Yanlin Shao 1 Odd M. Faltinsen 2

Size: px
Start display at page:

Download "Yanlin Shao 1 Odd M. Faltinsen 2"

Transcription

1 Yanlin Shao 1 Odd M. Faltinsen 1 Ship Hydrodynamics & Stability, Det Norsk Veritas, Norway Centre for Ships and Ocean Structures (CeSOS), NTNU, Norway 1

2 The state-of-the-art potential flow analysis: Boundary Element Method (BEM) A Cruise Ship A numerical model for BEM Unknowns distributed on wetted ship surface and water surface Tune the unknowns so that all boundary conditions and governing equations are satisfied Still time consuming when it comes to fully-nonlinear problems

3 Introduction: Boundary Element Method Using Boundary Element Method (BEM) is a strong tradition in Marine Hydrodynamics. Early examples: Bai & Yeung (1974) Many applications of BEM wave-body interactions ---- Linear; ----Weakly-nonlinear (e.g. nd order); Advantage: Discretize only on boundary surfaces Disadvantage: Dense matrix, CPU time and memory increases as N Applications of BEM in fully-nonlinear wave-body interactions are quite limited. The CPU time is an important consideration

4 Introduction: Volume Methods Volume methods are found to be very efficient in terms of CPU time. Advantages to operate with sparse matrix. Examples: FEM: Wu & Eatock Taylor (1995), Wang & Wu (001) FDM: Bingham & Zhang (007), Engsig-Karup et al. (009) Advantage: Operate with sparse matrix Frame Jun 01 3d contour Disadvantage: Mesh generation in whole fluid domain Y Z X

5 Harmonic Polynomials Leonhard Euler ( ) Euler s memoir Principia motus fluidorum (Euler, ) English translation available at

6 x, y, z 0 Use polynomials to represent velocity potential Constraints on coefficients in order to satisfy Laplace equation

7 Examples of Harmonic Polynomials In 1D: f x a bx n In D: z x i y n u x, y i v x, y Examples up to 4 th order: 1, x, y, x -y, xy, x 3-3xy, 3x y-y 3, x 4-6x y +y 4, 4x 3 y-4xy 3 n n Laplace equation automatically satisfied.

8 An example of using harmonic polynomials (D): A Dirichlet boundary-value problem 8 x y b f j x, y, j j1 Unknown coefficients Harmonic polynomials Applying boundary conditions at the nodes gives i b 8 j1 b 8 j i i, j j j1 f x x, y y, i 1,,8 c j i i, i 1,, i 8 8 d ( x, y) j, i j Linear combination of, 1,,8. i i i i1 j1 x, y c f x, y

9 The HPC method for a general potential-flow problem (i-1,j+1) (i-1,j) (i,j+1) (i+1,j+1) (i+,j+1) (i,j) (i+1,j) (i+,j) (i-1,j-1) (i,j-1) (i+1,j-1) (i+,j-1) 1. Discretize by quadrilateral elements. Operate with cells that contain 4 neighboring quadrilateral elements and 9 grid points 3. Consider a sub-dirichlet problem in each cell In fluid: 8 8 j, i j i i1 j1 x, y c f x, y x x 0, y y 0 c ii 9 9 1, i1 On Neumann boundaries: 8 8 x, y c j, if j x, yn( x, y) i n i1 j Sparse matrix with at most 9 nonzeros in each row. 3 rd ~4 th order accuracy.

10 Efficiency & Accuracy

11 A D analytical case Dirichlet surface Neumann 0 L h Neumann Neumann Length = L, Height = h, L = 40h (Consistent with Wu & Eatock Taylor, 1995) Uniform rectangular grids x y Analytical velocity potential cosh k( y h) sin kx Mixed Dirichlet-Neumann boundary value problem GMRES solver used for all the methods in comparisons

12 L errors L Errors CPU time (s) CPU time 10 BEM FMM-BEM FVM LPC HPC N: number of unknowns corresponding to BEMs For a given accuracy, HPC performs best 1 Required CPU time to achieve 10-4 accuracy L errors x10 3 3x10 3 Number of unknowns FMM-BEM, Dirichlet surface FMM-BEM, Neumann surface HPC- D N 10 1 L 10 0 errors 10-1 HPC: 0.06 sec FMM-BEM: > 1 sec BEM: much much longer time kh=1.0 FVM LPC HPC FVM LPC HPC FMM-BEM, Dirichlet surface FMM-BEM, Neumann surface kh= x10 3 3x10 3 Number of unkowns N x10 3 3x10 3 Number of Unknowns N

13 F ra m e A pr 0 1 pa ne l on e pisode solid A 3D analytical case: a cube Z Dirichlet surface X Y Analytical velocity potential: sin k x k y exp( k z) x y z k 0.5, k 0.5, k k k x y z x y Uniform grid: h x y z Neumann surface

14 L errors CPU time (s) Comparison with Quadratic BEM (QBEM) and Fast Multipole Accelerated BEM (FMA-QBEM) L 10-3 errors k = CPU time QBEM FMA-QBEM,p=1 FMA-QBEM,p=15 HPC k =.08 k = 1.4 k = k = k = k = S D, QBEM S N, QBEM S D, HPC S N, HPC k = Element size h=x=y=z QBEM 3 L error h D QBEM 3 L error h N HPC L error h D HPC 3 L error h N 10-1 x10 3 4x10 3 6x10 3 8x Number of Unknowns S D = Dirichlet surface S N = Neumann surface N

15 Applications of HPC-D 15

16 wave maker Frame Feb 01 contour lines Nonlinear numerical wave tank free surface bottom Piston wave maker The grid is updated to conform the deformation of the free surface

17 wave amplutude (m) Trial h (m) e (m) T (s) α β U r C st,num, fw=0.0 nd,num,fw=0.0 3 rd,num,fw=0.0 4 th,num,fw=0.0 1 st,exp nd,exp 3 rd,exp 4 th,exp 1 st,num,fw=0.05 nd,num,fw= rd,num,fw= th,num,fw= Distance to wave maker (m) A Rayleigh damping term is introduced in the dynamic free surface condition 4e 3 h f w fw = 0.05 is used 0% of that suggested by Chapalain et al. (199) Non-negligible damping effects for higher harmonics A more rational way of estimating damping effect is needed

18 (m) (m) (m) (m) Nonlinear waves over submerged trapezoidal bar Experiments results available from : Beji & Battjes (1993), Luth et al. (1994) 0.4 m 0.3 m 1:0 1.5 m 17.3 m 14.5 m 1 m 1:10 6 m 6 m m 3 m 13 m Num. Exp. x = 1.5 m Num. Exp. x = 14.5 m t (s) t (s) Num. Exp. x = 17.3 m Num. Exp. x = 1 m t (s) t (s)

19 Applications of HPC-3D 19

20 Fully-nonlinear wave tank (HPC-3D) Y HPC results agree surface well with experiments Water Sea floor X

21 wave amplitude (m) wave amplitude (m) st harmonic,exp. ra m e M a1 st yharmonic,num d contour nd harmonic,exp nd harmonic,num. 3 rd harmonic,num. 3 rd harmonic,exp st harmonic,num. nd harmonic,num. 3 rd harmonic,num. 1 st harmonic,exp. nd harmonic,exp. 3 rd harmonic,exp x (m) x (m) T = s; ka = 0.01 T = s; ka = 0.017

22 Fully-nonlinear wave diffraction (HPC-3D) F ra m e J a n n o d e s F E M p a n e ls F E - V o lu m e B ric k D a ta Higher order horizontal wave forces in harmonic waves Comparisons with numerical (Ferrant) and experimental (Huseby&Grue) results

23 3 A third and even higher order wave load effect in survival conditions

24 Arg(F ) Arg(F 4 ) F /ga R Arg(F 1 ) Arg(F 3 ) F a F 1 /gar gar arg F F a ga R arg F Analytical Experiment Analytical Experiment Present Ferrant Present Ferrant Analytical Experiment Present Ferrant kr k R A 0.45, /g=wave number, radius, wave amplitude Analytical Experiment Present Ferrant A ka ka ka ka 3 arg F F a F 3 /ga 3 3 ga 4 3 F a 4 1 ga R F 4 /ga 4 R -1 4 arg F Analytical Experiment Analytical Experiment A Present Ferrant Experiment Ferrant Present A A Present Ferrant ka 0.5 ka ka ka Experiment Ferrant Present

25 Current effect on wave run-up Ferrant 001, Fr = Present.0 Ferrant 001, Fr = 0.05 Present max H max H Ferrant, Fr = Present 0.4 Ferrant 001, Fr = Present Fr = 0.05 Fr = Comparison for wave runup around cylinder 5 5

26 elevation at P 1 (m) elevation at P 1 (m) Sloshing HPC Exp time (s) HPC Exp time (s) Forced oscillation: X T = 0.005L cos(30 o ), Y T = 0.005L sin(30 o )

27 Limitations of the HPC method Vortex shedding e.g. Bilge keel Wave breaking 7

28 A clever strategy: Domain Decomposition Potential-flow solver Efficiency Accuracy More advanced solver Breaking Fragmentation Air entrainment Viscosity 8

29 Thank you!

30 References Bai K. J., Yeung R.W., Numerical solutions to free-surface flow problems, Proceedings of 10 th Symposium on Naval Hydrodynamics, Cambridge, MA, Wu GX, Eatock Taylor (1995) Time stepping solutions of the two-dimensional nonlinear wave radiation problem. Ocean Engng. (8), Bingham H.B., Zhang H., On the accuracy of finite difference solutions for nonlinear water waves. J. Engineering Math., 58, 11-8, 007. Chapalain G, Cointe R, Temperville A., Observed and modeled resonantly interacting progressive water-waves. Costal Engineering, 16, , 199. Luth H.R., Klopman G., Kitou N., Kinematics of waves breaking partially on an offshore bar; LDV measurements of waves with and without a net onshore current. Report H-1573, Delft Hydraulics, P. Ferrant, Fully nonlinear interactions of long-crested wave packets with a three dimensional body. In Proceedings of nd ONR Symp. in Naval Hydrodynamics, 59-7, A.P. Engsig-Karup, H.B. Bingham, O. Lindberg, An efficient flexible-order model for 3D nonlinear water waves. J. Comput. Phys. 8 (009) C.H.Wu, O.M. Faltinsen, B.F. Chen, Time-independent finite difference and ghost cell method to study sloshing liquid in d and 3d tanks with internal structures. Commun. Comput. Phys. 13 (013) Ferrant P., Runup on a cylinder due to waves and current: potential flow solution with fully nonlinear boundary conditions. International Journal of Offshore and Polar Engineering. 11(1), 001. Euler L., Principles of the motion of fluids, Physica D: Nonlinear Phenomena 37 (008) Shao Y.L., Faltinsen O.M., Towards efficient fully-nonlinear potential-flow solvers in marine hydrodynamics. in: Proc. of the 31st Int. Conf. on Ocean, Offshore and Arc. Eng. (OMAE). Rio de Janeiro, Brazil, 01. Shao Y.L., Faltinsen O.M., A Harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics. Submitted for journal publication. Shao Y.L., Faltinsen O.M., Use of body-fixed coordinate system in analysis of weakly-nonlinear wave-body problems. Appl. Ocean Res., 3, 1, 0-33, 010.

WP-1 Hydrodynamics: Background and Strategy

WP-1 Hydrodynamics: Background and Strategy WP-1 Hydrodynamics: Background and Strategy Harry B. Bingham Robert Read (Post-doc) Torben Christiansen (PhD) Mech. Engineering Tech. Univ. of Denmark Lygnby, Denmark Eric D. Christensen Hans Hansen DHI

More information

Methodology for sloshing induced slamming loads and response. Olav Rognebakke Det Norske Veritas AS

Methodology for sloshing induced slamming loads and response. Olav Rognebakke Det Norske Veritas AS Methodology for sloshing induced slamming loads and response Olav Rognebakke Det Norske Veritas AS Post doc. CeSOS 2005-2006 1 Presentation overview Physics of sloshing and motivation Sloshing in rectangular

More information

TIME-DOMAIN SIMULATION OF THE WAVE-

TIME-DOMAIN SIMULATION OF THE WAVE- Chinese-German Joint ymposium on Hydraulic and Ocean Engineering, August 4-3, 8, Darmstadt TIME-DOMAIN IMULATION OF THE WAVE- CURRENT DIFFRACTION FROM 3D BOD Abstract: Zhen Liu, ing Gou and Bin Teng tate

More information

Design, Construction & Operation of LNG/LPG Ships, November, Glasgow, UK

Design, Construction & Operation of LNG/LPG Ships, November, Glasgow, UK Design, Construction & Operation of LNG/LPG Ships, 29-3 November, Glasgow, UK SLOSHING AND SWIRLING IN MEMBRANE LNG TANKS AND THEIR COUPLING EFFECTS WITH SHIP MOTION M Arai and G M Karuka, Yokohama National

More information

Experimental and numerical investigation of 2D sloshing: scenarios near the critical filling depth

Experimental and numerical investigation of 2D sloshing: scenarios near the critical filling depth Experimental and numerical investigation of 2D sloshing: scenarios near the critical filling depth A. Colagrossi F. Palladino M. Greco a.colagrossi@insean.it f.palladino@insean.it m.greco@insean.it C.

More information

SIMPLIFICATION BY MATHEMATIC MODEL TO SOLVE THE EXPERIMENTAL OF SLOSHING EFFECT ON THE FPSO VESSEL

SIMPLIFICATION BY MATHEMATIC MODEL TO SOLVE THE EXPERIMENTAL OF SLOSHING EFFECT ON THE FPSO VESSEL European International Journal of Science and Technology Vol. 3 No. 5 June, 2014 SIMPLIFICATION BY MATHEMATIC MODEL TO SOLVE THE EXPERIMENTAL OF SLOSHING EFFECT ON THE FPSO VESSEL LuhutTumpalParulianSinaga

More information

A DERIVATION OF HIGH-FREQUENCY ASYMPTOTIC VALUES OF 3D ADDED MASS AND DAMPING BASED ON PROPERTIES OF THE CUMMINS EQUATION

A DERIVATION OF HIGH-FREQUENCY ASYMPTOTIC VALUES OF 3D ADDED MASS AND DAMPING BASED ON PROPERTIES OF THE CUMMINS EQUATION Journal of Maritime Research, Vol. V. No., pp. 65-78, 8 Copyright 8. SEECMAR Printed in Santander (Spain). All rights reserved ISSN: 697-484 A DERIVATION OF HIGH-FREQUENCY ASYMPTOTIC VALUES OF 3D ADDED

More information

Time domain assessment of nonlinear coupled ship motions and sloshing in free surface tanks

Time domain assessment of nonlinear coupled ship motions and sloshing in free surface tanks Time domain assessment of nonlinear coupled ship motions and sloshing in free surface tanks 1 outline 1.Motivation & state-of-the-art 2.Simulation approach 1.SHIXDOF: nonlinear ship motion TD 6DOF 2.AQUAgpusph:

More information

Radiation and diffraction of a submerged sphere

Radiation and diffraction of a submerged sphere Radiation and diffraction of a submerged sphere S. H. Mousavizadeganl, M. Rahman2 & M. G. Satish3 'Dept. of Mechanical Engineering, Dalhousie University, Canada 2Dept. of Engineering Mathematics, Dalhousie

More information

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 5 Issue 8 ǁ August. 2017 ǁ PP. 32-39 Effect of Liquid Viscosity on Sloshing

More information

Higher-order spectral modelling of the diffraction force around a vertical circular cylinder

Higher-order spectral modelling of the diffraction force around a vertical circular cylinder Downloaded from orbit.dtu.dk on: Apr 10, 2018 Higher-order spectral modelling of the diffraction force around a vertical circular cylinder Bredmose, Henrik; Andersen, Søren Juhl Publication date: 2017

More information

Sloshing response of partially filled rectangular tank under periodic horizontal ground motion.

Sloshing response of partially filled rectangular tank under periodic horizontal ground motion. MATEC Web of Conferences 172, 15 (218) ICDAMS 218 https://doi.org/1.151/matecconf/21817215 Sloshing response of partially filled rectangular tank under periodic horizontal ground motion. Amiya Pandit 1+,

More information

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth csnak, 2015 Int. J. Nav. Archit. Ocean Eng. (2015) 7:115~127 http://dx.doi.org/10.1515/ijnaoe-2015-0009 pissn: 2092-6782, eissn: 2092-6790 Simplified formulas of heave added mass coefficients at high frequency

More information

Experimental and theoretical investigation of the effect of screens on sloshing

Experimental and theoretical investigation of the effect of screens on sloshing 1 Experimental and theoretical investigation of the effect of screens on sloshing Reza Firoozkoohi Trondheim, 28 May 2013 2 Outline of this presentation Part 1: Definition of the problem Part 2: Very small

More information

Hydrodynamics: Setting the Scene*

Hydrodynamics: Setting the Scene* Hydrodynamics: Setting the Scene* *a selective view Prof. Rodney Eatock Taylor and Prof. Paul Taylor University of Oxford The Lloyd s Register Educational Trust (LRET) Marine & Offshore Research Workshop

More information

Seakeeping characteristics of intact and damaged ship in the Adriatic Sea

Seakeeping characteristics of intact and damaged ship in the Adriatic Sea Towards Green Marine Technology and Transport Guedes Soares, Dejhalla & Pavleti (Eds) 2015 Taylor & Francis Group, London, ISBN 978-1-138-02887-6 Seakeeping characteristics of intact and damaged ship in

More information

Measurements of velocities and accelerations in steep irregular water waves

Measurements of velocities and accelerations in steep irregular water waves Measurements of velocities and accelerations in steep irregular water waves by Atle Jensen, J. Kristian Sveen, Morten Huseby and John Grue Mechanics Division, Department of Mathematics University of Oslo,

More information

Seakeeping Models in the Frequency Domain

Seakeeping Models in the Frequency Domain Seakeeping Models in the Frequency Domain (Module 6) Dr Tristan Perez Centre for Complex Dynamic Systems and Control (CDSC) Prof. Thor I Fossen Department of Engineering Cybernetics 18/09/2007 One-day

More information

OMAE HIGH FREQUENCY LOADING AND RESPONSE OF OFFSHORE STRUCTURES IN STEEP WAVES

OMAE HIGH FREQUENCY LOADING AND RESPONSE OF OFFSHORE STRUCTURES IN STEEP WAVES Proceedings of the ASME 11 3th International Conference on Ocean, Offshore and Arctic Engineering OMAE11 June 19-24, 11, Rotterdam, The Netherlands OMAE11-51 HIGH FREQUENCY LOADING AND RESPONSE OF OFFSHORE

More information

VIOLENT WAVE TRAPPING - SOME RESULTS ON WATER PROJECTION AROUND SEMI-SUBs AND TLPs

VIOLENT WAVE TRAPPING - SOME RESULTS ON WATER PROJECTION AROUND SEMI-SUBs AND TLPs VIOLENT WAVE TRAPPING - SOME RESULTS ON WATER PROJECTION AROUND SEMI-SUBs AND TLPs Paul H. Taylor James Grice Rodney Eatock Taylor Department of Engineering Science University of Oxford Contents Introduction

More information

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment Alastair J. Radcliffe Andreas Dedner Timo Betcke Warwick University, Coventry University College of London (UCL) U.K. Radcliffe

More information

Experimental and numerical investigation of 2D sloshing with slamming

Experimental and numerical investigation of 2D sloshing with slamming Experimental numerical investigation of 2D sloshing with slamming A. Colagrossi C. Lugni M. Greco O. M. Faltinsen a.colagrossi@insean.it c.lugni@insean.it m.greco@insean.it oddfal@marin.ntnu.no INSEAN,

More information

Nonlinear Sloshing Simulation under Dynamic Excitations

Nonlinear Sloshing Simulation under Dynamic Excitations Nonlinear Sloshing Simulation under Dynamic Excitations Neptune Yu, Alex To and Goman Ho (Ove Arup & Partners Hong Kong Ltd., Hong Kong) Abstract: This paper simulated non-linear sloshing effects under

More information

Fluid-structure interaction during ship slamming

Fluid-structure interaction during ship slamming Fluid-structure interaction during ship slamming Kevin Maki Dominic J. Piro Donghee Lee Department of Naval Architecture and Marine Engineering University of Michigan Fifth OpenFOAM Workshop June 21-24

More information

Analytically-oriented approaches to nonlinear sloshing in moving smooth tanks

Analytically-oriented approaches to nonlinear sloshing in moving smooth tanks Analytically-oriented approaches to nonlinear sloshing in moving smooth tanks by Alexander Timokha (Jena-Kiev-Leipzig-Trondheim) & Ivan Gavrilyuk (Eisenach-Leipzig) Overview Motivation: coupling with rigid

More information

Numerical Methods for Partial Differential Equations: an Overview.

Numerical Methods for Partial Differential Equations: an Overview. Numerical Methods for Partial Differential Equations: an Overview math652_spring2009@colorstate PDEs are mathematical models of physical phenomena Heat conduction Wave motion PDEs are mathematical models

More information

An adaptive fast multipole boundary element method for the Helmholtz equation

An adaptive fast multipole boundary element method for the Helmholtz equation An adaptive fast multipole boundary element method for the Helmholtz equation Vincenzo Mallardo 1, Claudio Alessandri 1, Ferri M.H. Aliabadi 2 1 Department of Architecture, University of Ferrara, Italy

More information

Multimodal Method in Sloshing Analysis: Analytical Mechanics Concept

Multimodal Method in Sloshing Analysis: Analytical Mechanics Concept Multimodal Method in Sloshing Analysis: Analytical Mechanics Concept by Alexander Timokha CeSOS/AMOS, NTNU, Trondheim, NORWAY & Institute of Mathematics, National Academy of Sciences of Ukraine, UKRAINE

More information

Study on Motions of a Floating Body under Composite External Loads

Study on Motions of a Floating Body under Composite External Loads 137 Study on Motions of a Floating Body under Composite External Loads by Kunihiro Ikegami*, Member Masami Matsuura*, Member Summary In the field of marine engineering, various types of floating bodies

More information

Experimental determination of hydrodynamic coefficients

Experimental determination of hydrodynamic coefficients Experimental determination of hydrodynamic coefficients 1 Needs Analytical results for few geometries only Analytical damping: Linear (radiation only) Coefficients dependent of submergence Coefficients

More information

Second-order diffraction by two concentric truncated cylinders

Second-order diffraction by two concentric truncated cylinders Second-order diffraction by two concentric truncated cylinders by Spyros A. Mavrakos and Ioannis K. Chatjigeorgiou National Technical University of Athens Laboratory for Floating Bodies and Mooring Systems,

More information

Pressure corrected SPH for fluid animation

Pressure corrected SPH for fluid animation Pressure corrected SPH for fluid animation Kai Bao, Hui Zhang, Lili Zheng and Enhua Wu Analyzed by Po-Ram Kim 2 March 2010 Abstract We present pressure scheme for the SPH for fluid animation In conventional

More information

Propeller Loads of Large Commercial Vessels at Crash Stop

Propeller Loads of Large Commercial Vessels at Crash Stop Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Propeller Loads of Large Commercial Vessels at Crash Stop J.W. Hur, H. Lee, B.J. Chang 1 1 Hyundai Heavy Industries,

More information

Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a 3D wave basin

Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a 3D wave basin Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a 3D wave basin M. Onorato 1, L. Cavaleri 2, O.Gramstad 3, P.A.E.M. Janssen 4, J. Monbaliu 5, A. R. Osborne

More information

GENERATING AND ABSORBING BOUNDARY CONDITIONS FOR COMBINED WAVE-CURRENT SIMULATIONS

GENERATING AND ABSORBING BOUNDARY CONDITIONS FOR COMBINED WAVE-CURRENT SIMULATIONS Paper ID: 53, Page 1 GENERATING AND ABSORBING BOUNDARY CONDITIONS FOR COMBINED WAVE-CURRENT SIMULATIONS Xing Chang 1 *, Ido Akkerman 1, Rene H.M. Huijsmans 1, Arthur E.P. Veldman 1 Delft University of

More information

A Fully Coupled Model of Non-linear Wave in a Harbor

A Fully Coupled Model of Non-linear Wave in a Harbor Copyright 2013 Tech Science Press CMES, vol.91, no.4, pp.289-312, 2013 A Fully Coupled Model of Non-linear Wave in a Harbor Daguo Wang 1 Abstract: A 2-D time-domain numerical coupled model for non-linear

More information

Hydrodynamic analysis and modelling of ships

Hydrodynamic analysis and modelling of ships Hydrodynamic analysis and modelling of ships Wave loading Harry B. Bingham Section for Coastal, Maritime & Structural Eng. Department of Mechanical Engineering Technical University of Denmark DANSIS møde

More information

Semi-Displacement Vessel Including Applications to Calm-Water Broaching

Semi-Displacement Vessel Including Applications to Calm-Water Broaching Potential-Flow Predictions of a Semi-Displacement Vessel Including pplications to Calm-Water roaching CeSOS Conference 29-May-2013 abak Ommani www.cesos.ntnu.no 29-May-2013, CeSOS Conference CeSOS Centre

More information

OFFSHORE HYDROMECHANICS OE 4620-d

OFFSHORE HYDROMECHANICS OE 4620-d Lecture OFFSHORE HYDROMECHANICS OE 4620-d MODULE 4 ch. 12 Wave Forces on Slender Cylinders ch. 13 Survival Loads on Tower Structures ch. 14 Sea Bed Boundary Effects Successive to Module 1. Morison Lab.

More information

A Probabilistic Design Approach for Riser Collision based on Time- Domain Response Analysis

A Probabilistic Design Approach for Riser Collision based on Time- Domain Response Analysis A Probabilistic Design Approach for Riser Collision based on Time- Domain Response Analysis B.J. Leira NTNU, Dept. Marine Structures,Trondheim, Norway T. Holmås MARINTEK, Div. of Structural Engineering,,

More information

Efficient calculation for evaluating vast amounts of quadrupole sources in BEM using fast multipole method

Efficient calculation for evaluating vast amounts of quadrupole sources in BEM using fast multipole method PROCEEDINGS of the 22 nd International Congress on Acoustics Boundary Element and Meshless Methods on Acoustics and Vibrations: Paper ICA2016-309 Efficient calculation for evaluating vast amounts of quadrupole

More information

Hull-tether-riser dynamics of deep water tension leg platforms

Hull-tether-riser dynamics of deep water tension leg platforms Fluid Structure Interaction V 15 Hull-tether-riser dynamics of deep water tension leg platforms R. Jayalekshmi 1, R. Sundaravadivelu & V. G. Idichandy 1 Department of Civil Engineering, NSS College of

More information

Dynamic Responses of Composite Marine Propeller in Spatially Wake

Dynamic Responses of Composite Marine Propeller in Spatially Wake Dynamic Responses of Composite Marine Propeller in Spatially Wake Dynamic Responses of Composite Marine Propeller in Spatially Wake Y. Hong a, X.D. He a,*, R.G. Wang a, Y.B. Li a, J.Z. Zhang a, H.M. Zhang

More information

A numerical investigation of second-order difference-frequency forces and motions of a moored ship in shallow water

A numerical investigation of second-order difference-frequency forces and motions of a moored ship in shallow water J. Ocean Eng. Mar. Energy (205) :57 79 DOI 0.007/s40722-05-004-6 RESEARCH ARTICLE A numerical investigation of second-order difference-frequency forces and motions of a moored ship in shallow water Jikun

More information

Lecture 8: Boundary Integral Equations

Lecture 8: Boundary Integral Equations CBMS Conference on Fast Direct Solvers Dartmouth College June 23 June 27, 2014 Lecture 8: Boundary Integral Equations Gunnar Martinsson The University of Colorado at Boulder Research support by: Consider

More information

STRUCTURAL CONTROL USING MODIFIED TUNED LIQUID DAMPERS

STRUCTURAL CONTROL USING MODIFIED TUNED LIQUID DAMPERS STRUCTURAL CONTROL USING MODIFIED TUNED LIQUID DAMPERS A. Samanta 1 and P. Banerji 2 1 Research Scholar, Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India, 2 Professor,

More information

Semi-analytical solution of Poisson's equation in bounded domain

Semi-analytical solution of Poisson's equation in bounded domain Semi-analytical solution of Poisson's equation in bounded domain Author Song, Hao, Tao, L. Published 21 Journal Title ANZIAM Journal Copyright Statement 21 Australian Mathematical Society. The attached

More information

Overview of BV R&D activities in Marine Hydrodynamics

Overview of BV R&D activities in Marine Hydrodynamics Overview of BV R&D activities in Marine Hydrodynamics Special attention to hydro-structure interactions Šime Malenica Bureau Veritas Marine & Offshore Division Research Department Harbin, 29th of June

More information

Numerical investigation on vortex-induced motion of a pivoted cylindrical body in uniform flow

Numerical investigation on vortex-induced motion of a pivoted cylindrical body in uniform flow Fluid Structure Interaction VII 147 Numerical investigation on vortex-induced motion of a pivoted cylindrical body in uniform flow H. G. Sung 1, H. Baek 2, S. Hong 1 & J.-S. Choi 1 1 Maritime and Ocean

More information

Schur decomposition in the scaled boundary finite element method in elastostatics

Schur decomposition in the scaled boundary finite element method in elastostatics IOP Conference Series: Materials Science and Engineering Schur decomposition in the scaled boundary finite element method in elastostatics o cite this article: M Li et al 010 IOP Conf. Ser.: Mater. Sci.

More information

Ó» ë Ó» Œ #ch ë 1XPHUL DO$QDO\VLVRQ1RQOLQHDU6ORVKLQJ3UREOHPXVLQJ )LQLWH(OHPHQW0HWKRG. **American Bureau of Shipping, ***Seoul National University.

Ó» ë Ó» Œ #ch ë 1XPHUL DO$QDO\VLVRQ1RQOLQHDU6ORVKLQJ3UREOHPXVLQJ )LQLWH(OHPHQW0HWKRG. **American Bureau of Shipping, ***Seoul National University. š ~ã²æ Journal of the Korean Society for Marine Environmental Engineering Vol. 7, No. 4. pp. 26-223, November 2004 Ó» ë Ó» Œ #ch ë "ç{, *$ Ï**$ç^S*$ XM***, * ]š \ö, **]./7², ****ÞL XPHUL DO$QDO\VLVRQRQOLQHDU6ORVKLQJ3UREOHPXVLQJ

More information

Effect of Gravity on the Vertical Force of an Oscillating Wedge at Free Surface

Effect of Gravity on the Vertical Force of an Oscillating Wedge at Free Surface Effect of Gravity on the Vertical Force of an Oscillating Wedge at Free Surface Master of Science Thesis For the degree of Master of Science in Offshore and Dredging Engineering at Delft University of

More information

ROLL MOTION OF A RORO-SHIP IN IRREGULAR FOLLOWING WAVES

ROLL MOTION OF A RORO-SHIP IN IRREGULAR FOLLOWING WAVES 38 Journal of Marine Science and Technology, Vol. 9, o. 1, pp. 38-44 (2001) ROLL MOTIO OF A RORO-SHIP I IRREGULAR FOLLOWIG WAVES Jianbo Hua* and Wei-Hui Wang** Keywords: roll motion, parametric excitation,

More information

Effect of nonlinear Froude-Krylov and restoring forces on a hinged

Effect of nonlinear Froude-Krylov and restoring forces on a hinged Effect of nonlinear Froude-Krylov and restoring forces on a hinged multibody WEC Øyvind Y. Rogne (Aker Solutions & CeSOS) Torgeir Moan (CeSOS) Svein Ersdal (Aker Solutions) How the WEC works N buoys hinged

More information

Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes.

Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. 13.012 Marine Hydrodynamics for Ocean Engineers Fall 2004 Quiz #2 Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. For the problems in Section A, fill

More information

Numerical Study of the Roll Decay of Intact and Damaged Ships by Q. Gao and D. Vassalos

Numerical Study of the Roll Decay of Intact and Damaged Ships by Q. Gao and D. Vassalos Session 7 Stability of Damaged Ships Numerical Simulation of Progressive Flooding and Capsize Numerical Study of the Roll Decay of Intact and Damaged Ships by Q. Gao and D. Vassalos Qiuxin Gao and Dracos

More information

Second-order wave diffraction by a circular cylinder using scaled boundary finite element method

Second-order wave diffraction by a circular cylinder using scaled boundary finite element method IOP Conference Series: Materials Science and Engineering Second-order wave diffraction by a circular cylinder using scaled boundary finite element method To cite this article: H Song and L Tao 010 IOP

More information

Wave-free motions of isolated bodies and the existence of motion trapped modes

Wave-free motions of isolated bodies and the existence of motion trapped modes Under consideration for publication in J. Fluid Mech. 1 Wave-free motions of isolated bodies and the existence of motion trapped modes By D. V. E V A N S A N D R. P O R T E R School of Mathematics, University

More information

Transactions on Modelling and Simulation vol 18, 1997 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 18, 1997 WIT Press,  ISSN X Application of the fast multipole method to the 3-D BEM analysis of electron guns T. Nishida and K. Hayami Department of Mathematical Engineering and Information Physics, School of Engineering, University

More information

Irregular Wave Forces on Monopile Foundations. Effect af Full Nonlinearity and Bed Slope

Irregular Wave Forces on Monopile Foundations. Effect af Full Nonlinearity and Bed Slope Downloaded from orbit.dtu.dk on: Dec 04, 2017 Irregular Wave Forces on Monopile Foundations. Effect af Full Nonlinearity and Bed Slope Schløer, Signe; Bredmose, Henrik; Bingham, Harry B. Published in:

More information

On Vertical Variations of Wave-Induced Radiation Stress Tensor

On Vertical Variations of Wave-Induced Radiation Stress Tensor Archives of Hydro-Engineering and Environmental Mechanics Vol. 55 (2008), No. 3 4, pp. 83 93 IBW PAN, ISSN 1231 3726 On Vertical Variations of Wave-Induced Radiation Stress Tensor Włodzimierz Chybicki

More information

Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates

Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates Kauê Werner and Júlio A. Cordioli. Department of Mechanical Engineering Federal University of Santa Catarina

More information

Numerical comparison of two boundary meshless methods for water wave problems

Numerical comparison of two boundary meshless methods for water wave problems Boundary Elements and Other Mesh Reduction Methods XXXVI 115 umerical comparison of two boundary meshless methods for water wave problems Zatianina Razafizana 1,2, Wen Chen 2 & Zhuo-Jia Fu 2 1 College

More information

Notes for the Students by Marilena Greco:

Notes for the Students by Marilena Greco: Notes for the Students by Marilena Greco: In the following you find topics proposed by MARINTEK, by DNV GL and by SINTEF Fisheries and Aquaculture, for possible Project and Master Theses on hydrodynamic

More information

A Fast, Parallel Potential Flow Solver

A Fast, Parallel Potential Flow Solver Advisor: Jaime Peraire December 16, 2012 Outline 1 Introduction to Potential FLow 2 The Boundary Element Method 3 The Fast Multipole Method 4 Discretization 5 Implementation 6 Results 7 Conclusions Why

More information

A Hybrid Method for the Wave Equation. beilina

A Hybrid Method for the Wave Equation.   beilina A Hybrid Method for the Wave Equation http://www.math.unibas.ch/ beilina 1 The mathematical model The model problem is the wave equation 2 u t 2 = (a 2 u) + f, x Ω R 3, t > 0, (1) u(x, 0) = 0, x Ω, (2)

More information

Validation 3. Laminar Flow Around a Circular Cylinder

Validation 3. Laminar Flow Around a Circular Cylinder Validation 3. Laminar Flow Around a Circular Cylinder 3.1 Introduction Steady and unsteady laminar flow behind a circular cylinder, representing flow around bluff bodies, has been subjected to numerous

More information

Impact of an oblique breaking wave on a wall

Impact of an oblique breaking wave on a wall PHYSICS OF FLUIDS VOLUME 6, NUMBER 3 MARCH 24 Jian-Jun Shu School of Mechanical & Production Engineering, Nanyang Technological University, 5 Nanyang Avenue, Singapore 639798 Received April 23; accepted

More information

Fast multipole boundary element method for the analysis of plates with many holes

Fast multipole boundary element method for the analysis of plates with many holes Arch. Mech., 59, 4 5, pp. 385 401, Warszawa 2007 Fast multipole boundary element method for the analysis of plates with many holes J. PTASZNY, P. FEDELIŃSKI Department of Strength of Materials and Computational

More information

Published in: Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference

Published in: Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference Aalborg Universitet Performance Evaluation of an Axysimmetric Floating OWC Alves, M. A.; Costa, I. R.; Sarmento, A. J.; Chozas, Julia Fernandez Published in: Proceedings of the Twentieth (010) International

More information

Notes on two experiments for validation of SPH: dam-break and tuned sloshing damper

Notes on two experiments for validation of SPH: dam-break and tuned sloshing damper Notes on two experiments for validation of SPH: dam-break and tuned sloshing damper Antonio Souto-Iglesias Technical University of Madrid (UPM) Iberian SPH 2015 1 outline 1.Motivation & background 2.Dam-break

More information

ADVANCES IN MECHAN ICS Aug125, ,, KdV. , KdV. KdV. (m KdV). (non - propagating soliton or standing soliton), (precursor soliton)

ADVANCES IN MECHAN ICS Aug125, ,, KdV. , KdV. KdV. (m KdV). (non - propagating soliton or standing soliton), (precursor soliton) 8 Vol18 No1 1998 8 5 ADVANCES IN MECHAN ICS Aug15, 1998 LNM,, 100080 80,,, 150, Russell,,,,,,, KdV,,, :, KdV,,, KdV (m KdV) Schrodinger (NL S ) KdV, KP, KP 80, KdV :, (non - propagating soliton or standing

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 MIDTERM TEST February 11, 009 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Experiments on extreme wave generation using the Soliton on Finite Background

Experiments on extreme wave generation using the Soliton on Finite Background Experiments on extreme wave generation using the Soliton on Finite Background René H.M. Huijsmans 1, Gert Klopman 2,3, Natanael Karjanto 3, and Andonawati 4 1 Maritime Research Institute Netherlands, Wageningen,

More information

Computational Analysis of Added Resistance in Short Waves

Computational Analysis of Added Resistance in Short Waves 13 International Research Exchange Meeting of Ship and Ocean Engineering in Osaka -1 December, Osaka, Japan Computational Analysis of Added Resistance in Short Waves Yonghwan Kim, Kyung-Kyu Yang and Min-Guk

More information

Vertical Baffles Height Effect on Liquid Sloshing in an Accelerating Rectangular Tank

Vertical Baffles Height Effect on Liquid Sloshing in an Accelerating Rectangular Tank International Journal of Mechanics and Applications 2013, 3(5): 105-116 DOI: 10.5923/j.mechanics.20130305.01 Vertical Baffles Height Effect on Liquid Sloshing in an Accelerating Rectangular Tank Abdallah

More information

Simulation of mixing of heterogeneous HE components

Simulation of mixing of heterogeneous HE components Chapter Simulation of mixing of heterogeneous HE components The majority on high explosives (HEs) used are blend ones. Properties of components differ that produces interaction on the grain scale (mesoprocesses).

More information

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France Proceedings of the ASME 2011 32th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France OMAE2013-10124 APPLYING STRIP THEORY BASED LINEAR SEAKEEPING

More information

Proceedings of OMAE'02 21 st International Conference on Offshore Mechanics and Arctic Engineering June 23-27, 2002, Oslo, Norway

Proceedings of OMAE'02 21 st International Conference on Offshore Mechanics and Arctic Engineering June 23-27, 2002, Oslo, Norway Proceedings of OMAE'02 21 st International Conference on Offshore Mechanics and Arctic Engineering June 23-27, 2002, Oslo, Norway OMAE 2002-28435 ESTIMATION OF EXTREME RESPONSE AND FATIGUE DAMAGE FOR COLLIDING

More information

Transactions on Modelling and Simulation vol 2, 1993 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 2, 1993 WIT Press,   ISSN X A boundary integral equation method for water wave-structure interaction problems S. Liapis Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

More information

13.42 LECTURE 2: REVIEW OF LINEAR WAVES

13.42 LECTURE 2: REVIEW OF LINEAR WAVES 13.42 LECTURE 2: REVIEW OF LINEAR WAVES SPRING 2003 c A.H. TECHET & M.S. TRIANTAFYLLOU 1. Basic Water Waves Laplace Equation 2 φ = 0 Free surface elevation: z = η(x, t) No vertical velocity at the bottom

More information

CS 542G: The Poisson Problem, Finite Differences

CS 542G: The Poisson Problem, Finite Differences CS 542G: The Poisson Problem, Finite Differences Robert Bridson November 10, 2008 1 The Poisson Problem At the end last time, we noticed that the gravitational potential has a zero Laplacian except at

More information

Numerical Predictions of Global and Local Ice Loads on Ships and Comparison with Field Measurements

Numerical Predictions of Global and Local Ice Loads on Ships and Comparison with Field Measurements 1 Numerical Predictions of Global and Local Ice Loads on Ships and Comparison with Field Measurements Biao Su Department of Marine Technology, NTNU January 7 th, 2013 Author CeSOS Centre for Ships and

More information

Homotopy perturbation method for the Wu-Zhang equation in fluid dynamics

Homotopy perturbation method for the Wu-Zhang equation in fluid dynamics Journal of Physics: Conference Series Homotopy perturbation method for the Wu-Zhang equation in fluid dynamics To cite this article: Z Y Ma 008 J. Phys.: Conf. Ser. 96 08 View the article online for updates

More information

Review of the Dillingham, Falzarano & Pantazopoulos rotating three-dimensional shallow-water equations

Review of the Dillingham, Falzarano & Pantazopoulos rotating three-dimensional shallow-water equations Review of the Dillingham, Falzarano & Pantazopoulos rotating three-dimensional shallow-water equations by H. Alemi Ardakani & T. J. Bridges Department of Mathematics, University of Surrey, Guildford GU2

More information

DEFORMATION AND FRACTURE ANALYSIS OF ELASTIC SOLIDS BASED ON A PARTICLE METHOD

DEFORMATION AND FRACTURE ANALYSIS OF ELASTIC SOLIDS BASED ON A PARTICLE METHOD Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm DEFORMATION AND FRACTURE ANALYSIS OF ELASTIC SOLIDS BASED ON A PARTICLE METHOD R. A. Amaro

More information

MODELLING THE INTERACTION BETWEEN WATER WAVES AND THE OSCILLATING WATER COLUMN WAVE ENERGY DEVICE. Utku Şentürk, Aydoğan Özdamar

MODELLING THE INTERACTION BETWEEN WATER WAVES AND THE OSCILLATING WATER COLUMN WAVE ENERGY DEVICE. Utku Şentürk, Aydoğan Özdamar Mathematical and Computational Applications, Vol. 16, No. 3, pp. 630-640, 2011. Association for Scientific Research MODELLING THE INTERACTION BETWEEN WATER WAVES AND THE OSCILLATING WATER COLUMN WAVE ENERGY

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Chapter 10 Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 10 Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10 Lecture Outline Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 10: Elasticity and Oscillations Elastic Deformations Hooke s Law Stress and

More information

Hydro-Structure Analysis of Composite Marine Propeller under Pressure Hydrodynamic Loading

Hydro-Structure Analysis of Composite Marine Propeller under Pressure Hydrodynamic Loading American Journal of Mechanical Engineering, 2015, Vol. 3, No. 2, 41-46 Available online at http://pubs.sciepub.com/ajme/3/2/2 Science and Education Publishing DOI:10.12691/ajme-3-2-2 Hydro-Structure Analysis

More information

The solution of the discretized incompressible Navier-Stokes equations with iterative methods

The solution of the discretized incompressible Navier-Stokes equations with iterative methods The solution of the discretized incompressible Navier-Stokes equations with iterative methods Report 93-54 C. Vuik Technische Universiteit Delft Delft University of Technology Faculteit der Technische

More information

Laplace's equation: the potential between parallel plates

Laplace's equation: the potential between parallel plates 4/3/01 Electrostatics Laplace Solver 1 Laplace's equation: the potential between parallel plates Laplace's equation describing the electric potential in two dimensions is: ( x, y) 0 At right is the potential

More information

Research Article Nonlinear Finite Element Analysis of Sloshing

Research Article Nonlinear Finite Element Analysis of Sloshing Advances in Numerical Analysis Volume 13, Article ID 57158, 1 pages http://dx.doi.org/1.1155/13/57158 Research Article Nonlinear Finite Element Analysis of Sloshing Siva Srinivas Kolukula and P. Chellapandi

More information

ANALYSIS OF THE AXIAL BEHAVIOR OF A DRILLING RISER WITH A SUSPENDED MASS

ANALYSIS OF THE AXIAL BEHAVIOR OF A DRILLING RISER WITH A SUSPENDED MASS Copyright 2013 by ABCM ANALYSIS OF THE AXIAL BEHAVIOR OF A DRILLING RISER WITH A SUSPENDED MASS Marcelo Anunciação Jaculli José Ricardo Pelaquim Mendes Celso Kazuyuki Morooka Dept. of Petroleum Engineering

More information

A Momentum Exchange-based Immersed Boundary-Lattice. Boltzmann Method for Fluid Structure Interaction

A Momentum Exchange-based Immersed Boundary-Lattice. Boltzmann Method for Fluid Structure Interaction APCOM & ISCM -4 th December, 03, Singapore A Momentum Exchange-based Immersed Boundary-Lattice Boltzmann Method for Fluid Structure Interaction Jianfei Yang,,3, Zhengdao Wang,,3, and *Yuehong Qian,,3,4

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

LOCAL DIFFERENTIAL QUADRATURE METHOD FOR ELLIPTIC EQUATIONS IN IRREGULAR DOMAINS

LOCAL DIFFERENTIAL QUADRATURE METHOD FOR ELLIPTIC EQUATIONS IN IRREGULAR DOMAINS LOCAL DIFFERENTIAL QUADRATURE METHOD FOR ELLIPTIC EQUATIONS IN IRREGULAR DOMAINS L.H. Shen and D.L. Young * Department of Civil Engineering and Hydrotech Research Institute National Taiwan University Taipei,

More information

A Fast Solver for the Stokes Equations. Tejaswin Parthasarathy CS 598APK, Fall 2017

A Fast Solver for the Stokes Equations. Tejaswin Parthasarathy CS 598APK, Fall 2017 A Fast Solver for the Stokes Equations Tejaswin Parthasarathy CS 598APK, Fall 2017 Stokes Equations? http://www.earthtimes.org/ Continuity wallpapers-s.blogspot.com @ @t + @( u i) @ i =0 http://testingstufftonight.blogspot.com/

More information

Available online at ScienceDirect. Aquatic Procedia 4 (2015 )

Available online at   ScienceDirect. Aquatic Procedia 4 (2015 ) Available online at www.sciencedirect.com ScienceDirect Aquatic Procedia 4 (5 ) 49 499 INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN ENGINEERING (ICWRCOE 5) A 3D numerical wave tank study

More information

Tsunami wave impact on walls & beaches. Jannette B. Frandsen

Tsunami wave impact on walls & beaches. Jannette B. Frandsen Tsunami wave impact on walls & beaches Jannette B. Frandsen http://lhe.ete.inrs.ca 27 Mar. 2014 Tsunami wave impact on walls & beaches Numerical predictions Experiments Small scale; Large scale. Numerical

More information