Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs

Size: px
Start display at page:

Download "Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs"

Transcription

1 Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Roman Andreev ETH ZÜRICH / 29 JAN 29

2 TOC of the Talk Motivation & Set-Up Model Problem Stochastic Galerkin FEM Conclusions & Outlook

3 Motivation & Set-Up Goal Goal: model and solve a diffusion-reaction system with coefficients a and c a source f an unknown solution u (a u) + cu = f being uncertain, that is probabilistic quantities, as in, e.g., groundwater flow computations

4 Motivation & Set-Up Notation D open bounded domain in R d (Ω, F, P) probability space a : Ω D R random diffusion coefficient c : Ω D R random reaction coefficient f : D R source

5 Motivation & Set-Up Assumptions Assume D has Lipschitz boundary a and c are measurable positivity boundedness ess inf a > and ess inf c Ω D Ω D ess sup Ω D a < and ess sup c < Ω D deterministic source of finite second moment f L 2 (D)

6 Model Problem Strong Formulation Parametric problems Dirichlet: find u : Ω D R s.t. (a u) + cu = f in Ω D and u = on Ω D parabolic: find u : Ω D [, T] R s.t. u t (a u) + cu = f in Ω D (, T) with initial and boundary conditions hyperbolic: find u : Ω D [, T] R s.t. u tt (a u) + cu = in Ω D (, T) with initial and boundary conditions

7 Model Problem Hyperbolic Example: Vibrating String I Elasticity tensor E(u(t)), t = (E ± 1.96 Var)(u(t)), t = x

8 Model Problem Hyperbolic Example: Vibrating String II Elasticity tensor E(u(t)), t = 1.5 (E ± 1.96 Var)(u(t)), t = x

9 Model Problem Focus: Weak Formulation for the Stochastic Dirichlet Problem Variational problem Define the Hilbert space H 1 := {v : Ω H1 (D) s.t. v H 1 < } where v 2 H 1 ] := E [ v 2H 1(D) = v(ω, x) 2 dxdp(ω) Ω D Well-posed weak formulation: find u H 1 s.t. v H1 [ ] [ ] [ ] E a u, v L 2 (D) + E cu, v L 2 (D) = E f, v L 2 (D)

10 Model Problem Solution Strategies Note that H 1 = L2 (Ω, dp; H 1 (D)) = L 2 (Ω, dp) H 1 (D) L 2 (Ω, dp; H 1 (D)) suggests non-intrusive solvers such as Monte Carlo, collocation L 2 (Ω, dp) H 1 (D) suggests intrusive solvers such as stochastic Galerkin FEM

11 Stochastic Galerkin FEM Meta [1] M. Bieri, Ch. Schwab, Sparse high order FEM for elliptic spdes, CMAME, in press [2] R. Andreev, Sparse Wavelet-Galerkin Methods for Stochastic Diffusion Problems, BSc thesis [3] M. Bieri, R. Andreev, Ch. Schwab, Sparse Tensor Discretization of Elliptic spdes, subm. [4] This work: spatial dimension one, only reaction term piecewise quadratic spatial FEM (simple) parallelization strategy non-stationary problems

12 Stochastic Galerkin FEM Overview Discretization of L 2 (Ω, dp) and H 1 (D) for H 1 (D) we use a wavelet basis {ψ i i = (j,l) I} for L 2 (Ω, dp) we construct an orthonormal polynomial basis {P α α Λ}

13 Stochastic Galerkin FEM Prewavelet Basis on Interval l = l = l =

14 Stochastic Galerkin FEM Biorthogonal pw Quadratic Wavelet Basis on Interval l = l = l =

15 Stochastic Galerkin FEM Karhunen-Loève Expansion I We assume that c, Ω = R R... and a(ω, x) = a(ξ, x) = ā(x) + m Nξ m λm ϕ m (x) where ξ is a random vector ( noise ) with distribution ρ : Ω R {ϕ m m N} is an orthonormal basis for L 2 (D) λ 1 λ 2... with λ m m Such expansions (e.g., the Karhunen-Loève expansion) exist for a large class of industrially relevant random processes

16 Stochastic Galerkin FEM Karhunen-Loève Expansion II Assume that {ξ m m N} are independent random variables, i.e., ρ = ρ 1 ρ 2... Assume that supp ρ is compact, for simplicity ρ m 1 2 χ [ 1,1] As basis for L 2 (Ω, dp) = Lρ 2 (Ω) we take ρ-orthonormal polynomials P α := L α1 L α2..., α = (α 1,α 2,...) Λ := N N where L k is the ρ k -orthonormal (Legendre) polynomial of degree k

17 Stochastic Galerkin FEM Overview II Discretization of L 2 (Ω, dp) and H 1 (D) H 1 (D) = clos span{ψ i i I} L 2 (Ω, dp) = L 2 ρ (Ω) = clos span{p α α Λ}

18 Stochastic Galerkin FEM Hierarchy Hierarchy of degrees of freedom For I l := {i I i 2 = l}, l N we have #I l 2 dl Partition Λ = Λ Λ 1... such that #Λ l 2 γl with a steering parameter γ > 1

19 Stochastic Galerkin FEM Full Tensor Product Subspace: Definition Finite dimensional variational problem Define full tensor product subspaces of H 1 = L 2 (Ω, dp) H 1 (D) as V L := span{p α ψ i (α, i) Λ lω I ld } l Ω, l D L Finite dimensional problem: find u L V L s.t. v V L [ ] [ ] E a u L, v L 2 (D) = E f, v L 2 (D)

20 Stochastic Galerkin FEM Sparse Tensor Product Subspace: Definition Finite dimensional variational problem Define sparse tensor product subspaces of H 1 = L 2 (Ω, dp) H 1 (D) as V L := span{p α ψ i (α, i) Λ lω I ld } l Ω +l D L Finite dimensional problem: find û L V L s.t. v V L [ ] [ ] E a û L, v L 2 (D) = E f, v L 2 (D)

21

22 Stochastic Galerkin FEM Convergence Rates Proposition (see [3]): assuming finite elements of order at least p in physical space < r < s 3 2 λ m ϕ m L (D) m s that u A r ((H p H 1 )(D)), i.e., uniformly in N N inf Λ Λ # Λ=N α/ Λ E [P α u] 2 (H p H 1 )(D) N 2r γ = p/r and optimal (best-n-term) choice of Λ l we obtain u u L H 1 C(u,β)(dimV L ) β, u û L H 1 C(u, ˆβ)L 1+ˆβ(dim V L ) ˆβ, β = (1/r + d/p) 1 ˆβ = min{r, p/d}

23 Stochastic Galerkin FEM Hierarchy: Heuristics I Recall (a u) = f with a = ā + m N ξ m λm ϕ m Therefore, in 1d, u = F ā + m N ξ m λm ϕ m and (see [1]) u L (Ω D) α Λ c α m N µ αm m }{{} µ α with µ m = λm ϕ m L (D) ess inf D ā

24 Stochastic Galerkin FEM Hierarchy: Heuristics II Lemma (see [3]): for < t < s 1 α Λ there exists C(t, d) such that for δ 1,δ 2 > and η m := R m Rm, 2 < R m < ess inf D ā ess inf Ω D a m (1+δ 1 ) λm ϕ m L (D) ζ(1+δ 1 ) µ αm m := η (1 δ 2)α m m with a constant independent of α we have E [P α u] H 1 (D) C(t, d,#suppα) m suppα µ αm m } {{ } µ α

25 Stochastic Galerkin FEM Hierarchy Hierarchy of degrees of freedom For I l := {i I i 2 = l}, l N we have #I l 2 dl Choose a decreasing threshold sequence ǫ l(n ) s.t. Λ l := {α Λ ǫ l > µ α ǫ l+1 }, l N satisfies #Λ l 2 γl with the steering parameter γ > 1

26 Numerical Examples Example I: Convergence Example I set-up diffusion coefficient on D = ( 1, 1) given by a (s) alg (ξ, x) = 1 + ξ m m N λ (s) m sin(mπx) with algebraic Karhunen-Loève eigenvalue decay λ (s) m = 1 1 ζ(s) (m ) s for s > 1 right hand side f(x) = 1 + x, x D heuristics I for computing {Λ l } l N pw quadratic spatial FEM

27 Numerical Examples Example I: Convergence w.r.t. #I l H 1 error First order FEM N 1 Second order FEM N N = #(I... I L )

28 Numerical Examples Example I: Convergence w.r.t. #Λ l H 1 error Algebraic decay, s = 2 Algebraic decay, s = 3 Algebraic decay, s = 4 Exponential decay #(A... A L )

29 Numerical Examples Example I: Convergence w.r.t. #Λ l - EOC Interpolated EOC 1.5 Exponential decay Algebraic decay, s = 4 Algebraic decay, s = 3 Algebraic decay, s = #(A... A L )

30 Numerical Examples Example I: Convergence of Tensor Product Approximations (s = 4) 1 2 N = dimv L N = dim V L H 1 error N

31 Numerical Examples Example II: Reaction Term Example II set-up diffusion coefficient a(ξ, x) = 1 + m N ξ a m λm sin(mπx), λm = 2 m reaction coefficient c(ξ, x) = 1 + m N ξ c m λm sin(mπx) ξ = (ξ a m,ξ c m) m N vector of i.i.d. r.v. s with p.d.f. 1 2 χ [ 1,1] rest as in Example I

32 Numerical Examples Example II: Degrees of Freedom l Total #Λ a l #Λ c l #I l Table: Number of degrees of freedom per level for the reference solution of Example II. FTP: 2 1 9, STP: d.o.f. s.

33 Numerical Examples Example II: Convergence H 1 error dim V L

34 Conclusions & Outlook Conclusions data-adaptive hierarchy of stochastic d.o.f. s possible sparse tensorization improves the convergence rate Outlook L-shaped domain efficient parallelization adaptive methods for stochastic PDEs

35 Conclusions & Outlook Conclusions data-adaptive hierarchy of stochastic d.o.f. s possible sparse tensorization improves the convergence rate Outlook L-shaped domain efficient parallelization adaptive methods for stochastic PDEs

36 Thank You!

Space-time sparse discretization of linear parabolic equations

Space-time sparse discretization of linear parabolic equations Space-time sparse discretization of linear parabolic equations Roman Andreev August 2, 200 Seminar for Applied Mathematics, ETH Zürich, Switzerland Support by SNF Grant No. PDFMP2-27034/ Part of PhD thesis

More information

Foundations of the stochastic Galerkin method

Foundations of the stochastic Galerkin method Foundations of the stochastic Galerkin method Claude Jeffrey Gittelson ETH Zurich, Seminar for Applied Mathematics Pro*oc Workshop 2009 in isentis Stochastic diffusion equation R d Lipschitz, for ω Ω,

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

Introduction to Computational Stochastic Differential Equations

Introduction to Computational Stochastic Differential Equations Introduction to Computational Stochastic Differential Equations Gabriel J. Lord Catherine E. Powell Tony Shardlow Preface Techniques for solving many of the differential equations traditionally used by

More information

Collocation based high dimensional model representation for stochastic partial differential equations

Collocation based high dimensional model representation for stochastic partial differential equations Collocation based high dimensional model representation for stochastic partial differential equations S Adhikari 1 1 Swansea University, UK ECCM 2010: IV European Conference on Computational Mechanics,

More information

Sampling and Low-Rank Tensor Approximations

Sampling and Low-Rank Tensor Approximations Sampling and Low-Rank Tensor Approximations Hermann G. Matthies Alexander Litvinenko, Tarek A. El-Moshely +, Brunswick, Germany + MIT, Cambridge, MA, USA wire@tu-bs.de http://www.wire.tu-bs.de $Id: 2_Sydney-MCQMC.tex,v.3

More information

Numerical Approximation of Stochastic Elliptic Partial Differential Equations

Numerical Approximation of Stochastic Elliptic Partial Differential Equations Numerical Approximation of Stochastic Elliptic Partial Differential Equations Hermann G. Matthies, Andreas Keese Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig wire@tu-bs.de

More information

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems Efficient Solvers for Stochastic Finite Element Saddle Point Problems Catherine E. Powell c.powell@manchester.ac.uk School of Mathematics University of Manchester, UK Efficient Solvers for Stochastic Finite

More information

STOCHASTIC SAMPLING METHODS

STOCHASTIC SAMPLING METHODS STOCHASTIC SAMPLING METHODS APPROXIMATING QUANTITIES OF INTEREST USING SAMPLING METHODS Recall that quantities of interest often require the evaluation of stochastic integrals of functions of the solutions

More information

Hierarchical Parallel Solution of Stochastic Systems

Hierarchical Parallel Solution of Stochastic Systems Hierarchical Parallel Solution of Stochastic Systems Second M.I.T. Conference on Computational Fluid and Solid Mechanics Contents: Simple Model of Stochastic Flow Stochastic Galerkin Scheme Resulting Equations

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

Sparse Tensor Galerkin Discretizations for First Order Transport Problems

Sparse Tensor Galerkin Discretizations for First Order Transport Problems Sparse Tensor Galerkin Discretizations for First Order Transport Problems Ch. Schwab R. Hiptmair, E. Fonn, K. Grella, G. Widmer ETH Zürich, Seminar for Applied Mathematics IMA WS Novel Discretization Methods

More information

Solving the stochastic steady-state diffusion problem using multigrid

Solving the stochastic steady-state diffusion problem using multigrid IMA Journal of Numerical Analysis (2007) 27, 675 688 doi:10.1093/imanum/drm006 Advance Access publication on April 9, 2007 Solving the stochastic steady-state diffusion problem using multigrid HOWARD ELMAN

More information

Sparse Quadrature Algorithms for Bayesian Inverse Problems

Sparse Quadrature Algorithms for Bayesian Inverse Problems Sparse Quadrature Algorithms for Bayesian Inverse Problems Claudia Schillings, Christoph Schwab Pro*Doc Retreat Disentis 2013 Numerical Analysis and Scientific Computing Disentis - 15 August, 2013 research

More information

Sparse Tensor Methods for PDEs with Stochastic Data II: Convergence Rates of gpcfem

Sparse Tensor Methods for PDEs with Stochastic Data II: Convergence Rates of gpcfem Sparse Tensor Methods for PDEs with Stochastic Data II: Convergence Rates of gpcfem Christoph Schwab Seminar for Applied Mathematics ETH Zürich Albert Cohen (Paris, France) & Ron DeVore (Texas A& M) R.

More information

A Vector-Space Approach for Stochastic Finite Element Analysis

A Vector-Space Approach for Stochastic Finite Element Analysis A Vector-Space Approach for Stochastic Finite Element Analysis S Adhikari 1 1 Swansea University, UK CST2010: Valencia, Spain Adhikari (Swansea) Vector-Space Approach for SFEM 14-17 September, 2010 1 /

More information

Research Article Multiresolution Analysis for Stochastic Finite Element Problems with Wavelet-Based Karhunen-Loève Expansion

Research Article Multiresolution Analysis for Stochastic Finite Element Problems with Wavelet-Based Karhunen-Loève Expansion Mathematical Problems in Engineering Volume 2012, Article ID 215109, 15 pages doi:10.1155/2012/215109 Research Article Multiresolution Analysis for Stochastic Finite Element Problems with Wavelet-Based

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu Contents 1

More information

Schwarz Preconditioner for the Stochastic Finite Element Method

Schwarz Preconditioner for the Stochastic Finite Element Method Schwarz Preconditioner for the Stochastic Finite Element Method Waad Subber 1 and Sébastien Loisel 2 Preprint submitted to DD22 conference 1 Introduction The intrusive polynomial chaos approach for uncertainty

More information

Parametric Problems, Stochastics, and Identification

Parametric Problems, Stochastics, and Identification Parametric Problems, Stochastics, and Identification Hermann G. Matthies a B. Rosić ab, O. Pajonk ac, A. Litvinenko a a, b University of Kragujevac c SPT Group, Hamburg wire@tu-bs.de http://www.wire.tu-bs.de

More information

Construction of wavelets. Rob Stevenson Korteweg-de Vries Institute for Mathematics University of Amsterdam

Construction of wavelets. Rob Stevenson Korteweg-de Vries Institute for Mathematics University of Amsterdam Construction of wavelets Rob Stevenson Korteweg-de Vries Institute for Mathematics University of Amsterdam Contents Stability of biorthogonal wavelets. Examples on IR, (0, 1), and (0, 1) n. General domains

More information

Research Collection. Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs. Report. ETH Library

Research Collection. Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs. Report. ETH Library Research Collection Report Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs Author(s): Abdulle, Assyr; Barth, Andrea; Schwab, Christoph Publication Date: 2012 Permanent Link: https://doi.org/10.3929/ethz-a-010394923

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

TECHNISCHE UNIVERSITÄT BERLIN

TECHNISCHE UNIVERSITÄT BERLIN TECHNISCHE UNIVERSITÄT BERLIN Adaptive Stochastic Galerkin FEM with Hierarchical Tensor Representations Martin Eigel Max Pfeffer Reinhold Schneider Preprint 2015/29 Preprint-Reihe des Instituts für Mathematik

More information

Quantifying Uncertainty: Modern Computational Representation of Probability and Applications

Quantifying Uncertainty: Modern Computational Representation of Probability and Applications Quantifying Uncertainty: Modern Computational Representation of Probability and Applications Hermann G. Matthies with Andreas Keese Technische Universität Braunschweig wire@tu-bs.de http://www.wire.tu-bs.de

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Mike Giles (Oxford) Monte Carlo methods 1 / 23 Lecture outline

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion:

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion: tifica Lecture 1: Computation of Karhunen-Loeve Expansion: Alexander Litvinenko http://sri-uq.kaust.edu.sa/ Stochastic PDEs We consider div(κ(x, ω) u) = f (x, ω) in G, u = 0 on G, with stochastic coefficients

More information

arxiv: v1 [math.na] 3 Apr 2019

arxiv: v1 [math.na] 3 Apr 2019 arxiv:1904.02017v1 [math.na] 3 Apr 2019 Poly-Sinc Solution of Stochastic Elliptic Differential Equations Maha Youssef and Roland Pulch Institute of Mathematics and Computer Science, University of Greifswald,

More information

Multi-Element Probabilistic Collocation Method in High Dimensions

Multi-Element Probabilistic Collocation Method in High Dimensions Multi-Element Probabilistic Collocation Method in High Dimensions Jasmine Foo and George Em Karniadakis Division of Applied Mathematics, Brown University, Providence, RI 02912 USA Abstract We combine multi-element

More information

arxiv: v2 [math.na] 8 Apr 2017

arxiv: v2 [math.na] 8 Apr 2017 A LOW-RANK MULTIGRID METHOD FOR THE STOCHASTIC STEADY-STATE DIFFUSION PROBLEM HOWARD C. ELMAN AND TENGFEI SU arxiv:1612.05496v2 [math.na] 8 Apr 2017 Abstract. We study a multigrid method for solving large

More information

Solving the steady state diffusion equation with uncertainty Final Presentation

Solving the steady state diffusion equation with uncertainty Final Presentation Solving the steady state diffusion equation with uncertainty Final Presentation Virginia Forstall vhfors@gmail.com Advisor: Howard Elman elman@cs.umd.edu Department of Computer Science May 6, 2012 Problem

More information

High order Galerkin appoximations for parametric second order elliptic partial differential equations

High order Galerkin appoximations for parametric second order elliptic partial differential equations Research Collection Report High order Galerkin appoximations for parametric second order elliptic partial differential equations Author(s): Nistor, Victor; Schwab, Christoph Publication Date: 2012 Permanent

More information

Iterative methods for positive definite linear systems with a complex shift

Iterative methods for positive definite linear systems with a complex shift Iterative methods for positive definite linear systems with a complex shift William McLean, University of New South Wales Vidar Thomée, Chalmers University November 4, 2011 Outline 1. Numerical solution

More information

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Scuola di Dottorato THE WAVE EQUATION Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Lucio Demeio - DIISM wave equation 1 / 44 1 The Vibrating String Equation 2 Second

More information

CBS Constants and Their Role in Error Estimation for Stochastic Galerkin Finite Element Methods. Crowder, Adam J and Powell, Catherine E

CBS Constants and Their Role in Error Estimation for Stochastic Galerkin Finite Element Methods. Crowder, Adam J and Powell, Catherine E CBS Constants and Their Role in Error Estimation for Stochastic Galerkin Finite Element Methods Crowder, Adam J and Powell, Catherine E 2017 MIMS EPrint: 2017.18 Manchester Institute for Mathematical Sciences

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

ACMAC s PrePrint Repository

ACMAC s PrePrint Repository ACMAC s PrePrint Repository Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs Angela Kunoth and Christoph Schwab Original Citation:

More information

Adaptive Collocation with Kernel Density Estimation

Adaptive Collocation with Kernel Density Estimation Examples of with Kernel Density Estimation Howard C. Elman Department of Computer Science University of Maryland at College Park Christopher W. Miller Applied Mathematics and Scientific Computing Program

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Introduction to Uncertainty Quantification in Computational Science Handout #3

Introduction to Uncertainty Quantification in Computational Science Handout #3 Introduction to Uncertainty Quantification in Computational Science Handout #3 Gianluca Iaccarino Department of Mechanical Engineering Stanford University June 29 - July 1, 2009 Scuola di Dottorato di

More information

Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution equations

Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution equations www.oeaw.ac.at Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution equations R. Andreev RICAM-Report 2014-27 www.ricam.oeaw.ac.at WAVELET-IN-TIME MULTIGRID-IN-SPACE PRECONDITIONING

More information

Isogeometric Analysis:

Isogeometric Analysis: Isogeometric Analysis: some approximation estimates for NURBS L. Beirao da Veiga, A. Buffa, Judith Rivas, G. Sangalli Euskadi-Kyushu 2011 Workshop on Applied Mathematics BCAM, March t0th, 2011 Outline

More information

Numerical Analysis and Methods for PDE I

Numerical Analysis and Methods for PDE I Numerical Analysis and Methods for PDE I A. J. Meir Department of Mathematics and Statistics Auburn University US-Africa Advanced Study Institute on Analysis, Dynamical Systems, and Mathematical Modeling

More information

. Frobenius-Perron Operator ACC Workshop on Uncertainty Analysis & Estimation. Raktim Bhattacharya

. Frobenius-Perron Operator ACC Workshop on Uncertainty Analysis & Estimation. Raktim Bhattacharya .. Frobenius-Perron Operator 2014 ACC Workshop on Uncertainty Analysis & Estimation Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. uq.tamu.edu

More information

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically Finite difference and finite element methods Lecture 1 Scope of the course Analysis and implementation of numerical methods for pricing options. Models: Black-Scholes, stochastic volatility, exponential

More information

Quarkonial frames of wavelet type - Stability, approximation and compression properties

Quarkonial frames of wavelet type - Stability, approximation and compression properties Quarkonial frames of wavelet type - Stability, approximation and compression properties Stephan Dahlke 1 Peter Oswald 2 Thorsten Raasch 3 ESI Workshop Wavelet methods in scientific computing Vienna, November

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

Multilevel stochastic collocations with dimensionality reduction

Multilevel stochastic collocations with dimensionality reduction Multilevel stochastic collocations with dimensionality reduction Ionut Farcas TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017 Outline 1 Motivation 2 Theoretical background Uncertainty

More information

Quasi-optimal and adaptive sparse grids with control variates for PDEs with random diffusion coefficient

Quasi-optimal and adaptive sparse grids with control variates for PDEs with random diffusion coefficient Quasi-optimal and adaptive sparse grids with control variates for PDEs with random diffusion coefficient F. Nobile, L. Tamellini, R. Tempone, F. Tesei CSQI - MATHICSE, EPFL, Switzerland Dipartimento di

More information

Simulating with uncertainty : the rough surface scattering problem

Simulating with uncertainty : the rough surface scattering problem Simulating with uncertainty : the rough surface scattering problem Uday Khankhoje Assistant Professor, Electrical Engineering Indian Institute of Technology Madras Uday Khankhoje (EE, IITM) Simulating

More information

Interpolation via weighted l 1 -minimization

Interpolation via weighted l 1 -minimization Interpolation via weighted l 1 -minimization Holger Rauhut RWTH Aachen University Lehrstuhl C für Mathematik (Analysis) Matheon Workshop Compressive Sensing and Its Applications TU Berlin, December 11,

More information

A MULTILEVEL STOCHASTIC COLLOCATION METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUT DATA

A MULTILEVEL STOCHASTIC COLLOCATION METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUT DATA A MULTILEVEL STOCHASTIC COLLOCATION METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUT DATA A. L. TECKENTRUP, P. JANTSCH, C. G. WEBSTER, AND M. GUNZBURGER Abstract. Stochastic collocation methods

More information

Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic PDEs with lognormal inputs

Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic PDEs with lognormal inputs Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic PDEs with lognormal inputs Dinh Dũng Information Technology Institute, Vietnam National University

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017 ACM/CMS 17 Linear Analysis & Applications Fall 217 Assignment 2: PDEs and Finite Element Methods Due: 7th November 217 For this assignment the following MATLAB code will be required: Introduction http://wwwmdunloporg/cms17/assignment2zip

More information

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor RANDOM FIELDS AND GEOMETRY from the book of the same name by Robert Adler and Jonathan Taylor IE&M, Technion, Israel, Statistics, Stanford, US. ie.technion.ac.il/adler.phtml www-stat.stanford.edu/ jtaylor

More information

Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution equations

Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution equations Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution equations Roman Andreev To cite this version: Roman Andreev. Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution

More information

Lecture Notes on PDEs

Lecture Notes on PDEs Lecture Notes on PDEs Alberto Bressan February 26, 2012 1 Elliptic equations Let IR n be a bounded open set Given measurable functions a ij, b i, c : IR, consider the linear, second order differential

More information

H(div) Preconditioning for a Mixed Finite Element Formulation of the Stochastic Diffusion Problem 1

H(div) Preconditioning for a Mixed Finite Element Formulation of the Stochastic Diffusion Problem 1 University of Maryland Department of Computer Science CS-TR-4918 University of Maryland Institute for Advanced Computer Studies UMIACS-TR-2008-15 H(div) Preconditioning for a Mixed Finite Element Formulation

More information

A sparse grid stochastic collocation method for elliptic partial differential equations with random input data

A sparse grid stochastic collocation method for elliptic partial differential equations with random input data A sparse grid stochastic collocation method for elliptic partial differential equations with random input data F. Nobile R. Tempone C. G. Webster June 22, 2006 Abstract This work proposes and analyzes

More information

Giovanni Migliorati. MATHICSE-CSQI, École Polytechnique Fédérale de Lausanne

Giovanni Migliorati. MATHICSE-CSQI, École Polytechnique Fédérale de Lausanne Analysis of the stability and accuracy of multivariate polynomial approximation by discrete least squares with evaluations in random or low-discrepancy point sets Giovanni Migliorati MATHICSE-CSQI, École

More information

How much should we rely on Besov spaces as a framework for the mathematical study of images?

How much should we rely on Besov spaces as a framework for the mathematical study of images? How much should we rely on Besov spaces as a framework for the mathematical study of images? C. Sinan Güntürk Princeton University, Program in Applied and Computational Mathematics Abstract Relations between

More information

Condition number estimates for matrices arising in the isogeometric discretizations

Condition number estimates for matrices arising in the isogeometric discretizations www.oeaw.ac.at Condition number estimates for matrices arising in the isogeometric discretizations K. Gahalaut, S. Tomar RICAM-Report -3 www.ricam.oeaw.ac.at Condition number estimates for matrices arising

More information

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems Finite Element Clifford Algebra: A New Toolkit for Evolution Problems Andrew Gillette joint work with Michael Holst Department of Mathematics University of California, San Diego http://ccom.ucsd.edu/ agillette/

More information

Approximation by plane and circular waves

Approximation by plane and circular waves LMS EPSRC DURHAM SYMPOSIUM, 8 16TH JULY 2014 Building Bridges: Connections and Challenges in Modern Approaches to Numerical PDEs Approximation by plane and circular waves Andrea Moiola DEPARTMENT OF MATHEMATICS

More information

Fractal Weyl Laws and Wave Decay for General Trapping

Fractal Weyl Laws and Wave Decay for General Trapping Fractal Weyl Laws and Wave Decay for General Trapping Jeffrey Galkowski McGill University July 26, 2017 Joint w/ Semyon Dyatlov The Plan The setting and a brief review of scattering resonances Heuristic

More information

Dimensionality reduction of parameter-dependent problems through proper orthogonal decomposition

Dimensionality reduction of parameter-dependent problems through proper orthogonal decomposition MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics MATHICSE Technical Report Nr. 01.2016 January 2016 (New 25.05.2016) Dimensionality

More information

Fractional Spectral and Spectral Element Methods

Fractional Spectral and Spectral Element Methods Fractional Calculus, Probability and Non-local Operators: Applications and Recent Developments Nov. 6th - 8th 2013, BCAM, Bilbao, Spain Fractional Spectral and Spectral Element Methods (Based on PhD thesis

More information

Multi-Level Monte-Carlo Finite Element Methods for stochastic elliptic variational inequalities

Multi-Level Monte-Carlo Finite Element Methods for stochastic elliptic variational inequalities Multi-Level Monte-Carlo Finite Element Methods for stochastic elliptic variational inequalities R. Kornhuber and C. Schwab and M. Wolf Research Report No. 2013-12 April 2013 Seminar für Angewandte Mathematik

More information

Dinesh Kumar, Mehrdad Raisee and Chris Lacor

Dinesh Kumar, Mehrdad Raisee and Chris Lacor Dinesh Kumar, Mehrdad Raisee and Chris Lacor Fluid Mechanics and Thermodynamics Research Group Vrije Universiteit Brussel, BELGIUM dkumar@vub.ac.be; m_raisee@yahoo.com; chris.lacor@vub.ac.be October, 2014

More information

Preconditioned space-time boundary element methods for the heat equation

Preconditioned space-time boundary element methods for the heat equation W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods

More information

Polynomial Chaos and Karhunen-Loeve Expansion

Polynomial Chaos and Karhunen-Loeve Expansion Polynomial Chaos and Karhunen-Loeve Expansion 1) Random Variables Consider a system that is modeled by R = M(x, t, X) where X is a random variable. We are interested in determining the probability of the

More information

Analysis and Computation of Hyperbolic PDEs with Random Data

Analysis and Computation of Hyperbolic PDEs with Random Data Analysis and Computation of Hyperbolic PDEs with Random Data Mohammad Motamed 1, Fabio Nobile 2,3 and Raúl Tempone 1 1 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia 2 EPFL Lausanne,

More information

A reduced-order stochastic finite element analysis for structures with uncertainties

A reduced-order stochastic finite element analysis for structures with uncertainties A reduced-order stochastic finite element analysis for structures with uncertainties Ji Yang 1, Béatrice Faverjon 1,2, Herwig Peters 1, icole Kessissoglou 1 1 School of Mechanical and Manufacturing Engineering,

More information

Space-Time Adaptive Wavelet Methods for Parabolic Evolution Problems

Space-Time Adaptive Wavelet Methods for Parabolic Evolution Problems Space-Time Adaptive Wavelet Methods for Parabolic Evolution Problems Rob Stevenson Korteweg-de Vries Institute for Mathematics University of Amsterdam joint work with Christoph Schwab (ETH, Zürich), Nabi

More information

arxiv: v2 [math.na] 28 Nov 2010

arxiv: v2 [math.na] 28 Nov 2010 Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems Ivo Babuska 1 Robert Lipton 2 arxiv:1004.3041v2 [math.na] 28 Nov 2010 Abstract The paper

More information

Numerical Solution I

Numerical Solution I Numerical Solution I Stationary Flow R. Kornhuber (FU Berlin) Summerschool Modelling of mass and energy transport in porous media with practical applications October 8-12, 2018 Schedule Classical Solutions

More information

hp-dg timestepping for time-singular parabolic PDEs and VIs

hp-dg timestepping for time-singular parabolic PDEs and VIs hp-dg timestepping for time-singular parabolic PDEs and VIs Ch. Schwab ( SAM, ETH Zürich ) (joint with O. Reichmann) ACMAC / Heraklion, Crete September 26-28, 2011 September 27, 2011 Motivation Well-posedness

More information

Stochastic methods for solving partial differential equations in high dimension

Stochastic methods for solving partial differential equations in high dimension Stochastic methods for solving partial differential equations in high dimension Marie Billaud-Friess Joint work with : A. Macherey, A. Nouy & C. Prieur marie.billaud-friess@ec-nantes.fr Centrale Nantes,

More information

Stochastic Elastic-Plastic Finite Element Method for Performance Risk Simulations

Stochastic Elastic-Plastic Finite Element Method for Performance Risk Simulations Stochastic Elastic-Plastic Finite Element Method for Performance Risk Simulations Boris Jeremić 1 Kallol Sett 2 1 University of California, Davis 2 University of Akron, Ohio ICASP Zürich, Switzerland August

More information

FINITE ELEMENT HETEROGENEOUS MULTISCALE METHODS WITH NEAR OPTIMAL COMPUTATIONAL COMPLEXITY

FINITE ELEMENT HETEROGENEOUS MULTISCALE METHODS WITH NEAR OPTIMAL COMPUTATIONAL COMPLEXITY FINITE ELEMENT HETEROGENEOUS MULTISCALE METHODS WITH NEAR OPTIMAL COMPUTATIONAL COMPLEXITY ASSYR ABDULLE AND BJORN ENGQUIST Abstract. This paper is concerned with a numerical method for multiscale elliptic

More information

A MODEL REDUCTION METHOD FOR ELLIPTIC PDES WITH RANDOM INPUT USING THE HETEROGENEOUS STOCHASTIC FEM FRAMEWORK

A MODEL REDUCTION METHOD FOR ELLIPTIC PDES WITH RANDOM INPUT USING THE HETEROGENEOUS STOCHASTIC FEM FRAMEWORK Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 11 (2016), No. 1, pp. 179-216 A MODEL REDUCTION METHOD FOR ELLIPTIC PDES WITH RANDOM INPUT USING THE HETEROGENEOUS STOCHASTIC

More information

Bath Institute For Complex Systems

Bath Institute For Complex Systems BICS Bath Institute for Complex Systems Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and its Application to Multilevel Monte Carlo Methods Julia Charrier, Robert Scheichl and

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

arxiv: v2 [math.na] 16 Mar 2018

arxiv: v2 [math.na] 16 Mar 2018 Multiparametric shell eigenvalue problems Harri Hakula a,1, Mikael Laaksonen a,2 arxiv:1803.03854v2 [math.na] 16 Mar 2018 Abstract a Aalto University Department of Mathematics and Systems Analysis P.O.

More information

Karhunen-Loève Approximation of Random Fields by Generalized Fast Multipole Methods

Karhunen-Loève Approximation of Random Fields by Generalized Fast Multipole Methods Karhunen-Loève Approximation of Random Fields by Generalized Fast Multipole Methods C. Schwab and R.A. Todor Research Report No. 26- January 26 Seminar für Angewandte Mathematik Eidgenössische Technische

More information

Estimating functional uncertainty using polynomial chaos and adjoint equations

Estimating functional uncertainty using polynomial chaos and adjoint equations 0. Estimating functional uncertainty using polynomial chaos and adjoint equations February 24, 2011 1 Florida State University, Tallahassee, Florida, Usa 2 Moscow Institute of Physics and Technology, Moscow,

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

Optimisation under Uncertainty with Stochastic PDEs for the History Matching Problem in Reservoir Engineering

Optimisation under Uncertainty with Stochastic PDEs for the History Matching Problem in Reservoir Engineering Optimisation under Uncertainty with Stochastic PDEs for the History Matching Problem in Reservoir Engineering Hermann G. Matthies Technische Universität Braunschweig wire@tu-bs.de http://www.wire.tu-bs.de

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

Computer simulation of multiscale problems

Computer simulation of multiscale problems Progress in the SSF project CutFEM, Geometry, and Optimal design Computer simulation of multiscale problems Axel Målqvist and Daniel Elfverson University of Gothenburg and Uppsala University Umeå 2015-05-20

More information

Besov regularity for operator equations on patchwise smooth manifolds

Besov regularity for operator equations on patchwise smooth manifolds on patchwise smooth manifolds Markus Weimar Philipps-University Marburg Joint work with Stephan Dahlke (PU Marburg) Mecklenburger Workshop Approximationsmethoden und schnelle Algorithmen Hasenwinkel, March

More information

Non-Intrusive Solution of Stochastic and Parametric Equations

Non-Intrusive Solution of Stochastic and Parametric Equations Non-Intrusive Solution of Stochastic and Parametric Equations Hermann G. Matthies a Loïc Giraldi b, Alexander Litvinenko c, Dishi Liu d, and Anthony Nouy b a,, Brunswick, Germany b École Centrale de Nantes,

More information

NONLOCALITY AND STOCHASTICITY TWO EMERGENT DIRECTIONS FOR APPLIED MATHEMATICS. Max Gunzburger

NONLOCALITY AND STOCHASTICITY TWO EMERGENT DIRECTIONS FOR APPLIED MATHEMATICS. Max Gunzburger NONLOCALITY AND STOCHASTICITY TWO EMERGENT DIRECTIONS FOR APPLIED MATHEMATICS Max Gunzburger Department of Scientific Computing Florida State University North Carolina State University, March 10, 2011

More information

Uncertainty analysis of large-scale systems using domain decomposition

Uncertainty analysis of large-scale systems using domain decomposition Center for Turbulence Research Annual Research Briefs 2007 143 Uncertainty analysis of large-scale systems using domain decomposition By D. Ghosh, C. Farhat AND P. Avery 1. Motivation and objectives A

More information

Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations

Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations ScientifiComputing Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations Hermann G. Matthies, Andreas Keese Institute of Scientific Computing Technical University

More information

Isogeometric mortaring

Isogeometric mortaring Isogeometric mortaring E. Brivadis, A. Buffa, B. Wohlmuth, L. Wunderlich IMATI E. Magenes - Pavia Technical University of Munich A. Buffa (IMATI-CNR Italy) IGA mortaring 1 / 29 1 Introduction Splines Approximation

More information

Adaptive Wavelet Methods for Elliptic SPDEs

Adaptive Wavelet Methods for Elliptic SPDEs Adaptive Wavelet Methods for Elliptic SPDEs Klaus Ritter Computational Stochastics TU Kaiserslautern 1/1 Introduction In most papers on approximation of SPDEs non-adaptive discretization discretization

More information

COMPRESSIVE SENSING PETROV-GALERKIN APPROXIMATION OF HIGH-DIMENSIONAL PARAMETRIC OPERATOR EQUATIONS

COMPRESSIVE SENSING PETROV-GALERKIN APPROXIMATION OF HIGH-DIMENSIONAL PARAMETRIC OPERATOR EQUATIONS COMPRESSIVE SENSING PETROV-GALERKIN APPROXIMATION OF HIGH-DIMENSIONAL PARAMETRIC OPERATOR EQUATIONS HOLGER RAUHUT AND CHRISTOPH SCHWAB Abstract. We analyze the convergence of compressive sensing based

More information

Overview. Bayesian assimilation of experimental data into simulation (for Goland wing flutter) Why not uncertainty quantification?

Overview. Bayesian assimilation of experimental data into simulation (for Goland wing flutter) Why not uncertainty quantification? Delft University of Technology Overview Bayesian assimilation of experimental data into simulation (for Goland wing flutter), Simao Marques 1. Why not uncertainty quantification? 2. Why uncertainty quantification?

More information