Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis.

Size: px
Start display at page:

Download "Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis."

Transcription

1 Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis Houman Owhadi Joint work with Clint Scovel IPAM Apr 3, 2017 DARPA EQUiPS / AFOSR award no FA (Computational Information Games)

2 Question Can we design a scalable solver that could be applied to nearly all linear operators? Answer Yes under two minor conditions: (1) The operator must be bounded and invertible (2) Its image space must have a regular multiresolution decomposition

3 Problem: Solve (1) as fast as possible to a given accuracy (1) div(a u) =g, x Ω, u =0, x Ω, Ω R d Ω is piec. Lip. a unif. ell. a i,j L (Ω) log 10 (a)

4 Multigrid Methods Multigrid: [Fedorenko, 1961, Brandt, 1973, Hackbusch, 1978] Multiresolution/Wavelet based methods [Brewster and Beylkin, 1995, Beylkin and Coult, 1998, Averbuch et al., 1998] Linear complexity with smooth coefficients Problem Severely affected by lack of smoothness

5 Robust/Algebraic multigrid [Mandel et al., 1999,Wan-Chan-Smith, 1999, Xu and Zikatanov, 2004, Xu and Zhu, 2008], [Ruge-Stüben, 1987] [Panayot ] Stabilized Hierarchical bases, Multilevel preconditioners [Vassilevski - Wang, 1997, 1998] [Panayot - Vassilevski, 1997] [Chow - Vassilevski, 2003] [Aksoylu- Holst, 2010] Some degree of robustness but problem remains open with rough coefficients Why? Interpolation operators are unknown Don t know how to bridge scales with rough coefficients!

6 Low Rank Matrix Decomposition methods Fast Multipole Method: [Greengard and Rokhlin, 1987] Hierarchical Matrix Method: [Hackbusch et al., 2002] [Bebendorf, 2008]: N ln 2d+8 N complexity To achieve grid-size accuracy in L 2 -norm

7 Common theme between these methods Their process of discovery is based on intuition, brilliant insight, and guesswork Can we turn this process of discovery into an algorithm?

8 ( div(a u) =g in Ω, u =0on Ω, H 1 0 (Ω) =W (1) a W (2) a a W (k) a Gamblet O(N ln 3d N) u = w (1) + w (2) + + w (k) + Linear Solve Transform O(N ln d+1 N) u = 0.14 w (1) 0.03 w (2) w (3) + + w (4) w (5) w (6)

9 Hierarchy of nested Measurement functions φ (1) i φ (2) i φ (3) i Example φ (k) i φ (4) i φ (5) i : Indicator functions of a hierarchical nested partition of Ω of resolution H k =2 k φ (6) i τ (1) 2 τ (2) 2,3 τ (3) 2,3,1

10 Formulation of the hierarchy of games ( div(a u) =g in Ω, Player I u =0on Ω, Player II Sees { uφ (k),i I Ω i k } Must predict u and { uφ (k+1),j I Ω j k+1 }

11 ( div(a u) =g in Ω, Player II s best strategy u =0on Ω, Player II s bets u (1) u(2) u (3) u (4) u (5) u (6)

12 Gamblets Elementary gambles form a hierarchy of deterministic basis functions for player II s hierarchy of bets Theorem u (k) (x) = P i ψ(k) i R (x) Ω u(y)φ(k) (y) dy i ψ (k) i : Elementary gambles/bets at resolution H k =2 k Your best bet on the value of u given the information that Ω

13 Gamblets

14 χ (k) i = ψ (k) i ψ (k) i

15 Multiresolution decomposition of the solution space V (k) := span{ψ (k) i,i I k } W (k) := span{χ (k),i} i W (k+1) : Orthogonal complement of V (k) in V (k+1) with respect to < ψ, χ > a := R Ω ( ψ)t a χ Theorem H 1 0 (Ω) =V (1) a W (2) a a W (k) a

16 Multiresolution decomposition of the solution Theorem u (k+1) u (k) = F.E. sol. of PDE in W (k+1) u = 0.14 u (1) 0.03 u (2) u (1) u (3) u (2) + + u (4) u (3) u (5) u (4) u (6) u (5) Subband solutions u (k+1) u (k) can be computed independently

17 Energy content ( div(a u) =g, x Ω, u =0, x Ω, If r.h.s. is regular we don t need to compute all subbands

18 Numerical Homogenization Harmonic Coordinates Babuska, Caloz, Osborn, 1994 Kozlov, 1979 Allaire Brizzi 2005; Owhadi, Zhang 2005 MsFEM [Hou, Wu: 1997]; [Efendiev, Hou, Wu: 1999] [Fish - Wagiman, 1993] Variational Multiscale Method, Orthogonal decomposition Projection based method HMM Nolen, Papanicolaou, Pironneau, 2008 Engquist, E, Abdulle, Runborg, Schwab, et Al Flux norm Berlyand, Owhadi 2010; Symes 2012 Bayesian Numerical Homogenization Gamblets Operator compression

19 Energy content ( div(a u) =g, x Ω, u =0, x Ω, Beyond numerical homogenization (gamblet mesh refinement)

20 A (k) i,j Uniformly bounded condition numbers := ψ (k) i, ψ (k) j a B (k) i,j := χ (k), χ (k) i j a Theorem λ max (B (k) ) λ min (B (k) ) C log 10 ( λ max(a (k) ) λ min (A (k) ) ) log 10 ( λ max(b (k) ) λ min (B (k) ) ) Just relax! In v W (k) to get u (k) u (k 1)

21 ψ (1) i χ (2) i χ (3) i χ (4) i χ (5) i χ (6) i Gamblets are not only localized in space and their linear combinations remain localized in frequency They behave like wavelets and Wannier functions infψ V kψk 2 a kψk 2 L 2, sup ψ V infψ W (k) kψk 2 a kψk 2 L 2 kψk 2 a kψk 2 L 2, sup ψ W (k) kψk 2 a kψk 2 L 2

22 Wannier functions

23 Operator adapted wavelets First Generation Wavelets: Signal and imaging processing First Generation Operator Adapted Wavelets (shift and scale invariant) Lazy wavelets (Multiresolution decomposition of solution space)

24 Operator adapted wavelets Second Generation Operator Adapted Wavelets We want (open problem solved here) 1. Scale-orthogonal wavelets with respect to operator scalar product (leads to block-diagonalization) 2. Operator to be well conditioned within each subband 3. Wavelets need to be localized (compact support or exp. decay)

25 Gamblet Transform

26 Fast/Localized Gamblet Transform

27 Theorem The number of operations to compute gamblets and achieve accuracy ² is O N ln 3d max( 1 ²,N1/d ) (and O N ln d (N 1/d )ln 1 ² for subsequent solves) Complexity Gamblet Transform Linear Solve O(N ln 3d N) O(N ln d+1 N)

28 Can we design a universal scalable solver? Sparse matrix Laplacians Structured sparse matrices (SDD matrices)

29 The problem

30 Example ( div(a u) =g, x Ω, u =0, x Ω,

31 Example L

32 Example L

33 Example

34 Example

35 Hierarchy of measurement functions Hierarchy of gamblets

36 Theorem Biorthogonal system

37 Measurement functions are nested Gamblets are nested Orthogonalized gamblets

38 Theorem Operator adapted MRA

39 u g Theorem

40 Theorem Eigenspace adapted MRA

41 The method Regularity Conditions

42 The method φ (1) i φ (2) i φ (3) i φ (4) i φ (5) i φ (6) i ψ (1) i χ (2) i χ (3) i χ (4) i χ (5) i χ (6) i

43 Regularity Conditions

44 Example Regularity Conditions

45 Example φ (1) i φ (2) i φ (3) i φ (4) i φ (5) i φ (6) i τ (1) 2 τ (2) 2,3 τ (3) 2,3,1

46 Example τ (1) 2 τ (2) 2,3 τ (3) 2,3,1

47 Example τ (1) 2 τ (2) 2,3 τ (3) 2,3,1

48 Example Regularity Conditions

49 Gamblet Transform/Solve

50 Fast Gamblet Transform obtained by truncation/localization Complexity Theorem Based on exponential decay of gamblets and locality of the operator

51 Localization of Gamblets Localization problem in Numerical Homogenization [Chu-Graham-Hou-2010] (limited inclusions) [Efendiev-Galvis-Wu-2010] (limited inclusions or mask) [Babuska-Lipton 2010] (local boundary eigenvectors) [Owhadi-Zhang 2011] (localized transfer property) Subspace decomposition/correction and Schwarz iterative methods

52 Example L

53 Condition for localization

54 Examples

55 Theorem

56 Straightforward generalization L

57 Localization of gamblets Operator connectivity distance

58 Theorem

59 Condition for localization Measurement functions

60 Game theoretic origin/interpreation To compute fast we need to compute with partial information Restriction Interpolation Missing information Problem

61 Repeated adversarial information games Player I Player II Max Min

62 Theorem

63 Theorem Universal Optimal Measure

64 Theorem Gamblets

65 Theorem

66 Optimal recovery splines

67 Theorem Theorem

68 Link between numerical analysis and statistical inference Coupling numerical approximation error with model uncertainty

69 Statistical inference approaches to numerical approximation Pioneering work

70 Statistical inference approaches to numerical approximation Information based complexity

71 Statistical inference approaches to numerical approximation Bayesian Numerical Analysis

72 Probabilistic Numerics

73 Probabilistic Numerics

74 Game Theoretic approach to Numerical Analysis

75 Thank you DARPA EQUiPS / AFOSR award no FA (Computational Information Games)

Computational Information Games A minitutorial Part II Houman Owhadi ICERM June 5, 2017

Computational Information Games A minitutorial Part II Houman Owhadi ICERM June 5, 2017 Computational Information Games A minitutorial Part II Houman Owhadi ICERM June 5, 2017 DARPA EQUiPS / AFOSR award no FA9550-16-1-0054 (Computational Information Games) Question Can we design a linear

More information

Computational Information Games Houman Owhadi

Computational Information Games Houman Owhadi Computatonal Informaton Games Houman Owhad TexAMP 215 Man Queston Can we turn the process of dscovery of a scalable numercal method nto a UQ problem and, to some degree, solve t as such n an automated

More information

The worst case approach to UQ

The worst case approach to UQ The worst case approach to UQ Houman Owhadi The gods to-day stand friendly, that we may, Lovers of peace, lead on our days to age! But, since the affairs of men rests still uncertain, Let s reason with

More information

AMG for a Peta-scale Navier Stokes Code

AMG for a Peta-scale Navier Stokes Code AMG for a Peta-scale Navier Stokes Code James Lottes Argonne National Laboratory October 18, 2007 The Challenge Develop an AMG iterative method to solve Poisson 2 u = f discretized on highly irregular

More information

Upscaling Wave Computations

Upscaling Wave Computations Upscaling Wave Computations Xin Wang 2010 TRIP Annual Meeting 2 Outline 1 Motivation of Numerical Upscaling 2 Overview of Upscaling Methods 3 Future Plan 3 Wave Equations scalar variable density acoustic

More information

c 2004 Society for Industrial and Applied Mathematics

c 2004 Society for Industrial and Applied Mathematics MULTISCALE MODEL. SIMUL. Vol. 3, No., pp. 65 88 c 4 Society for Industrial and Applied Mathematics ON WAVELET-BASED NUMERICAL HOMOGENIZATION ALINA CHERTOCK AND DORON LEVY Abstract. Recently, a wavelet-based

More information

AN AGGREGATION MULTILEVEL METHOD USING SMOOTH ERROR VECTORS

AN AGGREGATION MULTILEVEL METHOD USING SMOOTH ERROR VECTORS AN AGGREGATION MULTILEVEL METHOD USING SMOOTH ERROR VECTORS EDMOND CHOW Abstract. Many algebraic multilevel methods for solving linear systems assume that the slowto-converge, or algebraically smooth error

More information

arxiv: v1 [math.na] 11 Jul 2011

arxiv: v1 [math.na] 11 Jul 2011 Multigrid Preconditioner for Nonconforming Discretization of Elliptic Problems with Jump Coefficients arxiv:07.260v [math.na] Jul 20 Blanca Ayuso De Dios, Michael Holst 2, Yunrong Zhu 2, and Ludmil Zikatanov

More information

Spectral element agglomerate AMGe

Spectral element agglomerate AMGe Spectral element agglomerate AMGe T. Chartier 1, R. Falgout 2, V. E. Henson 2, J. E. Jones 4, T. A. Manteuffel 3, S. F. McCormick 3, J. W. Ruge 3, and P. S. Vassilevski 2 1 Department of Mathematics, Davidson

More information

Asymptotic expansions for high-contrast elliptic equations

Asymptotic expansions for high-contrast elliptic equations Asymptotic expansions for high-contrast elliptic equations Victor M. Calo Yalchin Efendiev Juan Galvis 1 Abstract In this paper, we present a high-order expansion for elliptic equations in highcontrast

More information

Risi Kondor, The University of Chicago. Nedelina Teneva UChicago. Vikas K Garg TTI-C, MIT

Risi Kondor, The University of Chicago. Nedelina Teneva UChicago. Vikas K Garg TTI-C, MIT Risi Kondor, The University of Chicago Nedelina Teneva UChicago Vikas K Garg TTI-C, MIT Risi Kondor, The University of Chicago Nedelina Teneva UChicago Vikas K Garg TTI-C, MIT {(x 1, y 1 ), (x 2, y 2 ),,

More information

Multiresolution analysis & wavelets (quick tutorial)

Multiresolution analysis & wavelets (quick tutorial) Multiresolution analysis & wavelets (quick tutorial) Application : image modeling André Jalobeanu Multiresolution analysis Set of closed nested subspaces of j = scale, resolution = 2 -j (dyadic wavelets)

More information

Wavelet-Based Numerical Homogenization for Scaled Solutions of Linear Matrix Equations

Wavelet-Based Numerical Homogenization for Scaled Solutions of Linear Matrix Equations International Journal of Discrete Mathematics 2017; 2(1: 10-16 http://www.sciencepublishinggroup.com/j/dmath doi: 10.11648/j.dmath.20170201.13 Wavelet-Based Numerical Homogenization for Scaled Solutions

More information

University of Illinois at Urbana-Champaign. Multigrid (MG) methods are used to approximate solutions to elliptic partial differential

University of Illinois at Urbana-Champaign. Multigrid (MG) methods are used to approximate solutions to elliptic partial differential Title: Multigrid Methods Name: Luke Olson 1 Affil./Addr.: Department of Computer Science University of Illinois at Urbana-Champaign Urbana, IL 61801 email: lukeo@illinois.edu url: http://www.cs.uiuc.edu/homes/lukeo/

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

Xingye Yue. Soochow University, Suzhou, China.

Xingye Yue. Soochow University, Suzhou, China. Relations between the multiscale methods p. 1/30 Relationships beteween multiscale methods for elliptic homogenization problems Xingye Yue Soochow University, Suzhou, China xyyue@suda.edu.cn Relations

More information

( nonlinear constraints)

( nonlinear constraints) Wavelet Design & Applications Basic requirements: Admissibility (single constraint) Orthogonality ( nonlinear constraints) Sparse Representation Smooth functions well approx. by Fourier High-frequency

More information

Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids

Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids Long Chen 1, Ricardo H. Nochetto 2, and Chen-Song Zhang 3 1 Department of Mathematics, University of California at Irvine. chenlong@math.uci.edu

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

Fast algorithms for the inverse medium problem. George Biros University of Pennsylvania

Fast algorithms for the inverse medium problem. George Biros University of Pennsylvania Fast algorithms for the inverse medium problem George Biros University of Pennsylvania Acknowledgments S. Adavani, H. Sundar, S. Rahul (grad students) C. Davatzikos, D. Shen, H. Litt (heart project) Akcelic,

More information

Metric Based Upscaling for Partial Differential Equations with a Continuum of Scales

Metric Based Upscaling for Partial Differential Equations with a Continuum of Scales Metric Based Upscaling for Partial Differential Equations with a Continuum of Scales Thesis by Lei Zhang In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute

More information

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS MICHAEL HOLST AND FAISAL SAIED Abstract. We consider multigrid and domain decomposition methods for the numerical

More information

H(div) Preconditioning for a Mixed Finite Element Formulation of the Stochastic Diffusion Problem 1

H(div) Preconditioning for a Mixed Finite Element Formulation of the Stochastic Diffusion Problem 1 University of Maryland Department of Computer Science CS-TR-4918 University of Maryland Institute for Advanced Computer Studies UMIACS-TR-2008-15 H(div) Preconditioning for a Mixed Finite Element Formulation

More information

Multiscale Computation for Incompressible Flow and Transport Problems

Multiscale Computation for Incompressible Flow and Transport Problems Multiscale Computation for Incompressible Flow and Transport Problems Thomas Y. Hou Applied Mathematics, Caltech Collaborators: Y. Efenidev (TAMU), V. Ginting (Colorado), T. Strinopolous (Caltech), Danping

More information

Construction of wavelets. Rob Stevenson Korteweg-de Vries Institute for Mathematics University of Amsterdam

Construction of wavelets. Rob Stevenson Korteweg-de Vries Institute for Mathematics University of Amsterdam Construction of wavelets Rob Stevenson Korteweg-de Vries Institute for Mathematics University of Amsterdam Contents Stability of biorthogonal wavelets. Examples on IR, (0, 1), and (0, 1) n. General domains

More information

Fast numerical methods for solving linear PDEs

Fast numerical methods for solving linear PDEs Fast numerical methods for solving linear PDEs P.G. Martinsson, The University of Colorado at Boulder Acknowledgements: Some of the work presented is joint work with Vladimir Rokhlin and Mark Tygert at

More information

Multigrid and Domain Decomposition Methods for Electrostatics Problems

Multigrid and Domain Decomposition Methods for Electrostatics Problems Multigrid and Domain Decomposition Methods for Electrostatics Problems Michael Holst and Faisal Saied Abstract. We consider multigrid and domain decomposition methods for the numerical solution of electrostatics

More information

arxiv: v2 [math.na] 28 Nov 2010

arxiv: v2 [math.na] 28 Nov 2010 Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems Ivo Babuska 1 Robert Lipton 2 arxiv:1004.3041v2 [math.na] 28 Nov 2010 Abstract The paper

More information

Numerical techniques for stiff and multiscale differential equations

Numerical techniques for stiff and multiscale differential equations 2009 SIAM Annual Meeting July 6-10, 2009 Numerical techniques for stiff and multiscale differential equations Assyr Abdulle - Mathematics Section Swiss Federal Institute of Technology, Lausanne (EPFL)

More information

New Multigrid Solver Advances in TOPS

New Multigrid Solver Advances in TOPS New Multigrid Solver Advances in TOPS R D Falgout 1, J Brannick 2, M Brezina 2, T Manteuffel 2 and S McCormick 2 1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O.

More information

Constrained Minimization and Multigrid

Constrained Minimization and Multigrid Constrained Minimization and Multigrid C. Gräser (FU Berlin), R. Kornhuber (FU Berlin), and O. Sander (FU Berlin) Workshop on PDE Constrained Optimization Hamburg, March 27-29, 2008 Matheon Outline Successive

More information

Auxiliary space multigrid method for elliptic problems with highly varying coefficients

Auxiliary space multigrid method for elliptic problems with highly varying coefficients Auxiliary space multigrid method for elliptic problems with highly varying coefficients Johannes Kraus 1 and Maria Lymbery 2 1 Introduction The robust preconditioning of linear systems of algebraic equations

More information

RICE UNIVERSITY. Transfer-of-approximation Approaches for Subgrid Modeling by Xin Wang

RICE UNIVERSITY. Transfer-of-approximation Approaches for Subgrid Modeling by Xin Wang RICE UNIVERSITY Transfer-of-approximation Approaches for Subgrid Modeling by Xin Wang A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved, Thesis

More information

Rapid evaluation of electrostatic interactions in multi-phase media

Rapid evaluation of electrostatic interactions in multi-phase media Rapid evaluation of electrostatic interactions in multi-phase media P.G. Martinsson, The University of Colorado at Boulder Acknowledgements: Some of the work presented is joint work with Mark Tygert and

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

Numerical Solution I

Numerical Solution I Numerical Solution I Stationary Flow R. Kornhuber (FU Berlin) Summerschool Modelling of mass and energy transport in porous media with practical applications October 8-12, 2018 Schedule Classical Solutions

More information

NUMERICAL METHODS FOR MULTISCALE ELLIPTIC PROBLEMS

NUMERICAL METHODS FOR MULTISCALE ELLIPTIC PROBLEMS NUMERICAL METODS FOR MULTISCALE ELLIPTIC PROBLEMS PINGBING MING AND XINGYE YUE Abstract. We present an overview of the recent development on numerical methods for elliptic problems with multiscale coefficients.

More information

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Roman Andreev ETH ZÜRICH / 29 JAN 29 TOC of the Talk Motivation & Set-Up Model Problem Stochastic Galerkin FEM Conclusions & Outlook Motivation

More information

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36 Optimal multilevel preconditioning of strongly anisotropic problems. Part II: non-conforming FEM. Svetozar Margenov margenov@parallel.bas.bg Institute for Parallel Processing, Bulgarian Academy of Sciences,

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

Uniform Convergence of a Multilevel Energy-based Quantization Scheme

Uniform Convergence of a Multilevel Energy-based Quantization Scheme Uniform Convergence of a Multilevel Energy-based Quantization Scheme Maria Emelianenko 1 and Qiang Du 1 Pennsylvania State University, University Park, PA 16803 emeliane@math.psu.edu and qdu@math.psu.edu

More information

On the Numerical Evaluation of Fractional Sobolev Norms. Carsten Burstedde. no. 268

On the Numerical Evaluation of Fractional Sobolev Norms. Carsten Burstedde. no. 268 On the Numerical Evaluation of Fractional Sobolev Norms Carsten Burstedde no. 268 Diese Arbeit ist mit Unterstützung des von der Deutschen Forschungsgemeinschaft getragenen Sonderforschungsbereiches 611

More information

A Tutorial on Wavelets and their Applications. Martin J. Mohlenkamp

A Tutorial on Wavelets and their Applications. Martin J. Mohlenkamp A Tutorial on Wavelets and their Applications Martin J. Mohlenkamp University of Colorado at Boulder Department of Applied Mathematics mjm@colorado.edu This tutorial is designed for people with little

More information

L. Levaggi A. Tabacco WAVELETS ON THE INTERVAL AND RELATED TOPICS

L. Levaggi A. Tabacco WAVELETS ON THE INTERVAL AND RELATED TOPICS Rend. Sem. Mat. Univ. Pol. Torino Vol. 57, 1999) L. Levaggi A. Tabacco WAVELETS ON THE INTERVAL AND RELATED TOPICS Abstract. We use an abstract framework to obtain a multilevel decomposition of a variety

More information

Multilevel and Adaptive Iterative Substructuring Methods. Jan Mandel University of Colorado Denver

Multilevel and Adaptive Iterative Substructuring Methods. Jan Mandel University of Colorado Denver Multilevel and Adaptive Iterative Substructuring Methods Jan Mandel University of Colorado Denver The multilevel BDDC method is joint work with Bedřich Sousedík, Czech Technical University, and Clark Dohrmann,

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

Aggregation-based algebraic multigrid

Aggregation-based algebraic multigrid Aggregation-based algebraic multigrid from theory to fast solvers Yvan Notay Université Libre de Bruxelles Service de Métrologie Nucléaire CEMRACS, Marseille, July 18, 2012 Supported by the Belgian FNRS

More information

Compressing Positive Semidefinite Operators with Sparse/Localized Bases

Compressing Positive Semidefinite Operators with Sparse/Localized Bases Compressing Positive Semidefinite Operators with Sparse/Localized Bases Thesis by Pengchuan Zhang In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy CALIFORNIA INSTITUTE

More information

A Recursive Trust-Region Method for Non-Convex Constrained Minimization

A Recursive Trust-Region Method for Non-Convex Constrained Minimization A Recursive Trust-Region Method for Non-Convex Constrained Minimization Christian Groß 1 and Rolf Krause 1 Institute for Numerical Simulation, University of Bonn. {gross,krause}@ins.uni-bonn.de 1 Introduction

More information

arxiv: v1 [math.na] 16 Dec 2015

arxiv: v1 [math.na] 16 Dec 2015 ANALYSIS OF A NEW HARMONICALLY ENRICHED MULTISCALE COARSE SPACE FOR DOMAIN DECOMPOSITION METHODS MARTIN J. GANDER, ATLE LONELAND, AND TALAL RAHMAN arxiv:52.05285v [math.na] 6 Dec 205 Abstract. We propose

More information

Robust multigrid methods for nonsmooth coecient elliptic linear systems

Robust multigrid methods for nonsmooth coecient elliptic linear systems Journal of Computational and Applied Mathematics 123 (2000) 323 352 www.elsevier.nl/locate/cam Robust multigrid methods for nonsmooth coecient elliptic linear systems Tony F. Chan a; ; 1, W.L. Wan b; 2

More information

HETEROGENEOUS MULTISCALE METHOD IN EDDY CURRENTS MODELING

HETEROGENEOUS MULTISCALE METHOD IN EDDY CURRENTS MODELING Proceedings of ALGORITMY 2009 pp. 219 225 HETEROGENEOUS MULTISCALE METHOD IN EDDY CURRENTS MODELING JÁN BUŠA, JR. AND VALDEMAR MELICHER Abstract. The induction of eddy currents in a conductive piece is

More information

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment Alastair J. Radcliffe Andreas Dedner Timo Betcke Warwick University, Coventry University College of London (UCL) U.K. Radcliffe

More information

SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY

SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY KLAUS NEYMEYR ABSTRACT. Multigrid techniques can successfully be applied to mesh eigenvalue problems for elliptic differential operators. They allow

More information

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms www.oeaw.ac.at Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms Y. Efendiev, J. Galvis, R. Lazarov, J. Willems RICAM-Report 2011-05 www.ricam.oeaw.ac.at

More information

Multiscale Frame-based Kernels for Image Registration

Multiscale Frame-based Kernels for Image Registration Multiscale Frame-based Kernels for Image Registration Ming Zhen, Tan National University of Singapore 22 July, 16 Ming Zhen, Tan (National University of Singapore) Multiscale Frame-based Kernels for Image

More information

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Introduction to Aspects of Multiscale Modeling as Applied to Porous Media Part IV Todd Arbogast Department of Mathematics and Center for Subsurface Modeling, Institute for Computational Engineering and

More information

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN INTROUCTION TO FINITE ELEMENT METHOS ON ELLIPTIC EQUATIONS LONG CHEN CONTENTS 1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite ifference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume

More information

Online basis construction for goal-oriented adaptivity in the Generalized Multiscale Finite Element Method

Online basis construction for goal-oriented adaptivity in the Generalized Multiscale Finite Element Method Online basis construction for goal-oriented adaptivity in the Generalized Multiscale Finite Element Method Eric Chung, Sara Pollock, Sai-Mang Pun arxiv:1812.02290v1 [math.na] 6 Dec 2018 December 7, 2018

More information

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2 Contents Preface for the Instructor xi Preface for the Student xv Acknowledgments xvii 1 Vector Spaces 1 1.A R n and C n 2 Complex Numbers 2 Lists 5 F n 6 Digression on Fields 10 Exercises 1.A 11 1.B Definition

More information

Aspects of Multigrid

Aspects of Multigrid Aspects of Multigrid Kees Oosterlee 1,2 1 Delft University of Technology, Delft. 2 CWI, Center for Mathematics and Computer Science, Amsterdam, SIAM Chapter Workshop Day, May 30th 2018 C.W.Oosterlee (CWI)

More information

for compression of Boundary Integral Operators. Steven Paul Nixon B.Sc.

for compression of Boundary Integral Operators. Steven Paul Nixon B.Sc. Theory and Applications of the Multiwavelets for compression of Boundary Integral Operators. Steven Paul Nixon B.Sc. Institute for Materials Research School of Computing, Science & Engineering, University

More information

INTRODUCTION TO MULTIGRID METHODS

INTRODUCTION TO MULTIGRID METHODS INTRODUCTION TO MULTIGRID METHODS LONG CHEN 1. ALGEBRAIC EQUATION OF TWO POINT BOUNDARY VALUE PROBLEM We consider the discretization of Poisson equation in one dimension: (1) u = f, x (0, 1) u(0) = u(1)

More information

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems Etereldes Gonçalves 1, Tarek P. Mathew 1, Markus Sarkis 1,2, and Christian E. Schaerer 1 1 Instituto de Matemática Pura

More information

ADAPTIVE MULTISCALE MOMENT METHOD FOR SOLVING TWO-DIMENSIONAL FREDHOLM INTEGRAL EQUATION OF THE FIRST KIND

ADAPTIVE MULTISCALE MOMENT METHOD FOR SOLVING TWO-DIMENSIONAL FREDHOLM INTEGRAL EQUATION OF THE FIRST KIND Progress In Electromagnetics Research, PIER 21, 173 201, 1999 ADAPTIVE MULTISCALE MOMENT METHOD FOR SOLVING TWO-DIMENSIONAL FREDHOLM INTEGRAL EQUATION OF THE FIRST KIND C. Su Dept. of Applied Math. Northwestern

More information

A Line search Multigrid Method for Large-Scale Nonlinear Optimization

A Line search Multigrid Method for Large-Scale Nonlinear Optimization A Line search Multigrid Method for Large-Scale Nonlinear Optimization Zaiwen Wen Donald Goldfarb Department of Industrial Engineering and Operations Research Columbia University 2008 Siam Conference on

More information

Two new enriched multiscale coarse spaces for the Additive Average Schwarz method

Two new enriched multiscale coarse spaces for the Additive Average Schwarz method 346 Two new enriched multiscale coarse spaces for the Additive Average Schwarz method Leszek Marcinkowski 1 and Talal Rahman 2 1 Introduction We propose additive Schwarz methods with spectrally enriched

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

A Multiresolution Strategy for Reduction of Elliptic PDEs and Eigenvalue Problems

A Multiresolution Strategy for Reduction of Elliptic PDEs and Eigenvalue Problems APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS 5, 129 155 (1998) ARTICLE NO. HA970226 A Multiresolution Strategy for Reduction of Elliptic PDEs and Eigenvalue Problems Gregory Beylkin* and Nicholas Coult

More information

NUMERICAL JUSTIFICATION OF ASYMPTOTIC EDDY CURRENTS MODEL FOR HETEROGENEOUS MATERIALS

NUMERICAL JUSTIFICATION OF ASYMPTOTIC EDDY CURRENTS MODEL FOR HETEROGENEOUS MATERIALS Proceedings of ALGORITMY 2009 pp. 212 218 NUMERICAL JUSTIFICATION OF ASYMPTOTIC EDDY CURRENTS MODEL FOR HETEROGENEOUS MATERIALS V. MELICHER AND J.BUŠA JR. Abstract. We study electromagnetic properties

More information

Schwarz Preconditioner for the Stochastic Finite Element Method

Schwarz Preconditioner for the Stochastic Finite Element Method Schwarz Preconditioner for the Stochastic Finite Element Method Waad Subber 1 and Sébastien Loisel 2 Preprint submitted to DD22 conference 1 Introduction The intrusive polynomial chaos approach for uncertainty

More information

Multipole-Based Preconditioners for Sparse Linear Systems.

Multipole-Based Preconditioners for Sparse Linear Systems. Multipole-Based Preconditioners for Sparse Linear Systems. Ananth Grama Purdue University. Supported by the National Science Foundation. Overview Summary of Contributions Generalized Stokes Problem Solenoidal

More information

Multilevel stochastic collocations with dimensionality reduction

Multilevel stochastic collocations with dimensionality reduction Multilevel stochastic collocations with dimensionality reduction Ionut Farcas TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017 Outline 1 Motivation 2 Theoretical background Uncertainty

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra Peter J. Olver School of Mathematics University of Minnesota Minneapolis, MN 55455 olver@math.umn.edu http://www.math.umn.edu/ olver Chehrzad Shakiban Department of Mathematics University

More information

Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs

Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs Using an Auction Algorithm in AMG based on Maximum Weighted Matching in Matrix Graphs Pasqua D Ambra Institute for Applied Computing (IAC) National Research Council of Italy (CNR) pasqua.dambra@cnr.it

More information

On solving linear systems arising from Shishkin mesh discretizations

On solving linear systems arising from Shishkin mesh discretizations On solving linear systems arising from Shishkin mesh discretizations Petr Tichý Faculty of Mathematics and Physics, Charles University joint work with Carlos Echeverría, Jörg Liesen, and Daniel Szyld October

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 12: Gauss for Linear Systems Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

More information

Introduction to Wavelet Based Numerical Homogenization

Introduction to Wavelet Based Numerical Homogenization Introduction to Wavelet Based Numerical Homogenization Olof Runborg Numerical Analysis, School of Computer Science and Communication, KTH RTG Summer School on Multiscale Modeling and Analysis University

More information

On the Maximal Error of Spectral Approximation of Graph Bisection

On the Maximal Error of Spectral Approximation of Graph Bisection To appear in Linear and Multilinear Algebra Vol. 00, No. 00, Month 20XX, 1 9 On the Maximal Error of Spectral Approximation of Graph Bisection John C. Urschel a,b,c, and Ludmil T. Zikatanov c,d, a Baltimore

More information

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Spectral Graph Theory and its Applications Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Outline Adjacency matrix and Laplacian Intuition, spectral graph drawing

More information

Math 671: Tensor Train decomposition methods

Math 671: Tensor Train decomposition methods Math 671: Eduardo Corona 1 1 University of Michigan at Ann Arbor December 8, 2016 Table of Contents 1 Preliminaries and goal 2 Unfolding matrices for tensorized arrays The Tensor Train decomposition 3

More information

Multispace and Multilevel BDDC. Jan Mandel University of Colorado at Denver and Health Sciences Center

Multispace and Multilevel BDDC. Jan Mandel University of Colorado at Denver and Health Sciences Center Multispace and Multilevel BDDC Jan Mandel University of Colorado at Denver and Health Sciences Center Based on joint work with Bedřich Sousedík, UCDHSC and Czech Technical University, and Clark R. Dohrmann,

More information

A greedy strategy for coarse-grid selection

A greedy strategy for coarse-grid selection A greedy strategy for coarse-grid selection S. MacLachlan Yousef Saad August 3, 2006 Abstract Efficient solution of the very large linear systems that arise in numerical modelling of real-world applications

More information

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation Tao Zhao 1, Feng-Nan Hwang 2 and Xiao-Chuan Cai 3 Abstract In this paper, we develop an overlapping domain decomposition

More information

Matrix square root and interpolation spaces

Matrix square root and interpolation spaces Matrix square root and interpolation spaces Mario Arioli and Daniel Loghin m.arioli@rl.ac.uk STFC-Rutherford Appleton Laboratory, and University of Birmingham Sparse Days,CERFACS, Toulouse, 2008 p.1/30

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

arxiv: v1 [math.na] 1 May 2013

arxiv: v1 [math.na] 1 May 2013 arxiv:3050089v [mathna] May 03 Approximation Properties of a Gradient Recovery Operator Using a Biorthogonal System Bishnu P Lamichhane and Adam McNeilly May, 03 Abstract A gradient recovery operator based

More information

FINITE ELEMENT HETEROGENEOUS MULTISCALE METHODS WITH NEAR OPTIMAL COMPUTATIONAL COMPLEXITY

FINITE ELEMENT HETEROGENEOUS MULTISCALE METHODS WITH NEAR OPTIMAL COMPUTATIONAL COMPLEXITY FINITE ELEMENT HETEROGENEOUS MULTISCALE METHODS WITH NEAR OPTIMAL COMPUTATIONAL COMPLEXITY ASSYR ABDULLE AND BJORN ENGQUIST Abstract. This paper is concerned with a numerical method for multiscale elliptic

More information

H 2 -matrices with adaptive bases

H 2 -matrices with adaptive bases 1 H 2 -matrices with adaptive bases Steffen Börm MPI für Mathematik in den Naturwissenschaften Inselstraße 22 26, 04103 Leipzig http://www.mis.mpg.de/ Problem 2 Goal: Treat certain large dense matrices

More information

Digital Image Processing

Digital Image Processing Digital Image Processing, 2nd ed. Digital Image Processing Chapter 7 Wavelets and Multiresolution Processing Dr. Kai Shuang Department of Electronic Engineering China University of Petroleum shuangkai@cup.edu.cn

More information

Geometric Multigrid Methods

Geometric Multigrid Methods Geometric Multigrid Methods Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University IMA Tutorial: Fast Solution Techniques November 28, 2010 Ideas

More information

Key words. Parallel iterative solvers, saddle-point linear systems, preconditioners, timeharmonic

Key words. Parallel iterative solvers, saddle-point linear systems, preconditioners, timeharmonic PARALLEL NUMERICAL SOLUTION OF THE TIME-HARMONIC MAXWELL EQUATIONS IN MIXED FORM DAN LI, CHEN GREIF, AND DOMINIK SCHÖTZAU Numer. Linear Algebra Appl., Vol. 19, pp. 525 539, 2012 Abstract. We develop a

More information

Multiresolution image processing

Multiresolution image processing Multiresolution image processing Laplacian pyramids Some applications of Laplacian pyramids Discrete Wavelet Transform (DWT) Wavelet theory Wavelet image compression Bernd Girod: EE368 Digital Image Processing

More information

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Pierre Jolivet, F. Hecht, F. Nataf, C. Prud homme Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann INRIA Rocquencourt

More information

EXACT DE RHAM SEQUENCES OF SPACES DEFINED ON MACRO-ELEMENTS IN TWO AND THREE SPATIAL DIMENSIONS

EXACT DE RHAM SEQUENCES OF SPACES DEFINED ON MACRO-ELEMENTS IN TWO AND THREE SPATIAL DIMENSIONS EXACT DE RHAM SEQUENCES OF SPACES DEFINED ON MACRO-ELEMENTS IN TWO AND THREE SPATIAL DIMENSIONS JOSEPH E. PASCIAK AND PANAYOT S. VASSILEVSKI Abstract. This paper proposes new finite element spaces that

More information

Space-time sparse discretization of linear parabolic equations

Space-time sparse discretization of linear parabolic equations Space-time sparse discretization of linear parabolic equations Roman Andreev August 2, 200 Seminar for Applied Mathematics, ETH Zürich, Switzerland Support by SNF Grant No. PDFMP2-27034/ Part of PhD thesis

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

Algebraic Multigrid Methods for the Oseen Problem

Algebraic Multigrid Methods for the Oseen Problem Algebraic Multigrid Methods for the Oseen Problem Markus Wabro Joint work with: Walter Zulehner, Linz www.numa.uni-linz.ac.at This work has been supported by the Austrian Science Foundation Fonds zur Förderung

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 4: Iterative Methods PD

More information