Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University

Size: px
Start display at page:

Download "Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University"

Transcription

1 Hyperbolic Systems of Conservation Laws in One Space Dimension I - Basic concepts Alberto Bressan Department of Mathematics, Penn State University 1

2 The Scalar Conservation Law u t + f(u) x = 0 u : conserved quantity f(u) : flux d dt b a u(t, x) dx = b a u t (t, x) dx = b a f(u(t, x)) x dx = f(u(t, a)) f(u(t, b)) = [inflow at a] [outflow at b]. u a b ξ x 2

3 Example : Traffic Flow ρ = density of cars a b x d dt b a ρ(t, x) dx = [flux of cars entering at a] [flux of cars exiting at b] flux: f(t, x) =[number of cars crossing the point x per unit time] = [density] [velocity] t ρ + x [ρ v(ρ)] = 0 3

4 Weak solutions u a b ξ x conservation equation: u t + f(u) x = 0 quasilinear form: u t + a(u)u x = 0 a(u) = f (u) Conservation equation remains meaningful for u = u(t, x) discontinuous, in distributional sense: {uφ t + f(u)φ x } dxdt = 0 for all φ Cc 1 Need only : u, f(u) locally integrable 4

5 Convergence u t + f(u) x = 0 Assume: u n is a solution for n 1, u n u f(u n ) f(u) in L 1 loc then {uφ t + f(u)φ x } dxdt = lim n {u n φ t + f(u n )φ x } dxdt = 0 for all φ C 1 c. Hence u is a weak solution as well. 5

6 Systems of Conservation Laws t u 1 + x f 1(u 1,..., u n ) = 0, t u n + x f n(u 1,..., u n ) = 0. u t + f(u) x = 0 u = (u 1,..., u n ) IR n conserved quantities f = (f 1,..., f n ) : IR n IR n fluxes 6

7 Euler equations of gas dynamics (1755) ρ t + (ρv) x = 0 (conservation of mass) (ρv) t + (ρv 2 + p) x = 0 (conservation of momentum) (ρe) t + (ρev + pv) x = 0 (conservation of energy) ρ = mass density v = velocity E = e + v 2 /2 = energy density per unit mass (internal + kinetic) p = p(ρ, e) constitutive relation 7

8 Hyperbolic Systems u t + f(u) x = 0 u = u(t, x) IR n u t + A(u)u x = 0 A(u) = Df(u) The system is strictly hyperbolic if each n n matrix A(u) has real distinct eigenvalues λ 1 (u) < λ 2 (u) < < λ n (u) right eigenvectors r 1 (u),..., r n (u) (column vectors) left eigenvectors l 1 (u),..., l n (u) (row vectors) Ar i = λ i r i Choose bases so that l i r j = l i A = λ i l i { 1 if i = j 0 if i j 8

9 Scalar Equation with Linear Flux u t + f(u) x = 0 f(u) = λu + c u t + λu x = 0 u(0, x) = φ(x) Explicit solution: u(t, x) = φ(x λt) traveling wave with speed f (u) = λ u(0) λ t u(t) x 9

10 A Linear Hyperbolic System u t + Au x = 0 u(0, x) = φ(x) λ 1 < < λ n eigenvalues { r1,..., r n right eigenvectors l 1,..., r n left eigenvectors Explicit solution: linear superposition of travelling waves u(t, x) = i φ i (x λ i t)r i φ i (s) = l i φ(s) u 1 u 2 x 10

11 Nonlinear Effects u t + A(u)u x = 0 eigenvalues depend on u = waves change shape u(0) u(t) x 11

12 eigenvectors depend on u = nontrivial wave interactions t t x x linear nonlinear 12

13 Loss of Regularity u t + f(u) x = 0 u(0, x) = φ(x) Method of characteristics yields: u ( t, x 0 + t f (φ(x 0 )) ) = φ(x 0 ) characteristic speed = f (u) u(0) u(t) Global solutions only in a space of discontinuous functions x u(t, ) BV 13

14 Wave Interactions u t = A(u)u x λ i (u) = i-th eigenvalue u i x l i (u), r i (u) = i-th eigenvectors. = l i u x = [i-th component of u x ] = [density of i-waves in u] u x = n u i xr i (u) u t = i=1 n λ i (u)u i xr i (u) i=1 differentiate first equation w.r.t. t, second one w.r.t. x = evolution equation for scalar components u i x (u i x ) t + (λ i u i x ) x = j>k(λ j λ k ) ( l i [r j, r k ] ) u j x uk x 14

15 source terms: (λ j λ k ) ( l i [r j, r k ] ) u j xu k x = amount of i-waves produced by the interaction of j-waves with k-waves λ j λ k = [difference in speed] = [rate at which j-waves and k-waves cross each other] u j xu k x = [density of j-waves] [density of k-waves] [r j, r k ] = (Dr k )r j (Dr j )r k (Lie bracket) = [directional derivative of r k in the direction of r j ] [directional derivative of r j in the direction of r k ] l i [r j, r k ] = i-th component of the Lie bracket [r j, r k ] along the basis of eigenvectors {r 1,..., r n } 15

16 Shock solutions u t + f(u) x = 0 u(t, x) = { u if x < λt u + if x > λt is a weak solution if and only if λ [u + u ] = f(u + ) f(u ) Rankine - Hugoniot equations [speed of the shock] [jump in the state] = [jump in the flux] 16

17 Derivation of the Rankine - Hugoniot Equations {uφt + f(u)φ x } dxdt = 0 for all φ C 1 c x u = u+ x =λt Supp φ Ω + n u = u n + t v =. ( uφ, f(u)φ ) Ω 0 = = div v dxdt = n + v ds + n v ds Ω + Ω Ω + Ω [λu + f(u + )] φ(t, λt) dt + [ λu + f(u )] φ(t, λt) dt = [λ(u + u ) (f(u + ) f(u )) ] φ(t, λt) dt. 17

18 Alternative formulation: λ (u + u ) = f(u + ) f(u ) = 1 0 Df(θu + + (1 θ)u ) (u + u ) dθ = A(u +, u ) (u + u ) A(u, v). = 1 0 Df(θu + (1 θ)v) dθ = [averaged Jacobian matrix] The Rankine-Hugoniot conditions hold if and only if λ(u + u ) = A(u +, u ) (u + u ) The jump u + u is an eigenvector of the averaged matrix A(u +, u ) The speed λ coincides with the corresponding eigenvalue 18

19 scalar conservation law: u t + f(u) x = 0 f(u) u λ t f (u) u + u + u x λ = f(u+ ) f(u ) u + u = 1 u + u u + u f (s) ds [speed of the shock] = [slope of secant line through u, u + on the graph of f] = [average of the characteristic speeds between u and u + ] 19

20 Points of Approximate Jump The function u = u(t, x) has an approximate jump at a point (τ, ξ) if there exists states u u + and a speed λ such that, calling U(t, x) =. { u if x < λt, u + if x > λt, there holds lim ρ 0+ 1 ρ 2 τ+ρ ξ+ρ τ ρ ξ ρ u(t, x) U(t τ, x ξ) dxdt = 0 (2) t τ. x = λ u u + ξ x Theorem. If u is a weak solution to the system of conservation laws u t +f(u) x = 0 then the Rankine-Hugoniot equations hold at each point of approximate jump. 20

21 Construction of Shock Curves Problem: Given u IR n, find the states u + IR n which, for some speed λ, satisfy the Rankine - Hugoniot equations λ(u + u ) = f(u + ) f(u ) = A(u, u + )(u + u ) Alternative formulation: Fix i {1,..., n}. The jump u + u is a (right) i-eigenvector of the averaged matrix A(u, u + ) if and only if it is orthogonal to all (left) eigenvectors l j (u, u + ) of A(u, u + ), for j i l j (u, u + ) (u + u ) = 0 for all j i (RH i ) Implicit function theorem = for each i there exists a curve s S i (s)(u ) of points that satisfy (RH i ) u ri S i 21

22 Weak solutions can be non-unique Example: a Cauchy problem for Burgers equation u t + (u 2 /2) x = 0 u(0, x) = { 1 if x 0, 0 if x < 0. Each α [0, 1] yields a weak solution u α (t, x) = { 0 if x < αt/2, α if αt/2 x < (1 + α)t/2, 1 if x (1 + α)t/2. 1 α u = 0 x= α t/2 u = α u = 1 0 x 0 x 22

23 Admissibility Conditions on Shocks For physical systems: a concave entropy should not decrease For general hyperbolic systems: require stability w.r.t. small perturbations 23

24 Stability Conditions: the Scalar Case Perturb the shock with left and right states u, u + by inserting an intermediate state u [u, u + ] Initial shock is stable [speed of jump behind] [speed of jump ahead] f(u ) f(u ) u u f(u+ ) f(u ) u + u u + _ u u* u* _ u u + x x 24

25 speed of a shock = slope of a secant line to the graph of f f f u- u* u + u+ u* u- Stability conditions: when u < u + the graph of f should remain above the secant line when u > u +, the graph of f should remain below the secant line 25

26 General Stability Conditions Scalar case: stability holds if and only if f(u ) f(u ) f(u+ ) f(u ) u u u + u f(u) f(u) u u* u + + u u * Vector valued case: u + = S i (σ)(u ) for some σ IR. u Admissibility Condition (T.P.Liu, 1976). The speed λ(σ) of the shock joining u with u + must be less or equal to the speed of every smaller shock, joining u with an intermediate state u = S i (s)(u ), s [0, σ]. λ(u, u + ) λ(u, u ) u u* + σ i u = S ( ) (u ) 26

27 x = γ (t) x = α t / 2 Admissibility Condition (P. Lax, 1957) A shock connecting the states u, u +, travelling with speed λ = λ i (u, u + ) is admissible if λ i (u ) λ i (u, u + ) λ i (u + ) [Liu condition] = [Lax condition] 27

28 Entropy - Entropy Flux u t + f(u) x = 0 Definition. A function η : IR n IR is called an entropy, with entropy flux q : IR n IR if Dη(u) Df(u) = Dq(u) For smooth solutions u = u(t, x), this implies η(u) t + q(u) x = Dη u t + Dq u x = Dη Df u x + Dq u x = 0 = η(u) is an additional conserved quantity, with flux q(u) 28

29 Entropy Admissibility Condition A weak solution u of the hyperbolic system u t + f(u) x = 0 is entropy admissible if [η(u)] t + [q(u)] x 0 in the sense of distributions, for every pair (η, q), where η is a convex entropy and q is the corresponding entropy flux. {η(u)ϕ t + q(u)ϕ x } dxdt 0 ϕ C 1 c, ϕ 0 - smooth solutions conserve all entropies - solutions with shocks are admissible if they dissipate all convex entropies 29

30 Existence of entropy - entropy flux pairs Dη(u) Df(u) = Dq(u) ( η u 1 ) η u n f 1 u 1 f n u 1 f 1 u n f n u n = ( q u 1 ) q u n - a system of n equations for 2 unknown functions: η(u), q(u) - over-determined if n > 2 - however, some physical systems (described by several conservation laws) are endowed with natural entropies 30

Hyperbolic Systems of Conservation Laws. I - Basic Concepts

Hyperbolic Systems of Conservation Laws. I - Basic Concepts Hyperbolic Systems of Conservation Laws I - Basic Concepts Alberto Bressan Mathematics Department, Penn State University Alberto Bressan (Penn State) Hyperbolic Systems of Conservation Laws 1 / 27 The

More information

Lecture Notes on Hyperbolic Conservation Laws

Lecture Notes on Hyperbolic Conservation Laws Lecture Notes on Hyperbolic Conservation Laws Alberto Bressan Department of Mathematics, Penn State University, University Park, Pa. 16802, USA. bressan@math.psu.edu May 21, 2009 Abstract These notes provide

More information

A Very Brief Introduction to Conservation Laws

A Very Brief Introduction to Conservation Laws A Very Brief Introduction to Wen Shen Department of Mathematics, Penn State University Summer REU Tutorial, May 2013 Summer REU Tutorial, May 2013 1 / The derivation of conservation laws A conservation

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. II - Solutions to the Cauchy problem. Alberto Bressan

Hyperbolic Systems of Conservation Laws. in One Space Dimension. II - Solutions to the Cauchy problem. Alberto Bressan Hyperbolic Systems of Conservation Laws in One Space Dimension II - Solutions to the Cauchy problem Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 Global

More information

Hyperbolic Systems of Conservation Laws

Hyperbolic Systems of Conservation Laws Hyperbolic Systems of Conservation Laws III - Uniqueness and continuous dependence and viscous approximations Alberto Bressan Mathematics Department, Penn State University http://www.math.psu.edu/bressan/

More information

Math Partial Differential Equations 1

Math Partial Differential Equations 1 Math 9 - Partial Differential Equations Homework 5 and Answers. The one-dimensional shallow water equations are h t + (hv) x, v t + ( v + h) x, or equivalently for classical solutions, h t + (hv) x, (hv)

More information

The Scalar Conservation Law

The Scalar Conservation Law The Scalar Conservation Law t + f() = 0 = conserved qantity, f() =fl d dt Z b a (t, ) d = Z b a t (t, ) d = Z b a f (t, ) d = f (t, a) f (t, b) = [inflow at a] [otflow at b] f((a)) f((b)) a b Alberto Bressan

More information

Introduction to nonlinear wave models

Introduction to nonlinear wave models Introduction to nonlinear wave models Marko Nedeljkov Department of Mathematics and Informatics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia marko.nedeljkov@dmi.uns.ac.rs http://www.dmi.uns.ac.rs

More information

0.3.4 Burgers Equation and Nonlinear Wave

0.3.4 Burgers Equation and Nonlinear Wave 16 CONTENTS Solution to step (discontinuity) initial condition u(x, 0) = ul if X < 0 u r if X > 0, (80) u(x, t) = u L + (u L u R ) ( 1 1 π X 4νt e Y 2 dy ) (81) 0.3.4 Burgers Equation and Nonlinear Wave

More information

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow Outline Scalar nonlinear conservation laws Traffic flow Shocks and rarefaction waves Burgers equation Rankine-Hugoniot conditions Importance of conservation form Weak solutions Reading: Chapter, 2 R.J.

More information

Numerical Methods for Hyperbolic Conservation Laws Lecture 4

Numerical Methods for Hyperbolic Conservation Laws Lecture 4 Numerical Methods for Hyperbolic Conservation Laws Lecture 4 Wen Shen Department of Mathematics, Penn State University Email: wxs7@psu.edu Oxford, Spring, 018 Lecture Notes online: http://personal.psu.edu/wxs7/notesnumcons/

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Introduction to Hyperbolic Equations The Hyperbolic Equations n-d 1st Order Linear

More information

Hyperbolic Conservation Laws Past and Future

Hyperbolic Conservation Laws Past and Future Hyperbolic Conservation Laws Past and Future Barbara Lee Keyfitz Fields Institute and University of Houston bkeyfitz@fields.utoronto.ca Research supported by the US Department of Energy, National Science

More information

Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3

Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 Tommaso Ruggeri Department of Mathematics and Research Center of Applied Mathematics University of Bologna January 21, 2017 ommaso

More information

Variational formulation of entropy solutions for nonlinear conservation laws

Variational formulation of entropy solutions for nonlinear conservation laws Variational formulation of entropy solutions for nonlinear conservation laws Eitan Tadmor 1 Center for Scientific Computation and Mathematical Modeling CSCAMM) Department of Mathematics, Institute for

More information

Instability of Finite Difference Schemes for Hyperbolic Conservation Laws

Instability of Finite Difference Schemes for Hyperbolic Conservation Laws Instability of Finite Difference Schemes for Hyperbolic Conservation Laws Alberto Bressan ( ), Paolo Baiti ( ) and Helge Kristian Jenssen ( ) ( ) Department of Mathematics, Penn State University, University

More information

Various lecture notes for

Various lecture notes for Various lecture notes for 18311. R. R. Rosales (MIT, Math. Dept., 2-337) April 12, 2013 Abstract Notes, both complete and/or incomplete, for MIT s 18.311 (Principles of Applied Mathematics). These notes

More information

Entropy and Relative Entropy

Entropy and Relative Entropy Entropy and Relative Entropy Joshua Ballew University of Maryland October 24, 2012 Outline Hyperbolic PDEs Entropy/Entropy Flux Pairs Relative Entropy Weak-Strong Uniqueness Weak-Strong Uniqueness for

More information

SOME PRELIMINARY NOTES ON HYPERBOLIC CONSERVATION LAWS

SOME PRELIMINARY NOTES ON HYPERBOLIC CONSERVATION LAWS SOME PRELIMINARY NOTES ON HYPERBOLIC CONSERVATION LAWS KAYYUNNAPARA T. JOSEPH CENTRE FOR APPLICABLE MATHEMATICS TATA INSTITUTE OF FUNDAMENTAL RESEARCH BANGALORE 5665 1. Introduction Many of the physical

More information

AMath 574 February 11, 2011

AMath 574 February 11, 2011 AMath 574 February 11, 2011 Today: Entropy conditions and functions Lax-Wendroff theorem Wednesday February 23: Nonlinear systems Reading: Chapter 13 R.J. LeVeque, University of Washington AMath 574, February

More information

Modeling and Numerical Approximation of Traffic Flow Problems

Modeling and Numerical Approximation of Traffic Flow Problems Modeling and Numerical Approximation of Traffic Flow Problems Prof. Dr. Ansgar Jüngel Universität Mainz Lecture Notes (preliminary version) Winter Contents Introduction Mathematical theory for scalar conservation

More information

MATH 220: Problem Set 3 Solutions

MATH 220: Problem Set 3 Solutions MATH 220: Problem Set 3 Solutions Problem 1. Let ψ C() be given by: 0, < 1, 1 +, 1 < < 0, ψ() = 1, 0 < < 1, 0, > 1, so that it verifies ψ 0, ψ() = 0 if 1 and ψ()d = 1. Consider (ψ j ) j 1 constructed as

More information

Numerical methods for conservation laws with a stochastically driven flux

Numerical methods for conservation laws with a stochastically driven flux Numerical methods for conservation laws with a stochastically driven flux Håkon Hoel, Kenneth Karlsen, Nils Henrik Risebro, Erlend Briseid Storrøsten Department of Mathematics, University of Oslo, Norway

More information

On the Cauchy Problems for Polymer Flooding with Gravitation

On the Cauchy Problems for Polymer Flooding with Gravitation On the Cauchy Problems for Polymer Flooding with Gravitation Wen Shen Mathematics Department, Penn State University Abstract We study two systems of conservation laws for polymer flooding in secondary

More information

On the Dependence of Euler Equations on Physical Parameters

On the Dependence of Euler Equations on Physical Parameters On the Dependence of Euler Equations on Physical Parameters Cleopatra Christoforou Department of Mathematics, University of Houston Joint Work with: Gui-Qiang Chen, Northwestern University Yongqian Zhang,

More information

On finite time BV blow-up for the p-system

On finite time BV blow-up for the p-system On finite time BV blow-up for the p-system Alberto Bressan ( ), Geng Chen ( ), and Qingtian Zhang ( ) (*) Department of Mathematics, Penn State University, (**) Department of Mathematics, University of

More information

On the Cauchy Problems for Polymer Flooding with Gravitation

On the Cauchy Problems for Polymer Flooding with Gravitation On the Cauchy Problems for Polymer Flooding with Gravitation Wen Shen Mathematics Department, Penn State University. Email: wxs27@psu.edu November 5, 2015 Abstract We study two systems of conservation

More information

Applications of the compensated compactness method on hyperbolic conservation systems

Applications of the compensated compactness method on hyperbolic conservation systems Applications of the compensated compactness method on hyperbolic conservation systems Yunguang Lu Department of Mathematics National University of Colombia e-mail:ylu@unal.edu.co ALAMMI 2009 In this talk,

More information

Shock on the left: locus where cars break behind the light.

Shock on the left: locus where cars break behind the light. Review/recap of theory so far. Evolution of wave profile, as given by the characteristic solution. Graphical interpretation: Move each point on graph at velocity c(ρ). Evolution as sliding of horizontal

More information

Scalar conservation laws with moving density constraints arising in traffic flow modeling

Scalar conservation laws with moving density constraints arising in traffic flow modeling Scalar conservation laws with moving density constraints arising in traffic flow modeling Maria Laura Delle Monache Email: maria-laura.delle monache@inria.fr. Joint work with Paola Goatin 14th International

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

Dynamics of Propagation and Interaction of Delta-Shock Waves in Conservation Law Systems

Dynamics of Propagation and Interaction of Delta-Shock Waves in Conservation Law Systems Dynamics of Propagation and Interaction of Delta-Shock Waves in Conservation Law Systems V. G. Danilov and V. M. Shelkovich Abstract. We introduce a new definition of a δ-shock wave type solution for a

More information

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x CapSel Euler - 01 The Euler equations keppens@rijnh.nl conservation laws for 1D dynamics of compressible gas ρ t + (ρ v) x = 0 m t + (m v + p) x = 0 e t + (e v + p v) x = 0 vector of conserved quantities

More information

Intersection Models and Nash Equilibria for Traffic Flow on Networks

Intersection Models and Nash Equilibria for Traffic Flow on Networks Intersection Models and Nash Equilibria for Traffic Flow on Networks Alberto Bressan Department of Mathematics, Penn State University bressan@math.psu.edu (Los Angeles, November 2015) Alberto Bressan (Penn

More information

Existence Theory for Hyperbolic Systems of Conservation Laws with General Flux-Functions

Existence Theory for Hyperbolic Systems of Conservation Laws with General Flux-Functions Existence Theory for Hyperbolic Systems of Conservation Laws with General Flux-Functions Tatsuo Iguchi & Philippe G. LeFloch Abstract For the Cauchy problem associated with a nonlinear, strictly hyperbolic

More information

Alberto Bressan. Department of Mathematics, Penn State University

Alberto Bressan. Department of Mathematics, Penn State University Non-cooperative Differential Games A Homotopy Approach Alberto Bressan Department of Mathematics, Penn State University 1 Differential Games d dt x(t) = G(x(t), u 1(t), u 2 (t)), x(0) = y, u i (t) U i

More information

Answers to Problem Set Number 04 for MIT (Spring 2008)

Answers to Problem Set Number 04 for MIT (Spring 2008) Answers to Problem Set Number 04 for 18.311 MIT (Spring 008) Rodolfo R. Rosales (MIT, Math. Dept., room -337, Cambridge, MA 0139). March 17, 008. Course TA: Timothy Nguyen, MIT, Dept. of Mathematics, Cambridge,

More information

Conservation laws and some applications to traffic flows

Conservation laws and some applications to traffic flows Conservation laws and some applications to traffic flows Khai T. Nguyen Department of Mathematics, Penn State University ktn2@psu.edu 46th Annual John H. Barrett Memorial Lectures May 16 18, 2016 Khai

More information

Conservation law equations : problem set

Conservation law equations : problem set Conservation law equations : problem set Luis Silvestre For Isaac Neal and Elia Portnoy in the 2018 summer bootcamp 1 Method of characteristics For the problems in this section, assume that the solutions

More information

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2 Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer ringhofer@asu.edu, C2 b 2 2 h2 x u http://math.la.asu.edu/ chris Last update: Jan 24, 2006 1 LITERATURE 1. Numerical Methods for Conservation

More information

Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System

Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System Joshua Ballew University of Maryland College Park Applied PDE RIT March 4, 2013 Outline Description of the Model Relative Entropy Weakly

More information

Introduction to hyperbolic PDEs and Shallow Water Equations

Introduction to hyperbolic PDEs and Shallow Water Equations Introduction to hyperbolic PDEs and Shallow Water Equations Technische Universität München Fundamentals of Wave Simulation - Solving Hyperbolic Systems of PDEs Supervisor Leonhard Rannabauer 8/12/2017

More information

Non-linear Scalar Equations

Non-linear Scalar Equations Non-linear Scalar Equations Professor Dr. E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro August 24, 2014 1 / 44 Overview Here

More information

Archimedes Center for Modeling, Analysis & Computation. Singular solutions in elastodynamics

Archimedes Center for Modeling, Analysis & Computation. Singular solutions in elastodynamics Archimedes Center for Modeling, Analysis & Computation Singular solutions in elastodynamics Jan Giesselmann joint work with A. Tzavaras (University of Crete and FORTH) Supported by the ACMAC project -

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 31 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Linearization and Characteristic Relations 1 / 31 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

More information

Lecture 5.7 Compressible Euler Equations

Lecture 5.7 Compressible Euler Equations Lecture 5.7 Compressible Euler Equations Nomenclature Density u, v, w Velocity components p E t H u, v, w e S=c v ln p - c M Pressure Total energy/unit volume Total enthalpy Conserved variables Internal

More information

Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models

Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models F Berthelin 1,3, T Goudon 1,3, and S Mineaud,3 1 Inria, Sophia Antipolis Méditerranée Research Centre, Proect COFFEE Inria,

More information

Nonlinear stability of compressible vortex sheets in two space dimensions

Nonlinear stability of compressible vortex sheets in two space dimensions of compressible vortex sheets in two space dimensions J.-F. Coulombel (Lille) P. Secchi (Brescia) CNRS, and Team SIMPAF of INRIA Futurs Evolution Equations 2006, Mons, August 29th Plan 1 2 3 Related problems

More information

Regularity and Lyapunov stabilization of weak entropy solutions to scalar conservation laws

Regularity and Lyapunov stabilization of weak entropy solutions to scalar conservation laws 1 Regularity and Lyapunov stabilization of weak entropy solutions to scalar conservation laws Sébastien Blandin, Xavier Litrico, Maria Laura Delle Monache, Benedetto Piccoli and Alexandre Bayen Abstract

More information

Solutions in the sense of distributions. Solutions in the sense of distributions Definition, non uniqueness

Solutions in the sense of distributions. Solutions in the sense of distributions Definition, non uniqueness Solutions in the sense of distributions Definition, non uniqueness 1. Notion of distributions In order to build weak solutions to the Hopf equation, we need to define derivatives of non smooth functions,

More information

The LWR model on a network

The LWR model on a network Mathematical Models of Traffic Flow (October 28 November 1, 2007) Mauro Garavello Benedetto Piccoli DiSTA I.A.C. Università del Piemonte Orientale C.N.R. Via Bellini, 25/G Viale del Policlinico, 137 15100

More information

A model for a network of conveyor belts with discontinuous speed and capacity

A model for a network of conveyor belts with discontinuous speed and capacity A model for a network of conveyor belts with discontinuous speed and capacity Adriano FESTA Seminario di Modellistica differenziale Numerica - 6.03.2018 work in collaboration with M. Pfirsching, S. Goettlich

More information

The Riemann problem. The Riemann problem Rarefaction waves and shock waves

The Riemann problem. The Riemann problem Rarefaction waves and shock waves The Riemann problem Rarefaction waves and shock waves 1. An illuminating example A Heaviside function as initial datum Solving the Riemann problem for the Hopf equation consists in describing the solutions

More information

Numerical discretization of tangent vectors of hyperbolic conservation laws.

Numerical discretization of tangent vectors of hyperbolic conservation laws. Numerical discretization of tangent vectors of hyperbolic conservation laws. Michael Herty IGPM, RWTH Aachen www.sites.google.com/michaelherty joint work with Benedetto Piccoli MNCFF 2014, Bejing, 22.5.2014

More information

Traffic models on a network of roads

Traffic models on a network of roads Traic models on a network o roads Alberto Bressan Department o Mathematics, Penn State University bressan@math.psu.edu Center or Interdisciplinary Mathematics Alberto Bressan (Penn State) Traic low on

More information

On a Lyapunov Functional Relating Shortening Curves and Viscous Conservation Laws

On a Lyapunov Functional Relating Shortening Curves and Viscous Conservation Laws On a Lyapunov Functional Relating Shortening Curves and Viscous Conservation Laws Stefano Bianchini and Alberto Bressan S.I.S.S.A., Via Beirut 4, Trieste 34014 Italy. E-mail addresses: bianchin@mis.mpg.de,

More information

S. N. Kruzhkov s lectures on first-order quasilinear PDEs

S. N. Kruzhkov s lectures on first-order quasilinear PDEs to appear in: Analytical and Numerical Aspects of PDEs de Gruyter 2009 S. N. Kruzhkov s lectures on first-order quasilinear PDEs Gregory A. Chechkin and Andrey Yu. Goritsky Abstract. The present contribution

More information

Global Existence of Large BV Solutions in a Model of Granular Flow

Global Existence of Large BV Solutions in a Model of Granular Flow This article was downloaded by: [Pennsylvania State University] On: 08 February 2012, At: 09:55 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

More information

MATH 220: Problem Set 3 Solutions

MATH 220: Problem Set 3 Solutions MATH 220: Problem Set 3 Solutions Problem 1. Let ψ C() be given by: 0, x < 1, 1 + x, 1 < x < 0, ψ(x) = 1 x, 0 < x < 1, 0, x > 1, so that it verifies ψ 0, ψ(x) = 0 if x 1 and ψ(x)dx = 1. Consider (ψ j )

More information

Modeling Rarefaction and Shock waves

Modeling Rarefaction and Shock waves April 30, 2013 Inroduction Inroduction Rarefaction and shock waves are combinations of two wave fronts created from the initial disturbance of the medium. Inroduction Rarefaction and shock waves are combinations

More information

Renormalized and entropy solutions of partial differential equations. Piotr Gwiazda

Renormalized and entropy solutions of partial differential equations. Piotr Gwiazda Renormalized and entropy solutions of partial differential equations Piotr Gwiazda Note on lecturer Professor Piotr Gwiazda is a recognized expert in the fields of partial differential equations, applied

More information

The Discontinuous Galerkin Method for Hyperbolic Problems

The Discontinuous Galerkin Method for Hyperbolic Problems Chapter 2 The Discontinuous Galerkin Method for Hyperbolic Problems In this chapter we shall specify the types of problems we consider, introduce most of our notation, and recall some theory on the DG

More information

On weak solution approach to problems in fluid dynamics

On weak solution approach to problems in fluid dynamics On weak solution approach to problems in fluid dynamics Eduard Feireisl based on joint work with J.Březina (Tokio), C.Klingenberg, and S.Markfelder (Wuerzburg), O.Kreml (Praha), M. Lukáčová (Mainz), H.Mizerová

More information

Coupling conditions for transport problems on networks governed by conservation laws

Coupling conditions for transport problems on networks governed by conservation laws Coupling conditions for transport problems on networks governed by conservation laws Michael Herty IPAM, LA, April 2009 (RWTH 2009) Transport Eq s on Networks 1 / 41 Outline of the Talk Scope: Boundary

More information

Nonlinear Regularizing Effects for Hyperbolic Conservation Laws

Nonlinear Regularizing Effects for Hyperbolic Conservation Laws Nonlinear Regularizing Effects for Hyperbolic Conservation Laws Ecole Polytechnique Centre de Mathématiques Laurent Schwartz Collège de France, séminaire EDP, 4 mai 2012 Motivation Consider Cauchy problem

More information

On a simple model of isothermal phase transition

On a simple model of isothermal phase transition On a simple model of isothermal phase transition Nicolas Seguin Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris 6 France Micro-Macro Modelling and Simulation of Liquid-Vapour Flows

More information

WEAK ASYMPTOTIC SOLUTION FOR A NON-STRICTLY HYPERBOLIC SYSTEM OF CONSERVATION LAWS-II

WEAK ASYMPTOTIC SOLUTION FOR A NON-STRICTLY HYPERBOLIC SYSTEM OF CONSERVATION LAWS-II Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 94, pp. 1 14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu WEAK ASYMPTOTIC

More information

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. Printed Name: Signature: Applied Math Qualifying Exam 11 October 2014 Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. 2 Part 1 (1) Let Ω be an open subset of R

More information

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Alberto Bressan ) and Khai T. Nguyen ) *) Department of Mathematics, Penn State University **) Department of Mathematics,

More information

Radon measure solutions for scalar. conservation laws. A. Terracina. A.Terracina La Sapienza, Università di Roma 06/09/2017

Radon measure solutions for scalar. conservation laws. A. Terracina. A.Terracina La Sapienza, Università di Roma 06/09/2017 Radon measure A.Terracina La Sapienza, Università di Roma 06/09/2017 Collaboration Michiel Bertsch Flavia Smarrazzo Alberto Tesei Introduction Consider the following Cauchy problem { ut + ϕ(u) x = 0 in

More information

1. Introduction. Consider a strictly hyperbolic system of n conservation laws. 1 if i = j, 0 if i j.

1. Introduction. Consider a strictly hyperbolic system of n conservation laws. 1 if i = j, 0 if i j. SIAM J MATH ANAL Vol 36, No, pp 659 677 c 4 Society for Industrial and Applied Mathematics A SHARP DECAY ESTIMATE FOR POSITIVE NONLINEAR WAVES ALBERTO BRESSAN AND TONG YANG Abstract We consider a strictly

More information

Global Riemann Solver and Front Tracking Approximation of Three-Component Gas Floods

Global Riemann Solver and Front Tracking Approximation of Three-Component Gas Floods Global Riemann Solver and Front Tracking Approximation of Three-Component Gas Floods Saeid Khorsandi (1), Wen Shen (2) and Russell T. Johns (3) (1) Department of Energy and Mineral Engineering, Penn State

More information

MATH 220: MIDTERM OCTOBER 29, 2015

MATH 220: MIDTERM OCTOBER 29, 2015 MATH 22: MIDTERM OCTOBER 29, 25 This is a closed book, closed notes, no electronic devices exam. There are 5 problems. Solve Problems -3 and one of Problems 4 and 5. Write your solutions to problems and

More information

SHOCK WAVES FOR RADIATIVE HYPERBOLIC ELLIPTIC SYSTEMS

SHOCK WAVES FOR RADIATIVE HYPERBOLIC ELLIPTIC SYSTEMS SHOCK WAVES FOR RADIATIVE HYPERBOLIC ELLIPTIC SYSTEMS CORRADO LATTANZIO, CORRADO MASCIA, AND DENIS SERRE Abstract. The present paper deals with the following hyperbolic elliptic coupled system, modelling

More information

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Alexander Chesnokov Lavrentyev Institute of Hydrodynamics Novosibirsk, Russia chesnokov@hydro.nsc.ru July 14,

More information

Scalar Conservation Laws and First Order Equations Introduction. Consider equations of the form. (1) u t + q(u) x =0, x R, t > 0.

Scalar Conservation Laws and First Order Equations Introduction. Consider equations of the form. (1) u t + q(u) x =0, x R, t > 0. Scalar Conservation Laws and First Order Equations Introduction. Consider equations of the form (1) u t + q(u) x =, x R, t >. In general, u = u(x, t) represents the density or the concentration of a physical

More information

0.2. CONSERVATION LAW FOR FLUID 9

0.2. CONSERVATION LAW FOR FLUID 9 0.2. CONSERVATION LAW FOR FLUID 9 Consider x-component of Eq. (26), we have D(ρu) + ρu( v) dv t = ρg x dv t S pi ds, (27) where ρg x is the x-component of the bodily force, and the surface integral is

More information

Hyperbolicity singularities in rarefaction waves

Hyperbolicity singularities in rarefaction waves Hyperbolicity singularities in rarefaction waves Alexei A. Mailybaev and Dan Marchesin Abstract For mixed-type systems of conservation laws, rarefaction waves may contain states at the boundary of the

More information

Differentiability with respect to initial data for a scalar conservation law

Differentiability with respect to initial data for a scalar conservation law Differentiability with respect to initial data for a scalar conservation law François BOUCHUT François JAMES Abstract We linearize a scalar conservation law around an entropy initial datum. The resulting

More information

Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation

Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation W.L. Jin and H.M. Zhang August 3 Abstract: In this paper we study the Payne-Whitham (PW) model as

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2007 106:369 425 DOI 10.1007/s00211-007-0069-y Numerische Mathematik Hyperbolic balance laws: Riemann invariants and the generalized Riemann problem Matania Ben-Artzi Jiequan Li Received:

More information

2D compressible vortex sheets. Paolo Secchi

2D compressible vortex sheets. Paolo Secchi 2D compressible vortex sheets Paolo Secchi Department of Mathematics Brescia University Joint work with J.F. Coulombel EVEQ 2008, International Summer School on Evolution Equations, Prague, Czech Republic,

More information

arxiv: v1 [math.ap] 22 Sep 2017

arxiv: v1 [math.ap] 22 Sep 2017 Global Riemann Solvers for Several 3 3 Systems of Conservation Laws with Degeneracies arxiv:1709.07675v1 [math.ap] 22 Sep 2017 Wen Shen Mathematics Department, Pennsylvania State University, University

More information

1 Basic Second-Order PDEs

1 Basic Second-Order PDEs Partial Differential Equations A. Visintin a.a. 2011-12 These pages are in progress. They contain: an abstract of the classes; notes on some (few) specific issues. These notes are far from providing a

More information

Stable, Oscillatory Viscous Profiles of Weak, non-lax Shocks in Systems of Stiff Balance Laws

Stable, Oscillatory Viscous Profiles of Weak, non-lax Shocks in Systems of Stiff Balance Laws Stable, Oscillatory Viscous Profiles of Weak, non-lax Shocks in Systems of Stiff Balance Laws Stefan Liebscher liebsch@math.fu-berlin.de http://www.math.fu-berlin.de/ Dynamik/ Dissertation eingereicht

More information

Waves in a Shock Tube

Waves in a Shock Tube Waves in a Shock Tube Ivan Christov c February 5, 005 Abstract. This paper discusses linear-wave solutions and simple-wave solutions to the Navier Stokes equations for an inviscid and compressible fluid

More information

Nonlinear Wave Propagation in 1D Random Media

Nonlinear Wave Propagation in 1D Random Media Nonlinear Wave Propagation in 1D Random Media J. B. Thoo, Yuba College UCI Computational and Applied Math Seminar Winter 22 Typeset by FoilTEX Background O Doherty and Anstey (Geophysical Prospecting,

More information

An Introduction to the Finite Volume Method for the Equations of Gas Dynamics

An Introduction to the Finite Volume Method for the Equations of Gas Dynamics . Introduction An Introduction to the Finite Volume Method for the Equations of Gas Dynamics Richard Sanders (sanders@math.uh.edu) Department of Mathematics University of Houston Houston, TX 7724-3476

More information

ON COMPARISON PRINCIPLES FOR

ON COMPARISON PRINCIPLES FOR Monografías Matemáticas García de Galdeano 39, 177 185 (214) ON COMPARISON PRINCIPLES FOR WEAK SOLUTIONS OF DOUBLY NONLINEAR REACTION-DIFFUSION EQUATIONS Jochen Merker and Aleš Matas Abstract. The weak

More information

E = where γ > 1 is a constant spesific to the gas. For air, γ 1.4. Solving for p, we get. 2 ρv2 + (γ 1)E t

E = where γ > 1 is a constant spesific to the gas. For air, γ 1.4. Solving for p, we get. 2 ρv2 + (γ 1)E t . The Euler equations The Euler equations are often used as a simplification of the Navier-Stokes equations as a model of the flow of a gas. In one space dimension these represent the conservation of mass,

More information

NONCLASSICAL SHOCK WAVES OF CONSERVATION LAWS: FLUX FUNCTION HAVING TWO INFLECTION POINTS

NONCLASSICAL SHOCK WAVES OF CONSERVATION LAWS: FLUX FUNCTION HAVING TWO INFLECTION POINTS Electronic Journal of Differential Equations, Vol. 2006(2006), No. 149, pp. 1 18. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) NONCLASSICAL

More information

Measure-valued - strong uniqueness for hyperbolic systems

Measure-valued - strong uniqueness for hyperbolic systems Measure-valued - strong uniqueness for hyperbolic systems joint work with Tomasz Debiec, Eduard Feireisl, Ondřej Kreml, Agnieszka Świerczewska-Gwiazda and Emil Wiedemann Institute of Mathematics Polish

More information

Analysis on Linear Stability of Oblique Shock Waves in Steady Supersonic Flow

Analysis on Linear Stability of Oblique Shock Waves in Steady Supersonic Flow Analysis on Linear Stability of Oblique Shock Waves in Steady Supersonic Flow Dening Li Department of Mathematics, West Virginia University, USA Abstract An attached oblique shock wave is generated when

More information

Transportation Feedback Control Problems

Transportation Feedback Control Problems ITS Evacuation and Economic Controls Conservation Traffic Models: 1D Traffic Models: 2D Conservation Law Solutions Conclusions Transportation Feedback Control Problems Microscopic to Macroscopic perspective

More information

STABILITY ESTIMATES FOR SCALAR CONSERVATION LAWS WITH MOVING FLUX CONSTRAINTS. Maria Laura Delle Monache. Paola Goatin

STABILITY ESTIMATES FOR SCALAR CONSERVATION LAWS WITH MOVING FLUX CONSTRAINTS. Maria Laura Delle Monache. Paola Goatin Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 200X doi:10.3934/xx.xx.xx.xx pp. X XX STABILITY ESTIMATES FO SCALA CONSEVATION LAWS WITH MOVING FLUX CONSTAINTS Maria Laura Delle Monache Department

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Implicit Schemes for the Model Problem The Crank-Nicolson scheme and θ-scheme

More information

Balance laws with integrable unbounded sources

Balance laws with integrable unbounded sources Università di Milano Bicocca Quaderni di Matematica Balance laws with integrable unbounded sources Graziano Guerra, Francesca Marcellini and Veronika Schleper Quaderno n. 8/28 arxiv:89.2664v Stampato nel

More information

PHYS 643 Week 4: Compressible fluids Sound waves and shocks

PHYS 643 Week 4: Compressible fluids Sound waves and shocks PHYS 643 Week 4: Compressible fluids Sound waves and shocks Sound waves Compressions in a gas propagate as sound waves. The simplest case to consider is a gas at uniform density and at rest. Small perturbations

More information

Notes: Outline. Diffusive flux. Notes: Notes: Advection-diffusion

Notes: Outline. Diffusive flux. Notes: Notes: Advection-diffusion Outline This lecture Diffusion and advection-diffusion Riemann problem for advection Diagonalization of hyperbolic system, reduction to advection equations Characteristics and Riemann problem for acoustics

More information

L 1 stability of conservation laws for a traffic flow model

L 1 stability of conservation laws for a traffic flow model Electronic Journal of Differential Equations, Vol. 2001(2001), No. 14, pp. 1 18. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu ftp ejde.math.unt.edu (login:

More information