FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment

Size: px
Start display at page:

Download "FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment"

Transcription

1 FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment Alastair J. Radcliffe Andreas Dedner Timo Betcke Warwick University, Coventry University College of London (UCL) U.K. Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

2 Outline - Ultimate Objective: FEM-BEM Coupling; - Model Elliptic Problem; - Iterative versus Non-iterative; - Overlapping v. Non-overlapping; - Dirichlet-Neumann Coupling (D-N) - - Example: side by side boxes (D-N); - Robin Coupling (R-R) - - Example: overlapping nested boxes (R-R); - Dirichlet-Dirichlet Coupling (D-D) - - Example: bulk-surface coupling (D-D). Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

3 Target Application: Sonic Brain Tumour Heating Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

4 Target Application: Coulomb Explosions Figure : Deformation pathways of highly electrically charged fluid droplets. Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

5 Ultimate Objective: FEM-BEM Coupling Figure : Computational domains and boundaries for the general problem. Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

6 Model Elliptic Problem Consider the following general elliptic problem defined on Ω: L[u Ω ] = f (1) and a linear elliptic problem defined on Ω L [u ] = g = 0 (2) satisfying a compatibility condition on the interface Ω Ω of the form L[u Ω ] = L [u ], f = 0 on Ω Ω (3) We will focus on the Laplace cases: L = L = or = + I (4) Consider the following two coupling conditions: γu Ω + δ u Ω n = γu + δ u n on Γ (5) γ u + δ u n = γ u Ω + δ u Ω n on Γ (6) Non-overlapping implies Γ = Γ & γ = γ & δ = δ. Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

7 Iterative versus Non-Iterative Coupling - FEM and BEM very different approaches; - Sparse matrices for FEM; - Dense matrices for BEM; - Different preconditioning/solution strategies needed for each: eg fast multipole for BEM; - A single mixed sparse and dense system matrix difficult to precondition and solve optimally; - Each problem better solved seperately with custom preconditioners and solvers; - Iterative exchange of information between schemes until convergence; - Both Dirichlet (D) and Neumann (N) data can be exchanged, or Robin (R) combinations of both. Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

8 Overlapping versus Non-Overlapping - Typical trade-off between cost and solution: - Faster convergence (fewer iterations) with greater overlapping but greater solution duplication on overlap ( waste of computational effort); - Difficulties defining a conforming smooth surface within an existing volume mesh for over-lapping?; - Non-conforming BEM surface boundary within volume mesh would require interpolation and thus loss of accuracy? Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

9 Implementation within Dune Software Environment - Dune-Fem module using Dune core modules for FEM part; - First-order linear FE shape functions η and ξ used; - Surface-Extraction from volume mesh to form surface mesh for mixed dimension coupling; - Filtering of initial volume mesh before surface extraction if overlap required; - Dune-Grid-Glue used to match elements from the two different meshes up for updates; - Bem++ used to solve problem on extracted surface mesh; - Iteration between Dune-Volume and Bempp-Surface solutions until convergence. Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

10 Some schemes Some iterative schemes for FEM-FEM coupling... (... as a precursor to FEM-BEM coupling...) Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

11 Non-overlapping (D-N) Schwarz scheme (Daoqi Yang) Dirichlet step (γ = 1 & δ = 0), Weighting parameter α L[u 2 n+1 ] = f on Ω L [v 2 n+1 ] = g on Ω u 2 n+1 = α u 2 n + (1 α) v 2 n on Γ v 2 n+1 = α u 2 n + (1 α) v 2 n on Γ Neumann step (γ = 0 & δ = 1), Weighting β, φ = u n ψ = v n L[u 2 n+2 ] = f on Ω L [v 2 n+2 ] = g on Ω φ 2 n+2 = βφ 2 n+1 + (1 β) ψ 2 n+1 on Γ ψ 2 n+2 = βφ 2 n+1 + (1 β) ψ 2 n+1 on Γ Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

12 Side by Side Boxes Example (α = β = 1/2) This is Codim1Extractor on a <3,3> grid! added 8 subfaces Error at iteration 11 = = This is Codim1Extractor on a <3,3> grid! added 32 subfaces Error at iteration 11 = = EOC( 1 ) = This is Codim1Extractor on a <3,3> grid! added 128 subfaces Error at iteration 11 = = EOC( 2 ) = Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

13 Side by Side Boxes Parameter Choices α + β choice do not seem to influence number of iterations required; β significantly removed from 0.5 causes greater oscillations (between Dirichlet and Neumann steps) about final solution value. Note: Neumann step with L = L = (as above) only solvable if an actual (non-coupling) boundary is always present (as above). In the absence of such a boundary, require at least L = L = + I (as next) to solve with purely Neumann data on the boundary. Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

14 Overlapping Scheme (Chen, Xu & Zhang) Variant Maintain TWO collections of Robin data g m 1 = γ 1 u m + φ m = γ 1 v m + ψ m g m 2 = γ 2 u m φ m = γ 2 v m ψ m To be used in the RHS s of two problems (now let L = L = + I) ( u η + uη) + γ 1 uη = f η + g 1 η Ω Γ Ω Γ ( v ξ + v ξ) + γ 2 vξ = gξ + g 2 ξ Ω Dirichlet updates to Robin data (no need to calculate derivatives) g m+1 2 = g m 1 + (γ 2 + γ 1 ) u m g m+1 1 = g m 2 + (γ 1 + γ 2 ) v m g m+1 1 = θ g m 1 + (1 θ) gm 1 Will use following variant (γ 2 = 1 γ 1 ) requiring derivatives g m+1 1 = γ 1 [α v m + (1 α) u m ] + β ψ m + (1 β) φ m g m+1 2 = γ 2 [α u m + (1 α) v m ] + β φ m + (1 β) ψ m Γ Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20 Γ Γ

15 Nested Boxes Example (α = β = 1/2, γ = 0.7) This is Codim1Extractor on a <3,3> grid! added 48 subfaces This is Codim1Extractor on a <3,3> grid! added 192 subfaces Error at iteration 8 = = This is Codim1Extractor on a <3,3> grid! added 192 subfaces This is Codim1Extractor on a <3,3> grid! added 768 subfaces Error at iteration 9 = = EOC( 1 ) = This is Codim1Extractor on a <3,3> grid! added 768 subfaces This is Codim1Extractor on a <3,3> grid! added 3072 subfaces Error at iteration 9 = = EOC( 2 ) = junk Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

16 Nested Boxes Parameter Choices γ 1 α β iterations error γ 1 α β iterations error γ 1 α β iterations error Reminder: g m+1 1 = γ 1 [α v m + (1 α) u m ] + β ψ m + (1 β) φ m g m+1 2 = γ 2 [α u m + (1 α) v m ] + β φ m + (1 β) ψ m Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

17 Coupled Bulk-Surface FEM-FEM (Elliott and Ranner) Governing equations and b.c. s u + u = f in Ω u v + u n = 0 on Γ Γ v + v + u n = g on Γ Force with f and g found from a chosen analytic solution u(x, y, z) = exp [ x (x 1) y (y 1)] v(x, y, z) = [1 + x (1 2 x) + y (1 2 y)] exp [ x (x 1) y (y 1)] Weak formulation of above suggests a D-D iterative coupling... ( u η + uη) + uη = f η + vη Ω Γ Ω Γ ( Γ v Γ ξ + v ξ) + vξ = gξ + uξ Γ Γ Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20 Γ Γ

18 Bulk-Surface Example This is Codim1Extractor on a <3,3> grid! added 48 subfaces Error at iteration 10 = = EOC( 1 ) = This is Codim1Extractor on a <3,3> grid! added 192 subfaces Error at iteration 10 = = EOC( 2 ) = This is Codim1Extractor on a <3,3> grid! added 768 subfaces Error at iteration 10 = = EOC( 3 ) = This is Codim1Extractor on a <3,3> grid! added 3072 subfaces Error at iteration 10 = = EOC( 4 ) = junk Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

19 Conclusions - Iterative the best approach for FEM-BEM coupling to allow the use of specialist preconditioners for each solver type; - Robin data exchange the most useful and flexible; - Effect of differing overlaps to be investigated; - Work to replace surface FEM solver (Dune) in a suitable new bulk-surface problem above with a BEM solver (Bem++) now underway... Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

20 The End Thank you for your attention!!! * Daoqi Yang A Parallel Nonoverlapping Schwarz Domain Decomposition Method for Elliptic Interface Problems, IMA preprint #1508, University of Minnesota, August 1997; * Wenbin Chen, Xuejun Xu, Shangyou Zhang On the optimal convergence rate of a Robin-Robin domain decomposition method Journal of Computational Mathematics; * Charles M. Elliott and Thomas Ranner Finite element analysis for a coupled bulk surface partial differential equation IMA Journal of Numerical Analysis Radcliffe (Warwick + UCL UK) FEM-FEM / FEM-BEM Coupling Heidelberg, July 14-16, / 20

On a Discontinuous Galerkin Method for Surface PDEs

On a Discontinuous Galerkin Method for Surface PDEs On a Discontinuous Galerkin Method for Surface PDEs Pravin Madhavan (joint work with Andreas Dedner and Bjo rn Stinner) Mathematics and Statistics Centre for Doctoral Training University of Warwick Applied

More information

BETI for acoustic and electromagnetic scattering

BETI for acoustic and electromagnetic scattering BETI for acoustic and electromagnetic scattering O. Steinbach, M. Windisch Institut für Numerische Mathematik Technische Universität Graz Oberwolfach 18. Februar 2010 FWF-Project: Data-sparse Boundary

More information

Efficient domain decomposition methods for the time-harmonic Maxwell equations

Efficient domain decomposition methods for the time-harmonic Maxwell equations Efficient domain decomposition methods for the time-harmonic Maxwell equations Marcella Bonazzoli 1, Victorita Dolean 2, Ivan G. Graham 3, Euan A. Spence 3, Pierre-Henri Tournier 4 1 Inria Saclay (Defi

More information

Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains

Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains Optimal Interface Conditions for an Arbitrary Decomposition into Subdomains Martin J. Gander and Felix Kwok Section de mathématiques, Université de Genève, Geneva CH-1211, Switzerland, Martin.Gander@unige.ch;

More information

Dune. Patrick Leidenberger. 13. May Distributed and Unified Numerics Environment. 13. May 2009

Dune. Patrick Leidenberger. 13. May Distributed and Unified Numerics Environment. 13. May 2009 13. May 2009 leidenberger@ifh.ee.ethz.ch 1 / 25 Dune Distributed and Unified Numerics Environment Patrick Leidenberger 13. May 2009 13. May 2009 leidenberger@ifh.ee.ethz.ch 2 / 25 Table of contents 1 Introduction

More information

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Olivier Dubois 1 and Martin J. Gander 2 1 IMA, University of Minnesota, 207 Church St. SE, Minneapolis, MN 55455 dubois@ima.umn.edu

More information

Some Geometric and Algebraic Aspects of Domain Decomposition Methods

Some Geometric and Algebraic Aspects of Domain Decomposition Methods Some Geometric and Algebraic Aspects of Domain Decomposition Methods D.S.Butyugin 1, Y.L.Gurieva 1, V.P.Ilin 1,2, and D.V.Perevozkin 1 Abstract Some geometric and algebraic aspects of various domain decomposition

More information

Schwarz Preconditioner for the Stochastic Finite Element Method

Schwarz Preconditioner for the Stochastic Finite Element Method Schwarz Preconditioner for the Stochastic Finite Element Method Waad Subber 1 and Sébastien Loisel 2 Preprint submitted to DD22 conference 1 Introduction The intrusive polynomial chaos approach for uncertainty

More information

Numerical Solution I

Numerical Solution I Numerical Solution I Stationary Flow R. Kornhuber (FU Berlin) Summerschool Modelling of mass and energy transport in porous media with practical applications October 8-12, 2018 Schedule Classical Solutions

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 3: Finite Elements in 2-D Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods 1 / 18 Outline 1 Boundary

More information

A Nonoverlapping Subdomain Algorithm with Lagrange Multipliers and its Object Oriented Implementation for Interface Problems

A Nonoverlapping Subdomain Algorithm with Lagrange Multipliers and its Object Oriented Implementation for Interface Problems Contemporary Mathematics Volume 8, 998 B 0-88-0988--03030- A Nonoverlapping Subdomain Algorithm with Lagrange Multipliers and its Object Oriented Implementation for Interface Problems Daoqi Yang. Introduction

More information

Finite and Boundary Element Methods in Acoustics

Finite and Boundary Element Methods in Acoustics Finite and Boundary Element Methods in Acoustics W. Kreuzer, Z. Chen, H. Waubke Austrian Academy of Sciences, Acoustics Research Institute ARI meets NuHAG Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets

More information

Multi-Domain Approaches for the Solution of High-Frequency Time-Harmonic Propagation Problems

Multi-Domain Approaches for the Solution of High-Frequency Time-Harmonic Propagation Problems Académie universitaire Wallonie Europe Université de Liège Faculté des Sciences Appliquées Collège de doctorat en Électricité, électronique et informatique Multi-Domain Approaches for the Solution of High-Frequency

More information

Module 7: The Laplace Equation

Module 7: The Laplace Equation Module 7: The Laplace Equation In this module, we shall study one of the most important partial differential equations in physics known as the Laplace equation 2 u = 0 in Ω R n, (1) where 2 u := n i=1

More information

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation Tao Zhao 1, Feng-Nan Hwang 2 and Xiao-Chuan Cai 3 Abstract In this paper, we develop an overlapping domain decomposition

More information

1 Comparison of Kansa s method versus Method of Fundamental Solution (MFS) and Dual Reciprocity Method of Fundamental Solution (MFS- DRM)

1 Comparison of Kansa s method versus Method of Fundamental Solution (MFS) and Dual Reciprocity Method of Fundamental Solution (MFS- DRM) 1 Comparison of Kansa s method versus Method of Fundamental Solution (MFS) and Dual Reciprocity Method of Fundamental Solution (MFS- DRM) 1.1 Introduction In this work, performances of two most widely

More information

From the invention of the Schwarz method to the Best Current Methods for Oscillatory Problems: Part 2

From the invention of the Schwarz method to the Best Current Methods for Oscillatory Problems: Part 2 and From the invention of the Schwarz method to the Best Current Methods for Oscillatory Problems: Part 2 martin.gander@unige.ch University of Geneva Woudschoten, October 2014 Are There Two Equations?

More information

An adaptive fast multipole boundary element method for the Helmholtz equation

An adaptive fast multipole boundary element method for the Helmholtz equation An adaptive fast multipole boundary element method for the Helmholtz equation Vincenzo Mallardo 1, Claudio Alessandri 1, Ferri M.H. Aliabadi 2 1 Department of Architecture, University of Ferrara, Italy

More information

Generating Equidistributed Meshes in 2D via Domain Decomposition

Generating Equidistributed Meshes in 2D via Domain Decomposition Generating Equidistributed Meshes in 2D via Domain Decomposition Ronald D. Haynes and Alexander J. M. Howse 2 Introduction There are many occasions when the use of a uniform spatial grid would be prohibitively

More information

Preconditioned space-time boundary element methods for the heat equation

Preconditioned space-time boundary element methods for the heat equation W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods

More information

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems Efficient Solvers for Stochastic Finite Element Saddle Point Problems Catherine E. Powell c.powell@manchester.ac.uk School of Mathematics University of Manchester, UK Efficient Solvers for Stochastic Finite

More information

Space-time Finite Element Methods for Parabolic Evolution Problems

Space-time Finite Element Methods for Parabolic Evolution Problems Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients Ulrich Langer, Martin Neumüller, Andreas Schafelner Johannes Kepler University, Linz Doctoral Program Computational

More information

On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption

On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption On domain decomposition preconditioners for finite element approximations of the Helmholtz equation using absorption Ivan Graham and Euan Spence (Bath, UK) Collaborations with: Paul Childs (Emerson Roxar,

More information

Chapter 5. Methods for Solving Elliptic Equations

Chapter 5. Methods for Solving Elliptic Equations Chapter 5. Methods for Solving Elliptic Equations References: Tannehill et al Section 4.3. Fulton et al (1986 MWR). Recommended reading: Chapter 7, Numerical Methods for Engineering Application. J. H.

More information

Dual Reciprocity Method for studying thermal flows related to Magma Oceans

Dual Reciprocity Method for studying thermal flows related to Magma Oceans Dual Reciprocity Method for studying thermal flows related to Magma Oceans Tyler Drombosky Ph.D. Student, Applied Mathematics Scientific Computation Department of Mathematics University of Maryland, College

More information

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Ernst P. Stephan 1, Matthias Maischak 2, and Thanh Tran 3 1 Institut für Angewandte Mathematik, Leibniz

More information

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations

Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations Two-level Domain decomposition preconditioning for the high-frequency time-harmonic Maxwell equations Marcella Bonazzoli 2, Victorita Dolean 1,4, Ivan G. Graham 3, Euan A. Spence 3, Pierre-Henri Tournier

More information

Shifted Laplace and related preconditioning for the Helmholtz equation

Shifted Laplace and related preconditioning for the Helmholtz equation Shifted Laplace and related preconditioning for the Helmholtz equation Ivan Graham and Euan Spence (Bath, UK) Collaborations with: Paul Childs (Schlumberger Gould Research), Martin Gander (Geneva) Douglas

More information

Multipole-Based Preconditioners for Sparse Linear Systems.

Multipole-Based Preconditioners for Sparse Linear Systems. Multipole-Based Preconditioners for Sparse Linear Systems. Ananth Grama Purdue University. Supported by the National Science Foundation. Overview Summary of Contributions Generalized Stokes Problem Solenoidal

More information

Dirichlet-Neumann and Neumann-Neumann Methods

Dirichlet-Neumann and Neumann-Neumann Methods Dirichlet-Neumann and Neumann-Neumann Methods Felix Kwok Hong Kong Baptist University Introductory Domain Decomposition Short Course DD25, Memorial University of Newfoundland July 22, 2018 Outline Methods

More information

An additive average Schwarz method for the plate bending problem

An additive average Schwarz method for the plate bending problem J. Numer. Math., Vol. 10, No. 2, pp. 109 125 (2002) c VSP 2002 Prepared using jnm.sty [Version: 02.02.2002 v1.2] An additive average Schwarz method for the plate bending problem X. Feng and T. Rahman Abstract

More information

Hybrid (DG) Methods for the Helmholtz Equation

Hybrid (DG) Methods for the Helmholtz Equation Hybrid (DG) Methods for the Helmholtz Equation Joachim Schöberl Computational Mathematics in Engineering Institute for Analysis and Scientific Computing Vienna University of Technology Contributions by

More information

A simple FEM solver and its data parallelism

A simple FEM solver and its data parallelism A simple FEM solver and its data parallelism Gundolf Haase Institute for Mathematics and Scientific Computing University of Graz, Austria Chile, Jan. 2015 Partial differential equation Considered Problem

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

Indefinite and physics-based preconditioning

Indefinite and physics-based preconditioning Indefinite and physics-based preconditioning Jed Brown VAW, ETH Zürich 2009-01-29 Newton iteration Standard form of a nonlinear system F (u) 0 Iteration Solve: Update: J(ũ)u F (ũ) ũ + ũ + u Example (p-bratu)

More information

Reconstructing inclusions from Electrostatic Data

Reconstructing inclusions from Electrostatic Data Reconstructing inclusions from Electrostatic Data Isaac Harris Texas A&M University, Department of Mathematics College Station, Texas 77843-3368 iharris@math.tamu.edu Joint work with: W. Rundell Purdue

More information

High Frequency Scattering by Convex Polygons Stephen Langdon

High Frequency Scattering by Convex Polygons Stephen Langdon Bath, October 28th 2005 1 High Frequency Scattering by Convex Polygons Stephen Langdon University of Reading, UK Joint work with: Simon Chandler-Wilde Steve Arden Funded by: Leverhulme Trust University

More information

Numerical Methods for Partial Differential Equations: an Overview.

Numerical Methods for Partial Differential Equations: an Overview. Numerical Methods for Partial Differential Equations: an Overview math652_spring2009@colorstate PDEs are mathematical models of physical phenomena Heat conduction Wave motion PDEs are mathematical models

More information

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36 Optimal multilevel preconditioning of strongly anisotropic problems. Part II: non-conforming FEM. Svetozar Margenov margenov@parallel.bas.bg Institute for Parallel Processing, Bulgarian Academy of Sciences,

More information

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN INTROUCTION TO FINITE ELEMENT METHOS ON ELLIPTIC EQUATIONS LONG CHEN CONTENTS 1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite ifference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume

More information

Progress in Parallel Implicit Methods For Tokamak Edge Plasma Modeling

Progress in Parallel Implicit Methods For Tokamak Edge Plasma Modeling Progress in Parallel Implicit Methods For Tokamak Edge Plasma Modeling Michael McCourt 1,2,Lois Curfman McInnes 1 Hong Zhang 1,Ben Dudson 3,Sean Farley 1,4 Tom Rognlien 5, Maxim Umansky 5 Argonne National

More information

Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids

Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids Long Chen 1, Ricardo H. Nochetto 2, and Chen-Song Zhang 3 1 Department of Mathematics, University of California at Irvine. chenlong@math.uci.edu

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

Yanlin Shao 1 Odd M. Faltinsen 2

Yanlin Shao 1 Odd M. Faltinsen 2 Yanlin Shao 1 Odd M. Faltinsen 1 Ship Hydrodynamics & Stability, Det Norsk Veritas, Norway Centre for Ships and Ocean Structures (CeSOS), NTNU, Norway 1 The state-of-the-art potential flow analysis: Boundary

More information

Fast Multipole BEM for Structural Acoustics Simulation

Fast Multipole BEM for Structural Acoustics Simulation Fast Boundary Element Methods in Industrial Applications Fast Multipole BEM for Structural Acoustics Simulation Matthias Fischer and Lothar Gaul Institut A für Mechanik, Universität Stuttgart, Germany

More information

Discretization of PDEs and Tools for the Parallel Solution of the Resulting Systems

Discretization of PDEs and Tools for the Parallel Solution of the Resulting Systems Discretization of PDEs and Tools for the Parallel Solution of the Resulting Systems Stan Tomov Innovative Computing Laboratory Computer Science Department The University of Tennessee Wednesday April 4,

More information

SOLVING ELLIPTIC PDES

SOLVING ELLIPTIC PDES university-logo SOLVING ELLIPTIC PDES School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 POISSON S EQUATION Equation and Boundary Conditions Solving the Model Problem 3 THE LINEAR ALGEBRA PROBLEM

More information

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations A. Ouazzi, M. Nickaeen, S. Turek, and M. Waseem Institut für Angewandte Mathematik, LSIII, TU Dortmund, Vogelpothsweg

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY 11, USA Dan Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

Overlapping Schwarz preconditioners for Fekete spectral elements

Overlapping Schwarz preconditioners for Fekete spectral elements Overlapping Schwarz preconditioners for Fekete spectral elements R. Pasquetti 1, L. F. Pavarino 2, F. Rapetti 1, and E. Zampieri 2 1 Laboratoire J.-A. Dieudonné, CNRS & Université de Nice et Sophia-Antipolis,

More information

Lecture on: Numerical sparse linear algebra and interpolation spaces. June 3, 2014

Lecture on: Numerical sparse linear algebra and interpolation spaces. June 3, 2014 Lecture on: Numerical sparse linear algebra and interpolation spaces June 3, 2014 Finite dimensional Hilbert spaces and IR N 2 / 38 (, ) : H H IR scalar product and u H = (u, u) u H norm. Finite dimensional

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

for compression of Boundary Integral Operators. Steven Paul Nixon B.Sc.

for compression of Boundary Integral Operators. Steven Paul Nixon B.Sc. Theory and Applications of the Multiwavelets for compression of Boundary Integral Operators. Steven Paul Nixon B.Sc. Institute for Materials Research School of Computing, Science & Engineering, University

More information

Fundamental Solutions and Green s functions. Simulation Methods in Acoustics

Fundamental Solutions and Green s functions. Simulation Methods in Acoustics Fundamental Solutions and Green s functions Simulation Methods in Acoustics Definitions Fundamental solution The solution F (x, x 0 ) of the linear PDE L {F (x, x 0 )} = δ(x x 0 ) x R d Is called the fundamental

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 11, pp. 1-24, 2000. Copyright 2000,. ISSN 1068-9613. ETNA NEUMANN NEUMANN METHODS FOR VECTOR FIELD PROBLEMS ANDREA TOSELLI Abstract. In this paper,

More information

ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow

ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow Michel Kern Inria Paris Rocquencourt Maison de la Simulation C2S@Exa Days, Inria Paris Centre, Novembre 2016 M. Kern

More information

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Introduction to Simulation - Lecture 2 Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Reminder about

More information

Numerical Approximation Methods for Elliptic Boundary Value Problems

Numerical Approximation Methods for Elliptic Boundary Value Problems Numerical Approximation Methods for Elliptic Boundary Value Problems Olaf Steinbach Numerical Approximation Methods for Elliptic Boundary Value Problems Finite and Boundary Elements Olaf Steinbach Institute

More information

Space time finite and boundary element methods

Space time finite and boundary element methods Space time finite and boundary element methods Olaf Steinbach Institut für Numerische Mathematik, TU Graz http://www.numerik.math.tu-graz.ac.at based on joint work with M. Neumüller, H. Yang, M. Fleischhacker,

More information

Domain decomposition on different levels of the Jacobi-Davidson method

Domain decomposition on different levels of the Jacobi-Davidson method hapter 5 Domain decomposition on different levels of the Jacobi-Davidson method Abstract Most computational work of Jacobi-Davidson [46], an iterative method suitable for computing solutions of large dimensional

More information

A Hybrid Method for the Wave Equation. beilina

A Hybrid Method for the Wave Equation.   beilina A Hybrid Method for the Wave Equation http://www.math.unibas.ch/ beilina 1 The mathematical model The model problem is the wave equation 2 u t 2 = (a 2 u) + f, x Ω R 3, t > 0, (1) u(x, 0) = 0, x Ω, (2)

More information

The All-floating BETI Method: Numerical Results

The All-floating BETI Method: Numerical Results The All-floating BETI Method: Numerical Results Günther Of Institute of Computational Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria, of@tugraz.at Summary. The all-floating

More information

Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain

Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain Stephen Edward Moore Johann Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences,

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY, USA. Dan_Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

arxiv: v1 [math.na] 11 Jul 2011

arxiv: v1 [math.na] 11 Jul 2011 Multigrid Preconditioner for Nonconforming Discretization of Elliptic Problems with Jump Coefficients arxiv:07.260v [math.na] Jul 20 Blanca Ayuso De Dios, Michael Holst 2, Yunrong Zhu 2, and Ludmil Zikatanov

More information

Zonal modelling approach in aerodynamic simulation

Zonal modelling approach in aerodynamic simulation Zonal modelling approach in aerodynamic simulation and Carlos Castro Barcelona Supercomputing Center Technical University of Madrid Outline 1 2 State of the art Proposed strategy 3 Consistency Stability

More information

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

Recovery-Based A Posteriori Error Estimation

Recovery-Based A Posteriori Error Estimation Recovery-Based A Posteriori Error Estimation Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 2, 2011 Outline Introduction Diffusion Problems Higher Order Elements

More information

AMG for a Peta-scale Navier Stokes Code

AMG for a Peta-scale Navier Stokes Code AMG for a Peta-scale Navier Stokes Code James Lottes Argonne National Laboratory October 18, 2007 The Challenge Develop an AMG iterative method to solve Poisson 2 u = f discretized on highly irregular

More information

Divergence-conforming multigrid methods for incompressible flow problems

Divergence-conforming multigrid methods for incompressible flow problems Divergence-conforming multigrid methods for incompressible flow problems Guido Kanschat IWR, Universität Heidelberg Prague-Heidelberg-Workshop April 28th, 2015 G. Kanschat (IWR, Uni HD) Hdiv-DG Práha,

More information

Partial Differential Equations

Partial Differential Equations M3M3 Partial Differential Equations Solutions to problem sheet 3/4 1* (i) Show that the second order linear differential operators L and M, defined in some domain Ω R n, and given by Mφ = Lφ = j=1 j=1

More information

A Multigrid Method for Two Dimensional Maxwell Interface Problems

A Multigrid Method for Two Dimensional Maxwell Interface Problems A Multigrid Method for Two Dimensional Maxwell Interface Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University USA JSA 2013 Outline A

More information

Space-Time Nonconforming Optimized Schwarz Waveform Relaxation for Heterogeneous Problems and General Geometries

Space-Time Nonconforming Optimized Schwarz Waveform Relaxation for Heterogeneous Problems and General Geometries Space-Time Nonconforming Optimized Schwarz Waveform Relaxation for Heterogeneous Problems and General Geometries Laurence Halpern, Caroline Japhet, and Jérémie Szeftel 3 LAGA, Université Paris XIII, Villetaneuse

More information

Hierarchical Parallel Solution of Stochastic Systems

Hierarchical Parallel Solution of Stochastic Systems Hierarchical Parallel Solution of Stochastic Systems Second M.I.T. Conference on Computational Fluid and Solid Mechanics Contents: Simple Model of Stochastic Flow Stochastic Galerkin Scheme Resulting Equations

More information

Multispace and Multilevel BDDC. Jan Mandel University of Colorado at Denver and Health Sciences Center

Multispace and Multilevel BDDC. Jan Mandel University of Colorado at Denver and Health Sciences Center Multispace and Multilevel BDDC Jan Mandel University of Colorado at Denver and Health Sciences Center Based on joint work with Bedřich Sousedík, UCDHSC and Czech Technical University, and Clark R. Dohrmann,

More information

Electromagnetic wave propagation. ELEC 041-Modeling and design of electromagnetic systems

Electromagnetic wave propagation. ELEC 041-Modeling and design of electromagnetic systems Electromagnetic wave propagation ELEC 041-Modeling and design of electromagnetic systems EM wave propagation In general, open problems with a computation domain extending (in theory) to infinity not bounded

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering.

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering. Lecture 16 Applications of Conformal Mapping MATH-GA 451.001 Complex Variables The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and

More information

Non-Intrusive Solution of Stochastic and Parametric Equations

Non-Intrusive Solution of Stochastic and Parametric Equations Non-Intrusive Solution of Stochastic and Parametric Equations Hermann G. Matthies a Loïc Giraldi b, Alexander Litvinenko c, Dishi Liu d, and Anthony Nouy b a,, Brunswick, Germany b École Centrale de Nantes,

More information

Robust solution of Poisson-like problems with aggregation-based AMG

Robust solution of Poisson-like problems with aggregation-based AMG Robust solution of Poisson-like problems with aggregation-based AMG Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire Paris, January 26, 215 Supported by the Belgian FNRS http://homepages.ulb.ac.be/

More information

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V Part I: Introduction to Finite Element Methods Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Necel Winter 4/5 The Model Problem FEM Main Ingredients Wea Forms and Wea

More information

Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis.

Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis. Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis Houman Owhadi Joint work with Clint Scovel IPAM Apr 3, 2017 DARPA EQUiPS / AFOSR

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz A note on the stable coupling of finite and boundary elements O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2009/4 Technische Universität Graz A

More information

FEAST eigenvalue algorithm and solver: review and perspectives

FEAST eigenvalue algorithm and solver: review and perspectives FEAST eigenvalue algorithm and solver: review and perspectives Eric Polizzi Department of Electrical and Computer Engineering University of Masachusetts, Amherst, USA Sparse Days, CERFACS, June 25, 2012

More information

Master Thesis Literature Study Presentation

Master Thesis Literature Study Presentation Master Thesis Literature Study Presentation Delft University of Technology The Faculty of Electrical Engineering, Mathematics and Computer Science January 29, 2010 Plaxis Introduction Plaxis Finite Element

More information

An Adaptive Hierarchical Matrix on Point Iterative Poisson Solver

An Adaptive Hierarchical Matrix on Point Iterative Poisson Solver Malaysian Journal of Mathematical Sciences 10(3): 369 382 (2016) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal An Adaptive Hierarchical Matrix on Point

More information

Table of Contents. II. PDE classification II.1. Motivation and Examples. II.2. Classification. II.3. Well-posedness according to Hadamard

Table of Contents. II. PDE classification II.1. Motivation and Examples. II.2. Classification. II.3. Well-posedness according to Hadamard Table of Contents II. PDE classification II.. Motivation and Examples II.2. Classification II.3. Well-posedness according to Hadamard Chapter II (ContentChapterII) Crashtest: Reality Simulation http:www.ara.comprojectssvocrownvic.htm

More information

Construction of a New Domain Decomposition Method for the Stokes Equations

Construction of a New Domain Decomposition Method for the Stokes Equations Construction of a New Domain Decomposition Method for the Stokes Equations Frédéric Nataf 1 and Gerd Rapin 2 1 CMAP, CNRS; UMR7641, Ecole Polytechnique, 91128 Palaiseau Cedex, France 2 Math. Dep., NAM,

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Robust boundary element domain decomposition solvers in acoustics O. Steinbach, M. Windisch Berichte aus dem Institut für Numerische Mathematik Bericht 2009/9 Technische Universität

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

Lecture 8: Boundary Integral Equations

Lecture 8: Boundary Integral Equations CBMS Conference on Fast Direct Solvers Dartmouth College June 23 June 27, 2014 Lecture 8: Boundary Integral Equations Gunnar Martinsson The University of Colorado at Boulder Research support by: Consider

More information

Least-Squares Spectral Collocation with the Overlapping Schwarz Method for the Incompressible Navier Stokes Equations

Least-Squares Spectral Collocation with the Overlapping Schwarz Method for the Incompressible Navier Stokes Equations Least-Squares Spectral Collocation with the Overlapping Schwarz Method for the Incompressible Navier Stokes Equations by Wilhelm Heinrichs Universität Duisburg Essen, Ingenieurmathematik Universitätsstr.

More information

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Gert Lube 1, Tobias Knopp 2, and Gerd Rapin 2 1 University of Göttingen, Institute of Numerical and Applied Mathematics (http://www.num.math.uni-goettingen.de/lube/)

More information

Computational Information Games A minitutorial Part II Houman Owhadi ICERM June 5, 2017

Computational Information Games A minitutorial Part II Houman Owhadi ICERM June 5, 2017 Computational Information Games A minitutorial Part II Houman Owhadi ICERM June 5, 2017 DARPA EQUiPS / AFOSR award no FA9550-16-1-0054 (Computational Information Games) Question Can we design a linear

More information

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes Dylan Copeland 1, Ulrich Langer 2, and David Pusch 3 1 Institute of Computational Mathematics,

More information

Concepts. 3.1 Numerical Analysis. Chapter Numerical Analysis Scheme

Concepts. 3.1 Numerical Analysis. Chapter Numerical Analysis Scheme Chapter 3 Concepts The objective of this work is to create a framework to implement multi-disciplinary finite element applications. Before starting, it is necessary to explain some basic concepts of the

More information

Calculation of Sound Fields in Flowing Media Using CAPA and Diffpack

Calculation of Sound Fields in Flowing Media Using CAPA and Diffpack Calculation of Sound Fields in Flowing Media Using CAPA and Diffpack H. Landes 1, M. Kaltenbacher 2, W. Rathmann 3, F. Vogel 3 1 WisSoft, 2 Univ. Erlangen 3 inutech GmbH Outline Introduction Sound in Flowing

More information