCE MULTIGRID ALGORITHM ON RECTANGULAR

More information

1 Introduction. J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods

1 Introduction. J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods 1 Introduction Achieving high order time-accuracy in the approximation of the incompressible Navier Stokes equations by means of fractional-step

More information

Divergence-conforming multigrid methods for incompressible flow problems

Divergence-conforming multigrid methods for incompressible flow problems Divergence-conforming multigrid methods for incompressible flow problems Guido Kanschat IWR, Universität Heidelberg Prague-Heidelberg-Workshop April 28th, 2015 G. Kanschat (IWR, Uni HD) Hdiv-DG Práha,

More information

Space-time XFEM for two-phase mass transport

Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Christoph Lehrenfeld joint work with Arnold Reusken EFEF, Prague, June 5-6th 2015 Christoph Lehrenfeld EFEF, Prague,

More information

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS PARTITION OF UNITY FOR THE STOES PROBLEM ON NONMATCHING GRIDS CONSTANTIN BACUTA AND JINCHAO XU Abstract. We consider the Stokes Problem on a plane polygonal domain Ω R 2. We propose a finite element method

More information

An hp-adaptive Mixed Discontinuous Galerkin FEM for Nearly Incompressible Linear Elasticity

An hp-adaptive Mixed Discontinuous Galerkin FEM for Nearly Incompressible Linear Elasticity An hp-adaptive Mixed Discontinuous Galerkin FEM for Nearly Incompressible Linear Elasticity Paul Houston 1 Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK (email: Paul.Houston@mcs.le.ac.uk)

More information

Optimal Error Estimates for the hp Version Interior Penalty Discontinuous Galerkin Finite Element Method

Optimal Error Estimates for the hp Version Interior Penalty Discontinuous Galerkin Finite Element Method Report no. 03/06 Optimal Error Estimates for the hp Version Interior Penalty Discontinuous Galerkin Finite Element Method Emmanuil H. Georgoulis and Endre Süli Oxford University Computing Laboratory Numerical

More information

A posteriori error estimation of approximate boundary fluxes

A posteriori error estimation of approximate boundary fluxes COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2008; 24:421 434 Published online 24 May 2007 in Wiley InterScience (www.interscience.wiley.com)..1014 A posteriori error estimation

More information

Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients

Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients Superconvergence of discontinuous Galerkin methods for -D linear hyperbolic equations with degenerate variable coefficients Waixiang Cao Chi-Wang Shu Zhimin Zhang Abstract In this paper, we study the superconvergence

More information

Slip flow boundary conditions in discontinuous Galerkin discretizations of the Euler equations of gas dynamics

Slip flow boundary conditions in discontinuous Galerkin discretizations of the Euler equations of gas dynamics Slip flow boundary conditions in discontinuous Galerkin discretizations of the Euler equations of gas dynamics J.J.W. van der Vegt and H. van der Ven Nationaal Lucht- en Ruimtevaartlaboratorium National

More information

An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl) elliptic partial differential equations

An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl) elliptic partial differential equations IMA Journal of Numerical Analysis 005) Page of 7 doi: 0.093/imanum/ An a posteriori error indicator for discontinuous Galerkin discretizations of Hcurl) elliptic partial differential equations PAUL HOUSTON

More information

A Matlab Tutorial for Diffusion-Convection-Reaction Equations using DGFEM

A Matlab Tutorial for Diffusion-Convection-Reaction Equations using DGFEM MIDDLE EAST TECHNICAL UNIVERSITY Ankara, Turkey INSTITUTE OF APPLIED MATHEMATICS http://iam.metu.edu.tr arxiv:1502.02941v1 [math.na] 10 Feb 2015 A Matlab Tutorial for Diffusion-Convection-Reaction Equations

More information

Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances

Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances Ilaria Perugia Dipartimento di Matematica Università di Pavia (Italy) In collaboration with Ralf Hiptmair, Christoph Schwab,

More information

Weighted Regularization of Maxwell Equations Computations in Curvilinear Polygons

Weighted Regularization of Maxwell Equations Computations in Curvilinear Polygons Weighted Regularization of Maxwell Equations Computations in Curvilinear Polygons Martin Costabel, Monique Dauge, Daniel Martin and Gregory Vial IRMAR, Université de Rennes, Campus de Beaulieu, Rennes,

More information

ADAPTIVE HYBRIDIZED INTERIOR PENALTY DISCONTINUOUS GALERKIN METHODS FOR H(CURL)-ELLIPTIC PROBLEMS

ADAPTIVE HYBRIDIZED INTERIOR PENALTY DISCONTINUOUS GALERKIN METHODS FOR H(CURL)-ELLIPTIC PROBLEMS ADAPTIVE HYBRIDIZED INTERIOR PENALTY DISCONTINUOUS GALERKIN METHODS OR HCURL-ELLIPTIC PROBLEMS C. CARSTENSEN, R. H. W. HOPPE, N. SHARMA, AND T. WARBURTON Abstract. We develop and analyze an adaptive hybridized

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2003) 94: 195 202 Digital Object Identifier (DOI) 10.1007/s002110100308 Numerische Mathematik Some observations on Babuška and Brezzi theories Jinchao Xu, Ludmil Zikatanov Department of Mathematics,

More information

A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods

A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods Emmanuel Creusé, Serge Nicaise October 7, 29 Abstract We consider some (anisotropic and piecewise

More information

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable?

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Thomas Apel, Hans-G. Roos 22.7.2008 Abstract In the first part of the paper we discuss minimal

More information

Generalized Finite Element Methods for Three Dimensional Structural Mechanics Problems. C. A. Duarte. I. Babuška and J. T. Oden

Generalized Finite Element Methods for Three Dimensional Structural Mechanics Problems. C. A. Duarte. I. Babuška and J. T. Oden Generalized Finite Element Methods for Three Dimensional Structural Mechanics Problems C. A. Duarte COMCO, Inc., 7800 Shoal Creek Blvd. Suite 290E Austin, Texas, 78757, USA I. Babuška and J. T. Oden TICAM,

More information

PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS Jie Shen Department of Mathematics, Penn State University University Par, PA 1680, USA Abstract. We present in this

More information

A Hybrid Discontinuous Galerkin Method 2 for Darcy-Stokes Problems 3 UNCORRECTED PROOF

A Hybrid Discontinuous Galerkin Method 2 for Darcy-Stokes Problems 3 UNCORRECTED PROOF 1 A Hybrid Discontinuous Galerkin Method 2 for Darcy-Stokes Problems 3 Herbert Egger 1 and Christian Waluga 2 4 1 Center of Mathematics, Technische Universität München, Boltzmannstraße 3, 85748 5 Garching

More information

An Accurate Fourier-Spectral Solver for Variable Coefficient Elliptic Equations

An Accurate Fourier-Spectral Solver for Variable Coefficient Elliptic Equations An Accurate Fourier-Spectral Solver for Variable Coefficient Elliptic Equations Moshe Israeli Computer Science Department, Technion-Israel Institute of Technology, Technion city, Haifa 32000, ISRAEL Alexander

More information

Local Mesh Refinement with the PCD Method

Local Mesh Refinement with the PCD Method Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 8, Number 1, pp. 125 136 (2013) http://campus.mst.edu/adsa Local Mesh Refinement with the PCD Method Ahmed Tahiri Université Med Premier

More information

THE hp-local DISCONTINUOUS GALERKIN METHOD FOR LOW-FREQUENCY TIME-HARMONIC MAXWELL EQUATIONS

THE hp-local DISCONTINUOUS GALERKIN METHOD FOR LOW-FREQUENCY TIME-HARMONIC MAXWELL EQUATIONS MATHEMATICS OF COMPUTATION Volume 7, Number 43, Pages 1179 114 S 5-5718()1471- Article electronically published on October 18, THE hp-local DISCONTINUOUS GALERIN METHOD FOR LOW-FREQUENCY TIME-HARMONIC

More information

k=6, t=100π, solid line: exact solution; dashed line / squares: numerical solution

k=6, t=100π, solid line: exact solution; dashed line / squares: numerical solution DIFFERENT FORMULATIONS OF THE DISCONTINUOUS GALERKIN METHOD FOR THE VISCOUS TERMS CHI-WANG SHU y Abstract. Discontinuous Galerkin method is a nite element method using completely discontinuous piecewise

More information

Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations. Todd A.

Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations. Todd A. Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations by Todd A. Oliver B.S., Massachusetts Institute of Technology (22) Submitted to the

More information

Sub-Cell Shock Capturing for Discontinuous Galerkin Methods

Sub-Cell Shock Capturing for Discontinuous Galerkin Methods Sub-Cell Shock Capturing for Discontinuous Galerkin Methods Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology, Cambridge, MA 39, U.S.A. A shock capturing strategy for higher order

More information

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions Wayne McGee and Padmanabhan Seshaiyer Texas Tech University, Mathematics and Statistics (padhu@math.ttu.edu) Summary. In

More information

Key words. Incompressible magnetohydrodynamics, mixed finite element methods, discontinuous Galerkin methods

Key words. Incompressible magnetohydrodynamics, mixed finite element methods, discontinuous Galerkin methods A MIXED DG METHOD FOR LINEARIZED INCOMPRESSIBLE MAGNETOHYDRODYNAMICS PAUL HOUSTON, DOMINIK SCHÖTZAU, AND XIAOXI WEI Journal of Scientific Computing, vol. 40, pp. 8 34, 009 Abstract. We introduce and analyze

More information

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations Khosro Shahbazi 1, Paul F. Fischer 2 and C. Ross Ethier 1 1 University of Toronto and 2 Argonne National

More information

Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations

Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 27; : 9 [Version: 22/9/8 v.] Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations

More information

A CRITICAL COMPARISON OF TWO DISCONTINUOUS GALERKIN METHODS FOR THE NAVIER-STOKES EQUATIONS USING SOLENOIDAL APPROXIMATIONS

A CRITICAL COMPARISON OF TWO DISCONTINUOUS GALERKIN METHODS FOR THE NAVIER-STOKES EQUATIONS USING SOLENOIDAL APPROXIMATIONS 7th Workshop on Numerical Methods in Applied Science and Engineering (NMASE 8) Vall de Núria, 9 a de enero de 28 c LaCàN, www.lacan-upc.es A CRITICAL COMPARISON OF TWO DISCONTINUOUS GALERKIN METHODS FOR

More information