An Optimization-based Framework for Controlling Discretization Error through Anisotropic h-adaptation

Size: px
Start display at page:

Download "An Optimization-based Framework for Controlling Discretization Error through Anisotropic h-adaptation"

Transcription

1 An Optimization-based Framework for Controlling Discretization Error through Anisotropic h-adaptation Masayuki Yano and David Darmofal Aerospace Computational Design Laboratory Massachusetts Institute of Technology Acknowledgement: Dr. Steven Allmaras, ProjectX Team, The Boeing Company March 24, 2011 M. Yano (MIT) FEF 2011 March 24, / 22

2 Outline 1 Introduction 2 Optimization Framework : Anisotropic h-adaptation 3 Results : L 2 Error Control 4 Results : Functional Output Error Control 5 Conclusion M. Yano (MIT) FEF 2011 March 24, / 22

3 Objective and Approach Objective: Realize the full potential of high order methods through automated mesh adaptation and error control Our Choice of technologies: Discontinuous Galerkin (DG) method hp-flexible on unstructured meshes Regularity limited convergence - shocks, geometric singularities, turbulence models Adjoint-based error estimator Error estimate / localization for output of interest (e.g. lift, drag) Simplex mesh adaptation Complex geometries Arbitrarily oriented anisotropy M. Yano (MIT) FEF 2011 March 24, / 22

4 Functional Error Estimation and Localization Problem: Find J(u) with u V s.t. R(u, v) = 0 v V Error representation formula [Becker, 2001] E J h,p (u h,p ) J(u) = R h,p (u h,p, ψ), Local error indicator η K R h,p (u h,p, ψ h,p+1 K ) Error indicator assigns 1 value to each element Only sufficient for 1 parameter adaptation ψ = adjoint type n param parameters η K sufficient isotropic h 1 size isotropic hp 2 size, poly. order anisotropic h 3 (6) size, shape anisotropic hp 4 (7) size, shape, poly. order M. Yano (MIT) FEF 2011 March 24, / 22

5 Review of Anisotropic h-adaptation Need additional info to make anisotropy decision Previous work on output-based anisotropic h-adaptation Method p > 1 ψ ani. simplex Mach Hessian [Venditti, 2003] Mach Hessian [Fidkowski, 2007] Mach jump [Hartmann, 2008] Edge comp. ref [Park, 2008][Sun, 2009] Comp. ref. [Georgoulis, 2009][Ceze, 2010] Flux reconstruction + C.V. [Loseille, 2010] Anisotropic error estimate [Richter, 2010] Contribution : Anisotropic h-adaptation framework for simplex meshes that can be used with any error indicator M. Yano (MIT) FEF 2011 March 24, / 22

6 Outline 1 Introduction 2 Optimization Framework : Anisotropic h-adaptation 3 Results : L 2 Error Control 4 Results : Functional Output Error Control 5 Conclusion M. Yano (MIT) FEF 2011 March 24, / 22

7 Problem Definition / Example Objective: Develop optimal anisotropic mesh Example problem: L 2 -projection error control of boundary layer ( E D (T h ) = u u h,p 2 L 2 (Ω) where u = exp x ) 1 δ C D (T h ) = DOF(T h ) u = exp( x 1 /δ) optimal isotropic mesh optimal anisotropic mesh (δ = 0.01) E 1 2 = E 1 2 = *each mesh has 200 elements (p = 3) M. Yano (MIT) FEF 2011 March 24, / 22

8 Continuous Relaxation (Intractable) discrete optimization problem T h,opt = arg min T h E D (T h ) s.t. C D (T h ) = DOF target Approximability of T h encoded in metric tensor field M(x) Sym + d Continuous relaxation (d d SPD matrix) M opt = arg min M E(M) s.t. C(M) = DOF target Mesh Gen. Metric Field M Implied Metric Mesh T h M. Yano (MIT) FEF 2011 March 24, / 22

9 Continuous Optimization Problem Statement: Seek optimal metric field M opt = arg min M E(M) s.t. C(M) = DOF target Assume locality of error and cost functionals E(M) = e(x, M(x))dx and C(M) = Ω local error function : e(, ) : R d Sym + d R+ local cost function : c(m) = C p det(m) First order optimality Ω c(m(x))dx e c (x, M(x)) λ (x, M(x)) = 0 M M x Ω Need to estimate behavior of e(m) M. Yano (MIT) FEF 2011 March 24, / 22

10 Local Sampling Split edges of K 0 to form K i s, i = 0,..., m Obtain metric M Ki implied by split config. Obtain η Ki Freeze neighbor states Solve local problem Associate η Ki e(m Ki ) K i original edge 1 split edge 2 split edge 3 split uniform split {M K0, η K0 } {M K1, η K1 } {M K2, η K2 } {M K3, η K3 } {M Ku, η Ku } M. Yano (MIT) FEF 2011 March 24, / 22

11 Manipulation of SPD Tensor Space Original problem on Sym + d e c (x, M) λ (x, M) = 0 M M M Sym+ d SPD tensors define cone in Euclidean space Hard to manipulate SPD tensors directly Consider substitutions M(Σ) = M 1/2 0 exp(σ)m 1/2 0 M(Σ) Sym + d Σ Sym d e(f ) = e 0 exp(f ) e(f ) R + f R c(g) = c 0 exp(g) c(g) R + g R New problem on Sym d f e 0 Σ (x, Σ) λc g 0 (x, Σ) = 0 Σ Σ Manipulation of symmetric tensors Approximate f (Σ) and move toward optimality Sym d M. Yano (MIT) FEF 2011 March 24, / 22

12 Local Error Model / Parameter Identification Construct linear approximation of f (Σ) f (Σ) = tr(rσ), R Sym d = rate tensor R is generalization of convergence rate to tensor space tr(r) : sensitivity to uniform scaling R tr d (R)I : sensitivity to shape change Identify R from local samples {M Ki, η Ki } m i=1 Σ K1 R f (Σ K1 ) 11. 2R 12 =. Σ Km R 22 f (Σ Km ) Σ(K i ) = log(m 1/2 0 M Ki M 1/2 0 ) and f (Σ Ki ) = log(η Ki /η K0 ) M. Yano (MIT) FEF 2011 March 24, / 22

13 Discrete Optimality Condition Discrete Optimality Conditions (Anisotropic) Global isotropic error balance : λ R s.t. η K tr(r K ) λ d 2 dof(k ) = 0 Local anisotropic optimality : R K I K T h K T h e.g. R I : more reduction by increasing M 11 than M 22 decrease h 1 and increase h 2 R K,11 R K,22 M. Yano (MIT) FEF 2011 March 24, / 22

14 Algorithm 1 Obtain primal solution u h,p on T (i) h,p 2 Obtain adjoint solution ψ h,p+1 on T (i) h,p+1 (for DWR) 3 Solve local problems and obtain {M Ki, η Ki } m (i) i=0, K T h 4 Construct local error function e(m) ẽ(m; {M Ki, η Ki } m i=0 ) 5 Update metric field M (i+1) 6 Generate new mesh T (i+1) from M (i+1) and go to 1 Adapt 0 : E 1 2 = Adapt 2 : E 1 2 = Adapt 7 : E 1 2 = *each mesh has 200 elements (p = 3) M. Yano (MIT) FEF 2011 March 24, / 22

15 Outline 1 Introduction 2 Optimization Framework : Anisotropic h-adaptation 3 Results : L 2 Error Control 4 Results : Functional Output Error Control 5 Conclusion M. Yano (MIT) FEF 2011 March 24, / 22

16 L 2 Error Optimization Objective: Test algorithm for L 2 -projection error control: E D (T h ) = min u h,p V h,p (T h ) u u h,p 2 L 2 (Ω) Key features Error locality assumption holds Analytical solution obtainable via calculus of variation Functions considered r α -type singularity boundary layer u = r α sin [ α ( )] θ + π 2 (α = 2/3) u = exp( x1 /δ) (δ = 0.01) M. Yano (MIT) FEF 2011 March 24, / 22

17 L 2 Problem 1 : r α -type Singularity Optimal mesh consists of isotropic elements Analytical optimal h distribution h opt (r) = Cr k opt where k opt = 1 α + 1 p + 2 Stronger grading as α decreases or p increases h 10 1 k=0.43 k= k=0.44 k= dof=500 dof=1000 dof=2000 dof= r h k=0.67 k=0.67 k=0.67 k=0.68 dof=500 dof=1000 dof=2000 dof= r p = 1 (k opt = 0.44) p = 3 (k opt = 0.67) M. Yano (MIT) FEF 2011 March 24, / 22

18 L 2 Problem 2 : Boundary Layer Optimal mesh consists of anisotropic elements Analytical optimal h distribution h,opt = C exp ( k,opt x ) where k,opt = Weaker grading for higher p 1 δ(p + 3/2) 10 1 k perp =43.2 k perp = k perp =43.5 k =42.8 perp 10 1 k perp =24.9 k perp = k perp =22.9 k =22.7 perp h h dof=500 dof=1000 dof=2000 dof= x dof=1000 dof=2000 dof=4000 dof= x p = 1 (k,opt = 40.0) p = 3 (k,opt = 22.2) M. Yano (MIT) FEF 2011 March 24, / 22

19 Outline 1 Introduction 2 Optimization Framework : Anisotropic h-adaptation 3 Results : L 2 Error Control 4 Results : Functional Output Error Control 5 Conclusion M. Yano (MIT) FEF 2011 March 24, / 22

20 RAE2822 Transonic Airfoil RANS-SA : M = 0.729, Re c = , α = 2.31 ; p = 2 Objective: Application to transsonic turbulent flow Functional : Drag Comparison : Mach-based anisotropy ( p+1 M) Mach Drag error 10 3 mach ani. unified 10 4 Mass adjoint J J ref dof M. Yano (MIT) FEF 2011 March 24, / 22

21 RAE2822 Transonic Airfoil RANS-SA : M = 0.729, Re c = , α = 2.31 ; p = 2 Anisotropic resolution of features Primal: BLs, wake, shock Adjoint: BLs, stagnation streamline, shock-induced perturbations Unified (p = 2, dof = 60k) Mach anisotropy (p = 2, dof = 60k) M. Yano (MIT) FEF 2011 March 24, / 22

22 NACA0006 Shock Propagation Euler : M = 2.0; p = 2 Objective: Application to sonic-boom prediction Functional : Pressure 50c below airfoil, J = l (p p ) 2 ds Pressure Pressure line output error mach ani. unified Mass adjoint J J ref / J ref dof M. Yano (MIT) FEF 2011 March 24, / 22

23 NACA0006 Shock Propagation Euler : M = 2.0; p = 2 Unified (p = 2, dof = 40k) Mach anisotropy (p = 2, dof = 40k) M. Yano (MIT) FEF 2011 March 24, / 22

24 Three-Element MDA Airfoil RANS-SA : M = 0.2, Re c = , α = 8.10 ; p = 2 Objective: Application to complex turbulent flow Functional : Drag Mach Drag error 10 3 mach ani. unified Mass adjoint J J ref dof M. Yano (MIT) FEF 2011 March 24, / 22

25 Three-Element MDA Airfoil M = 0.2, Re c = , α = 8.10 ; p = 2 Unified (p = 2, dof = 90k) Mach anisotropy (p = 2, dof = 90k) M. Yano (MIT) FEF 2011 March 24, / 22

26 Outline 1 Introduction 2 Optimization Framework : Anisotropic h-adaptation 3 Results : L 2 Error Control 4 Results : Functional Output Error Control 5 Conclusion M. Yano (MIT) FEF 2011 March 24, / 22

27 Conclusion and Ongoing Work Conclusion: Presented optimization based framework for anisotropic h-adaptation Verified optimality of algorithm for L 2 error control Compared performance of algorithm against primal derivative based anisotropy detection Ongoing Work: Extension to hp-adaptation Detailed analysis of error locality assumption Improving robustness of error estimator for highly nonlinear problems M. Yano (MIT) FEF 2011 March 24, / 22

Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics: Overview and Recent Results

Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics: Overview and Recent Results Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics: Overview and Recent Results Krzysztof J. Fidkowski University of Michigan David L. Darmofal Massachusetts Institute of

More information

1st Committee Meeting

1st Committee Meeting 1st Committee Meeting Eric Liu Committee: David Darmofal, Qiqi Wang, Masayuki Yano Massachusetts Institute of Technology Department of Aeronautics and Astronautics Aerospace Computational Design Laboratory

More information

Progress in Mesh-Adaptive Discontinuous Galerkin Methods for CFD

Progress in Mesh-Adaptive Discontinuous Galerkin Methods for CFD Progress in Mesh-Adaptive Discontinuous Galerkin Methods for CFD German Aerospace Center Seminar Krzysztof Fidkowski Department of Aerospace Engineering The University of Michigan May 4, 2009 K. Fidkowski

More information

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology 7th World Congress on Computational Mechanics

More information

Is My CFD Mesh Adequate? A Quantitative Answer

Is My CFD Mesh Adequate? A Quantitative Answer Is My CFD Mesh Adequate? A Quantitative Answer Krzysztof J. Fidkowski Gas Dynamics Research Colloqium Aerospace Engineering Department University of Michigan January 26, 2011 K.J. Fidkowski (UM) GDRC 2011

More information

High order methods have the potential of delivering higher accuracy with less CPU time than lower order

High order methods have the potential of delivering higher accuracy with less CPU time than lower order 21st AIAA Computational Fluid Dynamics Conference June 24-27, 2013, San Diego, CA AIAA 2013-2869 Adjoint Based Anisotropic Mesh Adaptation for the CPR Method Lei Shi and Z.J. Wang Department of Aerospace

More information

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement HONOM 2011 in Trento DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement Institute of Aerodynamics and Flow Technology DLR Braunschweig 11. April 2011 1 / 35 Research

More information

Model reduction of parametrized aerodynamic flows: stability, error control, and empirical quadrature. Masayuki Yano

Model reduction of parametrized aerodynamic flows: stability, error control, and empirical quadrature. Masayuki Yano Model reduction of parametrized aerodynamic flows: stability, error control, and empirical quadrature Masayuki Yano University of Toronto Institute for Aerospace Studies Acknowledgments: Anthony Patera;

More information

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Aravind Balan, Michael Woopen and Georg May AICES Graduate School, RWTH Aachen University, Germany 22nd AIAA Computational

More information

Entropy-Based Drag Error Estimation and Mesh. Adaptation in Two Dimensions

Entropy-Based Drag Error Estimation and Mesh. Adaptation in Two Dimensions Entropy-Based Drag Error Estimation and Mesh Adaptation in Two Dimensions Krzysztof J. Fidkowski, Marco A. Ceze, and Philip L. Roe University of Michigan, Ann Arbor, MI 48109 This paper presents a method

More information

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement

DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement 16th International Conference on Finite Elements in Flow Problems DG Methods for Aerodynamic Flows: Higher Order, Error Estimation and Adaptive Mesh Refinement Institute of Aerodynamics and Flow Technology

More information

High Order Discontinuous Galerkin Methods for Aerodynamics

High Order Discontinuous Galerkin Methods for Aerodynamics High Order Discontinuous Galerkin Methods for Aerodynamics Per-Olof Persson Massachusetts Institute of Technology Collaborators: J. Peraire, J. Bonet, N. C. Nguyen, A. Mohnot Symposium on Recent Developments

More information

An Introduction to the Discontinuous Galerkin Method

An Introduction to the Discontinuous Galerkin Method An Introduction to the Discontinuous Galerkin Method Krzysztof J. Fidkowski Aerospace Computational Design Lab Massachusetts Institute of Technology March 16, 2005 Computational Prototyping Group Seminar

More information

Anisotropic mesh refinement for discontinuous Galerkin methods in two-dimensional aerodynamic flow simulations

Anisotropic mesh refinement for discontinuous Galerkin methods in two-dimensional aerodynamic flow simulations INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2008; 56:2111 2138 Published online 4 September 2007 in Wiley InterScience (www.interscience.wiley.com)..1608 Anisotropic

More information

A Multi-Dimensional Limiter for Hybrid Grid

A Multi-Dimensional Limiter for Hybrid Grid APCOM & ISCM 11-14 th December, 2013, Singapore A Multi-Dimensional Limiter for Hybrid Grid * H. W. Zheng ¹ 1 State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy

More information

On Dual-Weighted Residual Error Estimates for p-dependent Discretizations

On Dual-Weighted Residual Error Estimates for p-dependent Discretizations On Dual-Weighted Residual Error Estimates for p-dependent Discretizations Aerospace Computational Design Laboratory Report TR-11-1 Masayuki Yano and David L. Darmofal September 21, 2011 Abstract This report

More information

A Crash-Course on the Adjoint Method for Aerodynamic Shape Optimization

A Crash-Course on the Adjoint Method for Aerodynamic Shape Optimization A Crash-Course on the Adjoint Method for Aerodynamic Shape Optimization Juan J. Alonso Department of Aeronautics & Astronautics Stanford University jjalonso@stanford.edu Lecture 19 AA200b Applied Aerodynamics

More information

Constrained pseudo-transient continuation

Constrained pseudo-transient continuation INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2015; 102:1683 1703 Published online 17 March 2015 in Wiley Online Library (wileyonlinelibrary.com)..4858 Constrained

More information

A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows

A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows F. Bassi, A. Crivellini, D. A. Di Pietro, S. Rebay Dipartimento di Ingegneria Industriale, Università di Bergamo CERMICS-ENPC

More information

Model reduction of parametrized aerodynamic flows: discontinuous Galerkin RB empirical quadrature procedure. Masayuki Yano

Model reduction of parametrized aerodynamic flows: discontinuous Galerkin RB empirical quadrature procedure. Masayuki Yano Model reduction of parametrized aerodynamic flows: discontinuous Galerkin RB empirical quadrature procedure Masayuki Yano University of Toronto Institute for Aerospace Studies Acknowledgments: Anthony

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

Curved grid generation and DG computation for the DLR-F11 high lift configuration

Curved grid generation and DG computation for the DLR-F11 high lift configuration ECCOMAS Congress 2016, Crete Island, Greece, 5-10 June 2016 Curved grid generation and DG computation for the DLR-F11 high lift configuration Ralf Hartmann 1, Harlan McMorris 2, Tobias Leicht 1 1 DLR (German

More information

AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy

AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy Antony Jameson 1 1 Thomas V. Jones Professor of Engineering Department of Aeronautics and Astronautics Stanford University

More information

The CG1-DG2 method for conservation laws

The CG1-DG2 method for conservation laws for conservation laws Melanie Bittl 1, Dmitri Kuzmin 1, Roland Becker 2 MoST 2014, Germany 1 Dortmund University of Technology, Germany, 2 University of Pau, France CG1-DG2 Method - Motivation hp-adaptivity

More information

Locally Linearized Euler Equations in Discontinuous Galerkin with Legendre Polynomials

Locally Linearized Euler Equations in Discontinuous Galerkin with Legendre Polynomials Locally Linearized Euler Equations in Discontinuous Galerkin with Legendre Polynomials Harald Klimach, Michael Gaida, Sabine Roller harald.klimach@uni-siegen.de 26th WSSP 2017 Motivation Fluid-Dynamic

More information

Aerodynamic Resonance in Transonic Airfoil Flow. J. Nitzsche, R. H. M. Giepman. Institute of Aeroelasticity, German Aerospace Center (DLR), Göttingen

Aerodynamic Resonance in Transonic Airfoil Flow. J. Nitzsche, R. H. M. Giepman. Institute of Aeroelasticity, German Aerospace Center (DLR), Göttingen Aerodynamic Resonance in Transonic Airfoil Flow J. Nitzsche, R. H. M. Giepman Institute of Aeroelasticity, German Aerospace Center (DLR), Göttingen Source: A. Šoda, PhD thesis, 2006 Slide 2/39 Introduction

More information

SAROD Conference, Hyderabad, december 2005 CONTINUOUS MESH ADAPTATION MODELS FOR CFD

SAROD Conference, Hyderabad, december 2005 CONTINUOUS MESH ADAPTATION MODELS FOR CFD 1 SAROD Conference, Hyderabad, december 2005 CONTINUOUS MESH ADAPTATION MODELS FOR CFD Bruno Koobus, 1,2 Laurent Hascoët, 1 Frédéric Alauzet, 3 Adrien Loseille, 3 Youssef Mesri, 1 Alain Dervieux 1 1 INRIA

More information

RANS Solutions Using High Order Discontinuous Galerkin Methods

RANS Solutions Using High Order Discontinuous Galerkin Methods RANS Solutions Using High Order Discontinuous Galerkin Methods Ngoc Cuong Nguyen, Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology, Cambridge, MA 2139, U.S.A. We present a practical

More information

Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems

Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems Krzysztof Fidkowski, David Galbally*, Karen Willcox* (*MIT) Computational Aerospace Sciences Seminar Aerospace Engineering

More information

Finite element exterior calculus framework for geophysical fluid dynamics

Finite element exterior calculus framework for geophysical fluid dynamics Finite element exterior calculus framework for geophysical fluid dynamics Colin Cotter Department of Aeronautics Imperial College London Part of ongoing work on UK Gung-Ho Dynamical Core Project funded

More information

Error Estimation for High Speed Flows Using Continuous and Discrete Adjoints

Error Estimation for High Speed Flows Using Continuous and Discrete Adjoints Error Estimation for High Speed Flows Using and Adjoints Karthikeyan Duraisamy, Juan Alonso Stanford University, Stanford CA 94305, USA Francisco Palacios Madrid Polytechnic University, Madrid 8040, Spain

More information

Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations. Todd A.

Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations. Todd A. Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations by Todd A. Oliver B.S., Massachusetts Institute of Technology (22) Submitted to the

More information

Lattice Boltzmann Methods for Fluid Dynamics

Lattice Boltzmann Methods for Fluid Dynamics Lattice Boltzmann Methods for Fluid Dynamics Steven Orszag Department of Mathematics Yale University In collaboration with Hudong Chen, Isaac Goldhirsch, and Rick Shock Transient flow around a car LBGK

More information

Natural Evolution Strategies for Direct Search

Natural Evolution Strategies for Direct Search Tobias Glasmachers Natural Evolution Strategies for Direct Search 1 Natural Evolution Strategies for Direct Search PGMO-COPI 2014 Recent Advances on Continuous Randomized black-box optimization Thursday

More information

Continuous adjoint based error estimation and r-refinement for the active-flux method

Continuous adjoint based error estimation and r-refinement for the active-flux method Continuous adjoint based error estimation and r-refinement for the active-flux method Kaihua Ding, Krzysztof J. Fidkowski and Philip L. Roe Department of Aerospace Engineering, University of Michigan,

More information

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond

An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond An Investigation of the Attainable Efficiency of Flight at Mach One or Just Beyond Antony Jameson Department of Aeronautics and Astronautics AIAA Aerospace Sciences Meeting, Reno, NV AIAA Paper 2007-0037

More information

Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations

Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations NASA/CR-1998-208741 ICASE Report No. 98-51 Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations David L. Darmofal Massachusetts Institute of Technology, Cambridge,

More information

A Linear Multigrid Preconditioner for the solution of the Navier-Stokes Equations using a Discontinuous Galerkin Discretization. Laslo Tibor Diosady

A Linear Multigrid Preconditioner for the solution of the Navier-Stokes Equations using a Discontinuous Galerkin Discretization. Laslo Tibor Diosady A Linear Multigrid Preconditioner for the solution of the Navier-Stokes Equations using a Discontinuous Galerkin Discretization by Laslo Tibor Diosady B.A.Sc., University of Toronto (2005) Submitted to

More information

A recovery-assisted DG code for the compressible Navier-Stokes equations

A recovery-assisted DG code for the compressible Navier-Stokes equations A recovery-assisted DG code for the compressible Navier-Stokes equations January 6 th, 217 5 th International Workshop on High-Order CFD Methods Kissimmee, Florida Philip E. Johnson & Eric Johnsen Scientific

More information

SYMMETRIC INTERIOR PENALTY DG METHODS FOR THE COMPRESSIBLE NAVIER STOKES EQUATIONS II: GOAL ORIENTED A POSTERIORI ERROR ESTIMATION

SYMMETRIC INTERIOR PENALTY DG METHODS FOR THE COMPRESSIBLE NAVIER STOKES EQUATIONS II: GOAL ORIENTED A POSTERIORI ERROR ESTIMATION INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 3, Number, Pages 4 62 c 26 Institute for Scientific Computing and Information SYMMETRIC INTERIOR PENALTY DG METHODS FOR THE COMPRESSIBLE

More information

Adjoint based multi-objective shape optimization of a transonic airfoil under uncertainties

Adjoint based multi-objective shape optimization of a transonic airfoil under uncertainties EngOpt 2016-5 th International Conference on Engineering Optimization Iguassu Falls, Brazil, 19-23 June 2016. Adjoint based multi-objective shape optimization of a transonic airfoil under uncertainties

More information

Towards Reduced Order Modeling (ROM) for Gust Simulations

Towards Reduced Order Modeling (ROM) for Gust Simulations Towards Reduced Order Modeling (ROM) for Gust Simulations S. Görtz, M. Ripepi DLR, Institute of Aerodynamics and Flow Technology, Braunschweig, Germany Deutscher Luft und Raumfahrtkongress 2017 5. 7. September

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information

A hybrid adjoint approach applied to RANS equations

A hybrid adjoint approach applied to RANS equations Center for urbulence Research Annual Research Briefs 2013 303 A hybrid adjoint approach applied to RANS equations By. W. R. aylor, F. Palacios, K. Duraisamy AND J. J. Alonso 1. Motivation and objectives

More information

Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods

Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods Contents Ralf Hartmann Institute of Aerodynamics and Flow Technology DLR (German Aerospace Center) Lilienthalplatz 7, 3808

More information

58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014

58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014 Professor Fred Stern Fall 04 Chapter 7 Bluff Body Fluid flows are broadly categorized:. Internal flows such as ducts/pipes, turbomachinery, open channel/river, which are bounded by walls or fluid interfaces:

More information

Anisotropic meshes for PDEs: a posteriori error analysis and mesh adaptivity

Anisotropic meshes for PDEs: a posteriori error analysis and mesh adaptivity ICAM 2013, Heraklion, 17 September 2013 Anisotropic meshes for PDEs: a posteriori error analysis and mesh adaptivity Simona Perotto MOX-Modeling and Scientific Computing Department of Mathematics, Politecnico

More information

Directional Field. Xiao-Ming Fu

Directional Field. Xiao-Ming Fu Directional Field Xiao-Ming Fu Outlines Introduction Discretization Representation Objectives and Constraints Outlines Introduction Discretization Representation Objectives and Constraints Definition Spatially-varying

More information

On a Data Assimilation Method coupling Kalman Filtering, MCRE Concept and PGD Model Reduction for Real-Time Updating of Structural Mechanics Model

On a Data Assimilation Method coupling Kalman Filtering, MCRE Concept and PGD Model Reduction for Real-Time Updating of Structural Mechanics Model On a Data Assimilation Method coupling, MCRE Concept and PGD Model Reduction for Real-Time Updating of Structural Mechanics Model 2016 SIAM Conference on Uncertainty Quantification Basile Marchand 1, Ludovic

More information

Lagrangian Formulation of Elastic Wave Equation on Riemannian Manifolds

Lagrangian Formulation of Elastic Wave Equation on Riemannian Manifolds RWE-C3-EAFIT Lagrangian Formulation of Elastic Wave Equation on Riemannian Manifolds Hector Roman Quiceno E. Advisors Ph.D Jairo Alberto Villegas G. Ph.D Diego Alberto Gutierrez I. Centro de Ciencias de

More information

Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations. Todd A.

Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations. Todd A. Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations by Todd A. Oliver B.S., Massachusetts Institute of Technology (22) Submitted to the

More information

Study of Preliminary Configuration Design of F-35 using simple CFD

Study of Preliminary Configuration Design of F-35 using simple CFD Study of Preliminary Configuration Design of F-35 using simple CFD http://www.aerospaceweb.org/aircraft/research/x35/pics.shtml David Hall Sangeon Chun David Andrews Center of Gravity Estimation.5873 Conventional

More information

Divergence Formulation of Source Term

Divergence Formulation of Source Term Preprint accepted for publication in Journal of Computational Physics, 2012 http://dx.doi.org/10.1016/j.jcp.2012.05.032 Divergence Formulation of Source Term Hiroaki Nishikawa National Institute of Aerospace,

More information

Self-similar solutions for the diffraction of weak shocks

Self-similar solutions for the diffraction of weak shocks Self-similar solutions for the diffraction of weak shocks Allen M. Tesdall John K. Hunter Abstract. We numerically solve a problem for the unsteady transonic small disturbance equations that describes

More information

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain March 4-5, 2015 Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain M. Bonnasse-Gahot 1,2, H. Calandra 3, J. Diaz 1 and S. Lanteri 2

More information

Simultaneous Robust Design and Tolerancing of Compressor Blades

Simultaneous Robust Design and Tolerancing of Compressor Blades Simultaneous Robust Design and Tolerancing of Compressor Blades Eric Dow Aerospace Computational Design Laboratory Department of Aeronautics and Astronautics Massachusetts Institute of Technology GTL Seminar

More information

Shape Optimisation of Axisymmetric Scramjets

Shape Optimisation of Axisymmetric Scramjets Shape Optimisation of Axisymmetric Scramjets Hideaki Ogawa 11 th International Workshop on Shock Tube Technology Australian Hypersonics Workshop 2011 University of Queensland, Brisbane 23 rd March 2011

More information

HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS

HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS 1 / 36 HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS Jesús Garicano Mena, E. Valero Sánchez, G. Rubio Calzado, E. Ferrer Vaccarezza Universidad

More information

A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION

A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION Joaquim Rafael Rost Ávila Martins Department of Aeronautics and Astronautics Stanford University Ph.D. Oral Examination, Stanford

More information

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations Ch. Altmann, G. Gassner, F. Lörcher, C.-D. Munz Numerical Flow Models for Controlled

More information

1. Introduction Some Basic Concepts

1. Introduction Some Basic Concepts 1. Introduction Some Basic Concepts 1.What is a fluid? A substance that will go on deforming in the presence of a deforming force, however small 2. What Properties Do Fluids Have? Density ( ) Pressure

More information

MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight. G. Leng, MDTS, NUS

MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight. G. Leng, MDTS, NUS MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight References Jack N. Nielsen, Missile Aerodynamics, AIAA Progress in Astronautics and Aeronautics, v104, 1986 Michael

More information

Continuity Equation for Compressible Flow

Continuity Equation for Compressible Flow Continuity Equation for Compressible Flow Velocity potential irrotational steady compressible Momentum (Euler) Equation for Compressible Flow Euler's equation isentropic velocity potential equation for

More information

Prospects for High-Speed Flow Simulations

Prospects for High-Speed Flow Simulations Prospects for High-Speed Flow Simulations Graham V. Candler Aerospace Engineering & Mechanics University of Minnesota Support from AFOSR and ASDR&E Future Directions in CFD Research: A Modeling & Simulation

More information

Variational Image Restoration

Variational Image Restoration Variational Image Restoration Yuling Jiao yljiaostatistics@znufe.edu.cn School of and Statistics and Mathematics ZNUFE Dec 30, 2014 Outline 1 1 Classical Variational Restoration Models and Algorithms 1.1

More information

Multi-D MHD and B = 0

Multi-D MHD and B = 0 CapSel DivB - 01 Multi-D MHD and B = 0 keppens@rijnh.nl multi-d MHD and MHD wave anisotropies dimensionality > 1 non-trivial B = 0 constraint even if satisfied exactly t = 0: can numerically generate B

More information

Finite volume method on unstructured grids

Finite volume method on unstructured grids Finite volume method on unstructured grids Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable?

Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Remarks on the analysis of finite element methods on a Shishkin mesh: are Scott-Zhang interpolants applicable? Thomas Apel, Hans-G. Roos 22.7.2008 Abstract In the first part of the paper we discuss minimal

More information

Hamburger Beiträge zur Angewandten Mathematik

Hamburger Beiträge zur Angewandten Mathematik Hamburger Beiträge zur Angewandten Mathematik Duality based error estimation in the presence of shocks Susanne Beckers, Jörn Behrens, Winnifried Wollner Nr. 2016-21 September 2016 Noname manuscript No.

More information

Recent progress on the explicit inversion of geodesic X-ray transforms

Recent progress on the explicit inversion of geodesic X-ray transforms Recent progress on the explicit inversion of geodesic X-ray transforms François Monard Department of Mathematics, University of Washington. Geometric Analysis and PDE seminar University of Cambridge, May

More information

Far Field Noise Minimization Using an Adjoint Approach

Far Field Noise Minimization Using an Adjoint Approach Far Field Noise Minimization Using an Adjoint Approach Markus P. Rumpfkeil and David W. Zingg University of Toronto Institute for Aerospace Studies 4925 Dufferin Street, Toronto, Ontario, M3H 5T6, Canada

More information

Adjoint-based aerodynamic shape optimization

Adjoint-based aerodynamic shape optimization IT Licentiate theses 2003-012 Adjoint-based aerodynamic shape optimization OLIVIER AMOIGNON UPPSALA UNIVERSITY Department of Information Technology Adjoint-based aerodynamic shape optimization BY OLIVIER

More information

Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group

Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group Melvin Leok Mathematics, University of California, San Diego Foundations of Dynamics Session, CDS@20 Workshop Caltech,

More information

Gradient-Based Optimum Aerodynamic Design Using Adjoint Methods

Gradient-Based Optimum Aerodynamic Design Using Adjoint Methods Gradient-Based Optimum Aerodynamic Design Using Adjoint Methods Lei Xie Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13 Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 212/13 Exam 2ª época, 2 February 213 Name : Time : 8: Number: Duration : 3 hours 1 st Part : No textbooks/notes allowed 2 nd Part :

More information

DEVELOPMENT OF A THREE-DIMENSIONAL TIGHTLY COUPLED EULER/POTENTIAL FLOW SOLVER FOR TRANSONIC FLOW

DEVELOPMENT OF A THREE-DIMENSIONAL TIGHTLY COUPLED EULER/POTENTIAL FLOW SOLVER FOR TRANSONIC FLOW DEVELOPMENT OF A THREE-DIMENSIONAL TIGHTLY COUPLED EULER/POTENTIAL FLOW SOLVER FOR TRANSONIC FLOW Yeongmin Jo*, Se Hwan Park*, Duck-Joo Lee*, and Seongim Choi *Korea Advanced Institute of Science and Technology,

More information

Application of turbulence. models to high-lift airfoils. By Georgi Kalitzin

Application of turbulence. models to high-lift airfoils. By Georgi Kalitzin Center for Turbulence Research Annual Research Briefs 997 65 Application of turbulence models to high-lift airfoils By Georgi Kalitzin. Motivation and objectives Accurate prediction of the ow over an airfoil

More information

Transition Modeling Activities at AS-C²A²S²E (DLR)

Transition Modeling Activities at AS-C²A²S²E (DLR) Transition Modeling Activities at AS-C²A²S²E (DLR) Andreas Krumbein German Aerospace Center (DLR) Institute of Aerodynamics and Flow Technology (AS) C²A²S²E - Center for Computer Applications in AeroSpace

More information

Sampling and Low-Rank Tensor Approximations

Sampling and Low-Rank Tensor Approximations Sampling and Low-Rank Tensor Approximations Hermann G. Matthies Alexander Litvinenko, Tarek A. El-Moshely +, Brunswick, Germany + MIT, Cambridge, MA, USA wire@tu-bs.de http://www.wire.tu-bs.de $Id: 2_Sydney-MCQMC.tex,v.3

More information

A hybrid adjoint approach applied to turbulent flow simulations

A hybrid adjoint approach applied to turbulent flow simulations 21st AIAA Computational Fluid Dynamics Conference June 24-27, 2013, San Diego, CA AIAA 2013-2452 A hybrid adjoint approach applied to turbulent flow simulations Thomas W. R. Taylor, Francisco Palacios,

More information

A Dielectric Invisibility Carpet

A Dielectric Invisibility Carpet A Dielectric Invisibility Carpet Jensen Li Prof. Xiang Zhang s Research Group Nanoscale Science and Engineering Center (NSEC) University of California at Berkeley, USA CLK08-09/22/2008 Presented at Center

More information

A Sobolev trust-region method for numerical solution of the Ginz

A Sobolev trust-region method for numerical solution of the Ginz A Sobolev trust-region method for numerical solution of the Ginzburg-Landau equations Robert J. Renka Parimah Kazemi Department of Computer Science & Engineering University of North Texas June 6, 2012

More information

Multigrid Algorithms for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations

Multigrid Algorithms for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations Multigrid Algorithms for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations Khosro Shahbazi,a Dimitri J. Mavriplis b Nicholas K. Burgess b a Division of Applied

More information

Computation of Incompressible Flows: SIMPLE and related Algorithms

Computation of Incompressible Flows: SIMPLE and related Algorithms Computation of Incompressible Flows: SIMPLE and related Algorithms Milovan Perić CoMeT Continuum Mechanics Technologies GmbH milovan@continuummechanicstechnologies.de SIMPLE-Algorithm I - - - Consider

More information

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016 Mixed Finite Element Methods Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016 Linear elasticity Given the load f : Ω R n, find the displacement u : Ω R n and the

More information

Modeling of ELM Dynamics for ITER

Modeling of ELM Dynamics for ITER Modeling of ELM Dynamics for ITER A.Y. PANKIN 1, G. BATEMAN 1, D.P. BRENNAN 2, A.H. KRITZ 1, S. KRUGER 3, P.B. SNYDER 4 and the NIMROD team 1 Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015

More information

High-Reynolds Number Transitional Flow Prediction using a Coupled Discontinuous-Galerkin RANS PSE Framework

High-Reynolds Number Transitional Flow Prediction using a Coupled Discontinuous-Galerkin RANS PSE Framework High-Reynolds Number Transitional Flow Prediction using a Coupled Discontinuous-Galerkin RANS PSE Framework Gustavo Luiz Olichevis Halila, Guodong Chen, Yayun Shi Krzysztof J. Fidkowski, Joaquim R. R.

More information

Chapter 9 Flow over Immersed Bodies

Chapter 9 Flow over Immersed Bodies 57:00 Mechanics of Fluids and Transport Processes Chapter 9 Professor Fred Stern Fall 009 1 Chapter 9 Flow over Immersed Bodies Fluid flows are broadly categorized: 1. Internal flows such as ducts/pipes,

More information

Turbulent spectra generated by singularities

Turbulent spectra generated by singularities Turbulent spectra generated by singularities p. Turbulent spectra generated by singularities E.A. Kuznetsov Landau Institute for Theoretical Physics, Moscow Russia In collaboration with: V. Naulin A.H.

More information

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600 Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 6 Overview This problem is aimed at testing the accuracy and the performance of high-order methods on the direct numerical simulation

More information

Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers

Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers R. Sanchez 1, D. Thomas 2, R. Palacios 1, V. Terrapon 2 1 Department of Aeronautics, Imperial College London 2 Department

More information

Efficient A Posteriori Error Estimation for Finite Volume Methods

Efficient A Posteriori Error Estimation for Finite Volume Methods Efficient A Posteriori Error Estimation for Finite Volume Methods Richard P. Dwight Institute of Aerodynamics and Flow Technology German Aerospace Center (DLR) Braunschweig, D-38108 GERMANY Tel: +49 531

More information

Transonic Flutter Prediction of Supersonic Jet Trainer with Various External Store Configurations

Transonic Flutter Prediction of Supersonic Jet Trainer with Various External Store Configurations Transonic Flutter Prediction of Supersonic Jet Trainer with Various External Store Configurations In Lee * Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea Hyuk-Jun Kwon Agency

More information

Numerical Study of Compressible Isothermal Magnetohydrodynamic Turbulence

Numerical Study of Compressible Isothermal Magnetohydrodynamic Turbulence Numerical Study of Compressible Isothermal Magnetohydrodynamic Turbulence Junseong Park, Dongsu Ryu Dept. of Physics, Ulsan National Institute of Science and Technology. Ulsan, Korea 2016 KNAG meeting

More information

Discrete and continuous adjoint method for compressible CFD J. Peter ONERA

Discrete and continuous adjoint method for compressible CFD J. Peter ONERA Discrete and continuous adjoint method for compressible CFD J. Peter ONERA J. Peter 1 1 ONERA DMFN October 2, 2014 J. Peter (ONERA DMFN) Adjoint method for compressible CFD October 2, 2014 1 / 60 Outline

More information

Entropy stable schemes for degenerate convection-diffusion equations

Entropy stable schemes for degenerate convection-diffusion equations Entropy stable schemes for degenerate convection-diffusion equations Silvia Jerez 1 Carlos Parés 2 ModCompShock, Paris 6-8 Decmber 216 1 CIMAT, Guanajuato, Mexico. 2 University of Malaga, Málaga, Spain.

More information

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION Proceedings of ALGORITMY pp. 9 3 FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION JAN STEBEL Abstract. The paper deals with the numerical simulations of steady flows

More information

Adaptive methods for control problems with finite-dimensional control space

Adaptive methods for control problems with finite-dimensional control space Adaptive methods for control problems with finite-dimensional control space Saheed Akindeinde and Daniel Wachsmuth Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy

More information

Convexity and Non-Convexity in Partitioning and Interpolation Problems

Convexity and Non-Convexity in Partitioning and Interpolation Problems Convexity and Non-Convexity in Partitioning and Interpolation Problems Jan Lellmann CIA/DAMTP, University of Cambridge Joint work with: C. Schnörr, F. Lenzen (IPA/HCI, University of Heidelberg), F. Widmann,

More information

Zonal modelling approach in aerodynamic simulation

Zonal modelling approach in aerodynamic simulation Zonal modelling approach in aerodynamic simulation and Carlos Castro Barcelona Supercomputing Center Technical University of Madrid Outline 1 2 State of the art Proposed strategy 3 Consistency Stability

More information