Quantifying Uncertainty: Modern Computational Representation of Probability and Applications

Size: px
Start display at page:

Download "Quantifying Uncertainty: Modern Computational Representation of Probability and Applications"

Transcription

1 Quantifying Uncertainty: Modern Computational Representation of Probability and Applications Hermann G. Matthies with Andreas Keese Technische Universität Braunschweig

2 Overview. Background: Motivation and Model Problem. Discretisation of Random Fields 3. Stochastic Galerkin Methods 4. Low Rank Tensor Product Approximations 5. Structure of Discrete Equations and Solvers 6. Keeping Low Rank Operation Counts

3 Why Probabilistic or Stochastic Models? 3 Many descriptions (especially of future events) contain elements, which are uncertain and not precisely known. For example future rainfall, or discharge from a river. More generally, action from surrounding environment. The system itself may contain only incompletely known parameters, processes or fields (not possible or too costly to measure) There may be small, unresolved scales in the model, they act as a kind of background noise. All these introduce some uncertainty in the model.

4 Ontology and Modelling 4 A bit of ontology: Uncertainty may be aleatoric, which means random and not reducible, or epistemic, which means due to incomplete knowledge. Stochastic models can give quantitative information about uncertainty, they are used for both types of uncertainty. Possible areas of use: Reliability, heterogeneous materials, upscaling, incomplete knowledge of details, uncertain [inter-]action with environment, random loading, etc.

5 Quantification of Uncertainty 5 Uncertainty may be modelled in different ways: Intervals / convex sets do not give a degree of uncertainty, quantification only through size of sets. Fuzzy and possibilistic approaches model quantitative possibility with certain rules. Generalisation of set membership. Evidence theory models basic probability, but also (as a generalisation) plausability (a kind of lower bound) and belief (a kind of upper bound) in a quantitative way. Mathematically no measures. Stochastic / probabilistic methods model probability quantitatively, have most developed theory.

6 Physical Models 6 Models for a system S may be stationary with state u, exterior action f and random model description (realisation) ω Ω, with probability measure P: S(u, ω) = f(ω). Evolution in time may be discrete (e.g. Markov chain), may be driven by discrete random process u n+ = F(u n, ω), or continuous, (e.g. Markov process, stochastic differential equation), may be driven by random processes du = (S(u, ω) f(ω, t))dt + B(u, ω)dw (ω, t) + P(u, ω)dq(ω, t) In this Itô evolution equation, W (ω, t) is a Wiener process, and Q(ω, t) is a (compensated) Poisson process.

7 Model Problem 7 Geometry Aquifier D Model simple stationary model of groundwater flow (κ(x) u(x)) = f(x) & b.c., x G R d κ(x) u(x) = g(x), x Γ G, u hydraulic head, κ conductivity, f and g sinks and sources.

8 Model Stochastic Problem 8 Geometry flow = Sources flow out Aquifier D Model simple stationary model of groundwater flow with stochastic data Dirichlet b.c. (κ(x, ω) u(x, ω)) = f(x, ω) & b.c., x G R d κ(x) u(x, ω) = g(x, ω), x Γ G, ω Ω κ stochastic conductivity, f and g stochastic sinks and sources..5

9 Realisation of κ(x, ω) 9

10 Stochastic PDE and Variational Form Solution u(x, ω) is a stochastic field in a tensor product space W is a Sobolev space of spatial functions, S a space of random variables: W S u(x, ω) = v µ (x)u (µ) (ω) µ Variational formulation: Find u W S, such that v W S : a(v, u) := v(x, ω) (κ(x, ω) u(x, ω)) dx P(dω) = Ω [ G Ω G v(x, ω)f(x, ω) dx + G ] v(x, ω)g(x, ω) ds(x) P(dω) =: f, v.

11 Mathematical Results To find a solution u W S such that for v : under certain conditions a(v, u) = f, v is guaranteed by Lax-Milgram lemma, problem is well-posed in the sense of Hadamard (existence, uniqueness, continuous dependence on data f, g in L - and on κ in L -norm). may be achieved by Galerkin methods, convergence established with Céa s lemma Galerkin methods are stable, if no variational crimes are committed Good approximating subspaces of W S have to be found, as well as efficient numerical procedures worked out.

12 Functionals Desirable: Uncertainty Quantification or Optimisation under uncertainty: The goal is to compute functionals of the solution: Ψ u = Ψ(u) := E (Ψ(u)) := Ω G Ψ(u(x, ω), x, ω) dx P(dω) e.g.: ū = E (u), or var u = E ( (ũ) ), where ũ = u ū, or P{u u } = P({ω Ω u(ω) u }) = E ( ) χ {u u } All desirables are usually expected values of some functional, to be computed via (high dimensional) integration over Ω.

13 General Computational Approach 3 Principal Approach:. Discretise / approximate physical model (e.g. via finite elements, finite differences), and approximate stochastic model (processes, fields) in finitely many independent random variables (RVs), stochastic discretisation.. Compute statistics via integration over Ω high dimensional (e.g. Monte Carlo, Quasi Monte Carlo, Smolyak (= sparse grids)): Via direct integration. Each integration point ω z Ω requires one expensive PDE solution (with rough data). Or approximate solution with some response-surface, then integration by sampling a cheap expression at each integration point.

14 Computational Requirements 4 How to represent a stochastic process for computation, both simulation or otherwise? Best would be as some combination of countably many independent random variables (RVs). How to compute the required integrals or expectations numerically? Best would be to have probability measure as a product measure P = P... P l, then integrals can be computed as iterated one-dimensional integrals via Fubini s theorem, Ψ P(dω) =... Ψ P (dω )... P l (dω l ) Ω Ω l Ω

15 Random Fields 5 Mean κ(x) = E (κ ω (x)) and fluctuating part κ(x, ω). Covariance may be considered at different positions C κ (x, x ) := E ( κ(x, ) κ(x, )) If κ(x) κ, and C κ (x, x ) = c κ (x x ), process is homogeneous. Here representation through spectrum as a Fourier sum is well known. Need to discretise spatial aspect (generalise Fourier representation). One possibility is the Karhunen-Loève expansion (KLE). Need to discretise each of the random variables in Fourier synthesis. One possibility is Wiener s polynomial chaos expansion (PCE).

16 Karhunen-Loève Expansion I 6 KL mode KL mode mode : mode 5: KLE: Other names: Proper Orthogonal Decomposition (POD), Singular Value Decomposition (SVD), Principal Component Analalysis (PCA): spectrum of {κj } R + and orthogonal KLE eigenfunctions g j (x): C κ (x, y)g j (y) dy = κj g j (x) with g j (x)g k (x) dx = δ jk. G G Mercer s representation of C κ : C κ (x, y) = j= κ j g j (x)g j (y)

17 Karhunen-Loève Expansion II mode 5 mode mode 5 Representation of κ: κ(x, ω) = κ(x) + κ j g j (x)ξ j (ω) =: κ j g j (x)ξ j (ω) j= j= with centred, normalised, uncorrelated random variables ξ j (ω): E (ξ j ) =, E (ξ j ξ k ) =: ξ j, x k L (Ω) = δ jk.

18 Karhunen-Loève Expansion III 8 Realisation with: x.5 y x.5 y x.5 y.5 6 modes 5 modes 4 modes Truncate after m largest eigenvalues optimal in variance expansion in m RVs.

19 Karhunen-Loève Expansion IV 9 Modes for a 3-D domain mode mode 9

20 Karhunen-Loève Expansion V Reminder: SVD of a matrix W = UΣV T = j σ ju j v T j with U T U = I, V T V = I, and Σ = diag(σ j ). The σ j are singular values of W and σ j are eigenvalues of W T W or W W T. To every random field w(x, ω) L (G) L (Ω) associate a linear map W : L (G) L (Ω) W : L (G) v W (v)(ω) = v( ), w(, ω) L (G) = v(x)w(x, ω) dx L (Ω). KLE is SVD of the map W, the covariance operator is C w := W W, G

21 Karhunen-Loève Expansion VI u, C w v L (G) = u, W W v L (G) = W (u), W (v) L (Ω) = ( ) E (W (u)w (v)) = E u(x)w(x, ω) dx v(y)w(y, ω) dy G G G u(x)e (w(x, ω)w(y, ω)) v(y) dy dx = G G u(x) G = C w (x, y)v(y) dy dx Covariance operator C w is represented by covariance kernel C w (x, y). Truncating the KLE is therefore the same as what is done when truncating a SVD, finding a sparse representation (model reduction).

22 Polynomial Chaos Expansion in Gaussians Each ξ j (ω) = α ξ(α) j H α (θ(ω)) from KLE may be expanded in plynomial chaos expansion (PCE), with orthogonal (uncorrelated independent) polynomials of Gaussian RVs {θ m (ω)} m= =: θ(ω): H α (θ(ω)) = h αj (θ j (ω)), j= where h l (ϑ) are the usual Hermite polynomials, and J := {α α = (α,..., α j,...), α j N, α := α j < } are multi-indices, where only finitely many of the α j are non-zero. Here H α, H β L (Ω) = E (H α H β ) = α! δ αβ, where α! := j= (α j!). j=

23 Polynomial Chaos y 4 y Hermite (,) Hermite (,) y 4 y Hermite (,3) Hermite (3,3)

24 First Summary 4 Representation in uncorrelated independent Gaussian RVs Allows direct simulation independent Gaussian RVs in computer by random generators (quasi-random), or direct hardware (random). Each finite dimensional joint Gaussian measure Γ m (dθ) is a product measure, allows Fubini s theorem (Γ m (dθ) = m l= Γ (dθ l )). Polynomial expansion theorem allows approximation of any random variable, especially also u(x, ω) = u(x, θ) even wild ones with no variance or no mean unlike Monte Carlo. Still open: How to actually compute u(θ)? How to perform integration?

25 Computational Approaches 5 The principal computational approaches are: Direct Integration (e.g. Monte Carlo) Directly compute statistic by quadrature: Ψ u = E (Ψ(u(ω), ω)) = Ψ(u(θ), θ) Γ (dθ) by Θ numerical integration. Perturbation Assume that stochastics is a small perturbation around mean value, do Taylor expansion and truncate usually after linear or quadratic term. Response Surface Try to find a functional fit u(θ) v(θ), then compute with v. Integrand is now cheap. Stochastic Galerkin This is one possible form of response surface.

26 Stability Issues 6 For direct integration approaches direct expansion (both KLE and PCE) pose stability problems: Both only converge in L, not in L (uniformly) as required spatially discrete problems to compute u(θ z ) for a specific realisation θ z (like Monte Carlo) may not be well posed. Convergence of KLE may be uniform if covariance C κ (x, x ) smooth enough, but e.g. not possible for C κ (x, x ) = exp( a x x ) Truncation of PCE gives a polynomial, as soon as one α j is odd, there are regions where κ is negative compare approximating exp(ξ) with a truncated Taylor poplynomial at odd power. This can not be repaired. Like negative Jacobian in normal FEM. Method κ(x, ω) = φ(x, γ(x, ω)) possible with KLE of Gaussian γ(x, ω).

27 Stochastic Galerkin I 7 Variational formulation discretised in space, e.g. via finite element ansatz u(x, ω) = n l= u l(ω)n l (x) = [N (x),..., N n (x)][u (ω),..., u n (ω)] T = N(x) T u(ω): K(ω)[u(ω)] = f(ω). Recipe: Stochastic ansatz and projection in stochastic dimensions u(θ) = β u (β) H β (θ) = [..., u (β),...][..., H β (θ),...] T = uh(θ) Goal: Compute coefficients u (β) through stochastic Galerkin Methods, γ : E ((f(θ) K(θ)[uH(θ)])H γ (θ)) =, requires solution of one huge system, only integrals of residuals.

28 Stochastic Galerkin II 8 Of course we can not use all α J, but take only a finite subset J k,m = {α J α k, ı > m α ı = } J. Let S k,m = span{h α : α J k,m }, ( ) m + p + then dim S k,m = p + better to use other subsets best is adaptive choice. m k dim S k,m

29 Simpler Case of Additive Noise 9 Assume first that K is not random: γ J k,m satisfy: β J k,m E (H γ (θ)h β (θ)) Ku (β) = γ! Ku (γ) = E (f(θ)h γ (θ)) =: γ! f (γ) There are too many f (γ). Use discrete version of KLE of f(θ): f(θ) = f + ϕ l φ l (θ)f l = f + ϕ l φ (γ) l H γ (θ)f l. l l γ In particular f (γ) = l ϕ l φ (γ) l f l. The SVD of f(θ) is with Φ = (φ (γ) l ), ϕ = diag(ϕ l ), and F = [..., f l,...]; f = [..., f (γ),...] = F ϕφ T = l ϕ l v l φ T l.

30 Solution for Additive Noise 3 Observe Kū = f, and set V := K F (i.e. solve KV = F ), then u(θ) = ū + V ϕφ T H = ū + l ϕ l f l φ T l H But this is not the SVD of u(θ)! This ) via eigenproblem: Covariance C f := E ( f(θ) f(θ) = F ϕ F T. Hence C u := E (ũ(θ) ũ(θ)) = K F ϕ (K F ) T = V ϕ V T Even fewer terms needed with SVD of u(θ) from C u U = (V ϕ V T )U = Uυ Sparsification achieved for u via SVD with small m: u = [..., u (β),...] = [..., u m ] diag(υ m )(y (β) m ) T = UυY T.

31 Galerkin-Methods for the General Linear Case 3 γ J k,m = {α J α k, ı > m α ı = } satisfy: [ ] N(x) E (κ(x, θ)h β (θ)h γ (θ)) N(x) T dx u (β) = β G E (f(θ)h γ (θ)) }{{} =:γ!f (γ) More efficient representation through direct expansion of κ in KLE and PCE and analytic computation of expectations. κ(x, θ) = κ j ξ j (θ)g j (x) j= r j= κ j ξ j (α) α J k,m H α (θ)g j (x).

32 Resulting Equations 3 Insertion of expansion of κ ( γ satisfy): ξ j (α) E (H α H β H γ ) N(x)κ }{{} j g j (x) N(x) T dx α β j =: (α) }{{} β,γ K j u (β) = f (γ) K j is stiffness matrix of a FEM discretisation for the material κ j g j (x). Use deterministic FEM program in black-box-fashion. Equations have structure of a tensor product (storage and use). K u = ξ j (α) (α) K j u = f j α #dof space #dof stoch linear equations.

33 Sparsity Structure 33 Non-zero blocks of (α) for increasing degree of H α

34 Properties of Global Equations 34 K u = j α ξ j (α) (α) K j u = f Each K j is symmetric, and each (α) Block-matrix K is symmetric. Appropriate expansion of κ K is uniformly positive definite. Never assemble block-matrix explicitly. (α) are known analytically. No need to store explicitly. Use K only as multiplication. Use Krylov method (here CG) with pre-conditioner.

35 Block-Diagonal Pre-Conditioner 35 Let K = K = stiffness-matrix for average material κ(x). Use deterministic solver as pre-conditioner: P = K = I K... K Good pre-conditioner, when variance of κ not too large. Otherwise use P = block-diag(k). This may again be done with existing deterministic solver. Block-diagonal P is well suited for parallelisation.

36 Sparsification 36 Goal: As with additive noise, compute only with f l, u l from SVD. Start iteration with tensor product of low rank L. f = [..., f (γ),...] = F ϕφ T = ϕ l v l φ T l. l At each iteration k, rank of iterative approximation u k will increase by number of terms in matrix sum. In each iteration, perform a SVD of u k and reduce rank again to L. Resulting iteration converges to SVD = discrete KLE of u.

37 Operation Count 37 K u = ξ j (α) (α) K j u = f j α Assume sum in K has K terms, u and f have size N M, and f = [..., f (γ),...] = F ϕφ T = l ϕ l v l φ T l has L N, L M terms. Each application of K on full u k needs K M K-multiplications plus K N -multiplications. Each application of K on low rank tensor product u k needs K L K-multiplications plus K L -multiplications, which is much less. Storage is reduced from N M to L (N + M).

38 Second Summary 38 Stochastic calculations produce huge amounts of data, which is expensive to operate on and to store. Results live in very high dimensional spaces. They have a natural tensor product structure. Low Rank tensor product approximations reduce operations and storage, they are a model reduction. This procedure may be extended into the non-linear regime.

39 Example Solution 39 Geometry.5 flow = flow out.5 Sources Dirichlet b.c Realization of κ Realization of solution Mean of solution Variance of solution x Pr{u(x) > 8}.5 y.5

40 Approximation Theory Stability of discrete approximation under truncated KLE and PCE. Matrix stays uniformly positive definite. Convergence follows from Céa s Lemma. Convergence rates under stochastic regularity in stochastic Hilbert spaces stochastic regularitry theory?. Error estimation via dual weighted residuals possible. 4 Stochastic Hilbert spaces start with formal PCE: R(θ) = α J R(α) H α (θ). Define for ρ and p norm (with (N) β := j N (j)β j ): R ρ,p = α R (α) (α!) +ρ (N) pα.

41 Stochastic Hilbert Spaces Convergence Rates 4 Define for ρ, p : (S) ρ,p = {R(θ) = α J R (α) H α (θ) : R ρ,p < }. These are Hilbert spaces, the duals are denoted by (S) ρ, p, and L (Ω) = (S),. Let P k,m be orthogonal projection from (S) ρ,p into the finite dimensional subspace S k,m. Theorem: Let p >, r > and let ρ. Then for any R (S) ρ,p : R P k,m (R) ρ, p R ρ, p+r c(m, k, r), where c(m, k, r) = c (r)m r + c (r) kr. But dim S k,m grows too quickly with k and m. Sparser spaces and error estimates needed.

42 Results of Galerkin Method 4 err. 4 in mean m = 6 k = x.5 y.5 err. 4 in std dev m = 6 k = x.5 y.5 u (α) for α = (,,,,, ) x y Error 4 in u (α) Galerkin scheme x y

43 Let M (k) f Example: Computation of Moments k { times }}{ = E f(ω)... f(ω) k = E ( f ), totally symmetric, 43 and M () f = f, M () f = C f. KLE of C f is C f = l ϕ l f l f T l = l ϕ l f l f l. For deterministic operator K, just compute Kv l = f l, and then Kū = f, ( and M () u = C u = E ũ k) = l ϕ l v l v l. α ϕ l φ (α) H α (θ)v l, it results that multi-point correlation As ũ(θ) = l M (k) u = k l... l k m= l ϕ lm k α (),...,α (k) n= φ α (n) l n E ) (H α() H α(k) v l... v lk.

44 Non-Linear Equations 44 Example: Use κ(x, u, ω) = a(x, ω) + b(x, ω)u, and a, b random. Space discretisation generates a non-linear equation A( β u(β) H β (θ)) = f(θ). Projection onto PCE: a[u] = [..., E H α (θ)a( β u (β) H β (θ)),...] = f = ˆfϕφ T Expressions in a need high-dimensional integration (in each iteration), e.g. Monte Carlo or Smolyak (sparse grid) quadrature. After that, a should be sparsified or compressed. The residual equation to be solved is r(u) := f a[u] =.

45 Solution of Non-Linear Equations 45 As model problem is gradient of some functional, use a quasi-newton (here BFGS with line-search) method, to solve in k-th iteration ( u) k = H k r(u) u k = u k + ( u) k k H k = H + (a j p j p j + b j q j q j ) j= Tensors p and q computed from residuum and last increment. Notice tensor products of (hopefully sparse) tensors. Needs pre-conditioner H for good convergence: May use linear solver as described before, or just preconditioner (uses again deterministic solver), i.e. H = Dr(u ) or H = I K.

46 Third Summary 46 Stochastic Galerkin methods work. They are computationally possible on todays hardware. They are numerically stable, and have variational convergence theory behind them. They can use existing software efficiently. Software framework is being built for easy integration of existing software.

47 Important Features of Stochastic Galerkin 47 For efficency try and use sparse representation throughout: ansatz in tensor products, as well as storage of solution and residuum and matrix in tensor products, sparse grids for integration. In contrast to MCS, they are stable and have only cheap integrands. Can be coupled to existing software, only marginally more complicated than with MCS.

48 Outlook 48 Stochastic problems at very beginning (like FEM in the 96 s), when to choose which stochastic discretisation? Nonlinear (and instationary) problems possible (but much more work). Development of framework for stochastic coupling and parallelisation. Computational algorithms have to be further developed. Hierarchical parallelisation well possible.

Numerical Approximation of Stochastic Elliptic Partial Differential Equations

Numerical Approximation of Stochastic Elliptic Partial Differential Equations Numerical Approximation of Stochastic Elliptic Partial Differential Equations Hermann G. Matthies, Andreas Keese Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig wire@tu-bs.de

More information

Partial Differential Equations with Stochastic Coefficients

Partial Differential Equations with Stochastic Coefficients Partial Differential Equations with Stochastic Coefficients Hermann G. Matthies gemeinsam mit Andreas Keese Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig wire@tu-bs.de http://www.wire.tu-bs.de

More information

Hierarchical Parallel Solution of Stochastic Systems

Hierarchical Parallel Solution of Stochastic Systems Hierarchical Parallel Solution of Stochastic Systems Second M.I.T. Conference on Computational Fluid and Solid Mechanics Contents: Simple Model of Stochastic Flow Stochastic Galerkin Scheme Resulting Equations

More information

Stochastic Finite Elements: Computational Approaches to SPDEs

Stochastic Finite Elements: Computational Approaches to SPDEs Stochastic Finite Elements: Computational Approaches to SPDEs Hermann G. Matthies Andreas Keese, Elmar Zander, Alexander Litvinenko, Bojana Rosić Technische Universität Braunschweig wire@tu-bs.de http://www.wire.tu-bs.de

More information

Sampling and Low-Rank Tensor Approximations

Sampling and Low-Rank Tensor Approximations Sampling and Low-Rank Tensor Approximations Hermann G. Matthies Alexander Litvinenko, Tarek A. El-Moshely +, Brunswick, Germany + MIT, Cambridge, MA, USA wire@tu-bs.de http://www.wire.tu-bs.de $Id: 2_Sydney-MCQMC.tex,v.3

More information

Parametric Problems, Stochastics, and Identification

Parametric Problems, Stochastics, and Identification Parametric Problems, Stochastics, and Identification Hermann G. Matthies a B. Rosić ab, O. Pajonk ac, A. Litvinenko a a, b University of Kragujevac c SPT Group, Hamburg wire@tu-bs.de http://www.wire.tu-bs.de

More information

Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations

Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations ScientifiComputing Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations Hermann G. Matthies, Andreas Keese Institute of Scientific Computing Technical University

More information

Non-Intrusive Solution of Stochastic and Parametric Equations

Non-Intrusive Solution of Stochastic and Parametric Equations Non-Intrusive Solution of Stochastic and Parametric Equations Hermann G. Matthies a Loïc Giraldi b, Alexander Litvinenko c, Dishi Liu d, and Anthony Nouy b a,, Brunswick, Germany b École Centrale de Nantes,

More information

Polynomial Chaos and Karhunen-Loeve Expansion

Polynomial Chaos and Karhunen-Loeve Expansion Polynomial Chaos and Karhunen-Loeve Expansion 1) Random Variables Consider a system that is modeled by R = M(x, t, X) where X is a random variable. We are interested in determining the probability of the

More information

Optimisation under Uncertainty with Stochastic PDEs for the History Matching Problem in Reservoir Engineering

Optimisation under Uncertainty with Stochastic PDEs for the History Matching Problem in Reservoir Engineering Optimisation under Uncertainty with Stochastic PDEs for the History Matching Problem in Reservoir Engineering Hermann G. Matthies Technische Universität Braunschweig wire@tu-bs.de http://www.wire.tu-bs.de

More information

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion:

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion: tifica Lecture 1: Computation of Karhunen-Loeve Expansion: Alexander Litvinenko http://sri-uq.kaust.edu.sa/ Stochastic PDEs We consider div(κ(x, ω) u) = f (x, ω) in G, u = 0 on G, with stochastic coefficients

More information

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems Efficient Solvers for Stochastic Finite Element Saddle Point Problems Catherine E. Powell c.powell@manchester.ac.uk School of Mathematics University of Manchester, UK Efficient Solvers for Stochastic Finite

More information

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Roman Andreev ETH ZÜRICH / 29 JAN 29 TOC of the Talk Motivation & Set-Up Model Problem Stochastic Galerkin FEM Conclusions & Outlook Motivation

More information

Schwarz Preconditioner for the Stochastic Finite Element Method

Schwarz Preconditioner for the Stochastic Finite Element Method Schwarz Preconditioner for the Stochastic Finite Element Method Waad Subber 1 and Sébastien Loisel 2 Preprint submitted to DD22 conference 1 Introduction The intrusive polynomial chaos approach for uncertainty

More information

Sampling and low-rank tensor approximation of the response surface

Sampling and low-rank tensor approximation of the response surface Sampling and low-rank tensor approximation of the response surface tifica Alexander Litvinenko 1,2 (joint work with Hermann G. Matthies 3 ) 1 Group of Raul Tempone, SRI UQ, and 2 Group of David Keyes,

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

Solving the steady state diffusion equation with uncertainty Final Presentation

Solving the steady state diffusion equation with uncertainty Final Presentation Solving the steady state diffusion equation with uncertainty Final Presentation Virginia Forstall vhfors@gmail.com Advisor: Howard Elman elman@cs.umd.edu Department of Computer Science May 6, 2012 Problem

More information

Spectral methods for fuzzy structural dynamics: modal vs direct approach

Spectral methods for fuzzy structural dynamics: modal vs direct approach Spectral methods for fuzzy structural dynamics: modal vs direct approach S Adhikari Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Wales, UK IUTAM Symposium

More information

Uncertainty analysis of large-scale systems using domain decomposition

Uncertainty analysis of large-scale systems using domain decomposition Center for Turbulence Research Annual Research Briefs 2007 143 Uncertainty analysis of large-scale systems using domain decomposition By D. Ghosh, C. Farhat AND P. Avery 1. Motivation and objectives A

More information

NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE

NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE tifica NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE Alexander Litvinenko 1, Hermann G. Matthies 2, Elmar Zander 2 http://sri-uq.kaust.edu.sa/ 1 Extreme Computing Research Center, KAUST, 2 Institute of Scientific

More information

Estimating functional uncertainty using polynomial chaos and adjoint equations

Estimating functional uncertainty using polynomial chaos and adjoint equations 0. Estimating functional uncertainty using polynomial chaos and adjoint equations February 24, 2011 1 Florida State University, Tallahassee, Florida, Usa 2 Moscow Institute of Physics and Technology, Moscow,

More information

Numerical Solution I

Numerical Solution I Numerical Solution I Stationary Flow R. Kornhuber (FU Berlin) Summerschool Modelling of mass and energy transport in porous media with practical applications October 8-12, 2018 Schedule Classical Solutions

More information

Uncertainty Quantification in Computational Science

Uncertainty Quantification in Computational Science DTU 2010 - Lecture I Uncertainty Quantification in Computational Science Jan S Hesthaven Brown University Jan.Hesthaven@Brown.edu Objective of lectures The main objective of these lectures are To offer

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

STOCHASTIC SAMPLING METHODS

STOCHASTIC SAMPLING METHODS STOCHASTIC SAMPLING METHODS APPROXIMATING QUANTITIES OF INTEREST USING SAMPLING METHODS Recall that quantities of interest often require the evaluation of stochastic integrals of functions of the solutions

More information

Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method

Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method Jiachuan He University of Texas at Austin April 15, 2016 Jiachuan

More information

UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA

UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

A Polynomial Chaos Approach to Robust Multiobjective Optimization

A Polynomial Chaos Approach to Robust Multiobjective Optimization A Polynomial Chaos Approach to Robust Multiobjective Optimization Silvia Poles 1, Alberto Lovison 2 1 EnginSoft S.p.A., Optimization Consulting Via Giambellino, 7 35129 Padova, Italy s.poles@enginsoft.it

More information

Sparse polynomial chaos expansions in engineering applications

Sparse polynomial chaos expansions in engineering applications DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Sparse polynomial chaos expansions in engineering applications B. Sudret G. Blatman (EDF R&D,

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Paradigms of Probabilistic Modelling

Paradigms of Probabilistic Modelling Paradigms of Probabilistic Modelling Hermann G. Matthies Brunswick, Germany wire@tu-bs.de http://www.wire.tu-bs.de abstract RV-measure.tex,v 4.5 2017/07/06 01:56:46 hgm Exp Overview 2 1. Motivation challenges

More information

A Vector-Space Approach for Stochastic Finite Element Analysis

A Vector-Space Approach for Stochastic Finite Element Analysis A Vector-Space Approach for Stochastic Finite Element Analysis S Adhikari 1 1 Swansea University, UK CST2010: Valencia, Spain Adhikari (Swansea) Vector-Space Approach for SFEM 14-17 September, 2010 1 /

More information

An Empirical Chaos Expansion Method for Uncertainty Quantification

An Empirical Chaos Expansion Method for Uncertainty Quantification An Empirical Chaos Expansion Method for Uncertainty Quantification Melvin Leok and Gautam Wilkins Abstract. Uncertainty quantification seeks to provide a quantitative means to understand complex systems

More information

Lecture 1: Introduction to low-rank tensor representation/approximation. Center for Uncertainty Quantification. Alexander Litvinenko

Lecture 1: Introduction to low-rank tensor representation/approximation. Center for Uncertainty Quantification. Alexander Litvinenko tifica Lecture 1: Introduction to low-rank tensor representation/approximation Alexander Litvinenko http://sri-uq.kaust.edu.sa/ KAUST Figure : KAUST campus, 5 years old, approx. 7000 people (include 1400

More information

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt.

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt. SINGAPORE SHANGHAI Vol TAIPEI - Interdisciplinary Mathematical Sciences 19 Kernel-based Approximation Methods using MATLAB Gregory Fasshauer Illinois Institute of Technology, USA Michael McCourt University

More information

component risk analysis

component risk analysis 273: Urban Systems Modeling Lec. 3 component risk analysis instructor: Matteo Pozzi 273: Urban Systems Modeling Lec. 3 component reliability outline risk analysis for components uncertain demand and uncertain

More information

Collocation based high dimensional model representation for stochastic partial differential equations

Collocation based high dimensional model representation for stochastic partial differential equations Collocation based high dimensional model representation for stochastic partial differential equations S Adhikari 1 1 Swansea University, UK ECCM 2010: IV European Conference on Computational Mechanics,

More information

Polynomial chaos expansions for sensitivity analysis

Polynomial chaos expansions for sensitivity analysis c DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Polynomial chaos expansions for sensitivity analysis B. Sudret Chair of Risk, Safety & Uncertainty

More information

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of,

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of, 269 C, Vese Practice problems [1] Write the differential equation u + u = f(x, y), (x, y) Ω u = 1 (x, y) Ω 1 n + u = x (x, y) Ω 2, Ω = {(x, y) x 2 + y 2 < 1}, Ω 1 = {(x, y) x 2 + y 2 = 1, x 0}, Ω 2 = {(x,

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

Model Reduction, Centering, and the Karhunen-Loeve Expansion

Model Reduction, Centering, and the Karhunen-Loeve Expansion Model Reduction, Centering, and the Karhunen-Loeve Expansion Sonja Glavaški, Jerrold E. Marsden, and Richard M. Murray 1 Control and Dynamical Systems, 17-81 California Institute of Technology Pasadena,

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

A Posteriori Adaptive Low-Rank Approximation of Probabilistic Models

A Posteriori Adaptive Low-Rank Approximation of Probabilistic Models A Posteriori Adaptive Low-Rank Approximation of Probabilistic Models Rainer Niekamp and Martin Krosche. Institute for Scientific Computing TU Braunschweig ILAS: 22.08.2011 A Posteriori Adaptive Low-Rank

More information

Simulating with uncertainty : the rough surface scattering problem

Simulating with uncertainty : the rough surface scattering problem Simulating with uncertainty : the rough surface scattering problem Uday Khankhoje Assistant Professor, Electrical Engineering Indian Institute of Technology Madras Uday Khankhoje (EE, IITM) Simulating

More information

Signal Analysis. Principal Component Analysis

Signal Analysis. Principal Component Analysis Multi dimensional Signal Analysis Lecture 2E Principal Component Analysis Subspace representation Note! Given avector space V of dimension N a scalar product defined by G 0 a subspace U of dimension M

More information

arxiv: v2 [math.na] 8 Apr 2017

arxiv: v2 [math.na] 8 Apr 2017 A LOW-RANK MULTIGRID METHOD FOR THE STOCHASTIC STEADY-STATE DIFFUSION PROBLEM HOWARD C. ELMAN AND TENGFEI SU arxiv:1612.05496v2 [math.na] 8 Apr 2017 Abstract. We study a multigrid method for solving large

More information

Accuracy, Precision and Efficiency in Sparse Grids

Accuracy, Precision and Efficiency in Sparse Grids John, Information Technology Department, Virginia Tech.... http://people.sc.fsu.edu/ jburkardt/presentations/ sandia 2009.pdf... Computer Science Research Institute, Sandia National Laboratory, 23 July

More information

PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD

PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 569 PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD Riki Honda

More information

Dynamic response of structures with uncertain properties

Dynamic response of structures with uncertain properties Dynamic response of structures with uncertain properties S. Adhikari 1 1 Chair of Aerospace Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK International

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

NONLOCALITY AND STOCHASTICITY TWO EMERGENT DIRECTIONS FOR APPLIED MATHEMATICS. Max Gunzburger

NONLOCALITY AND STOCHASTICITY TWO EMERGENT DIRECTIONS FOR APPLIED MATHEMATICS. Max Gunzburger NONLOCALITY AND STOCHASTICITY TWO EMERGENT DIRECTIONS FOR APPLIED MATHEMATICS Max Gunzburger Department of Scientific Computing Florida State University North Carolina State University, March 10, 2011

More information

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen PARAMetric UNCertainties, Budapest STOCHASTIC PROCESSES AND FIELDS Noémi Friedman Institut für Wissenschaftliches Rechnen, wire@tu-bs.de

More information

Probabilistic Collocation Method for Uncertainty Analysis of Soil Infiltration in Flood Modelling

Probabilistic Collocation Method for Uncertainty Analysis of Soil Infiltration in Flood Modelling Probabilistic Collocation Method for Uncertainty Analysis of Soil Infiltration in Flood Modelling Y. Huang 1,2, and X.S. Qin 1,2* 1 School of Civil & Environmental Engineering, Nanyang Technological University,

More information

III. Iterative Monte Carlo Methods for Linear Equations

III. Iterative Monte Carlo Methods for Linear Equations III. Iterative Monte Carlo Methods for Linear Equations In general, Monte Carlo numerical algorithms may be divided into two classes direct algorithms and iterative algorithms. The direct algorithms provide

More information

Solving the stochastic steady-state diffusion problem using multigrid

Solving the stochastic steady-state diffusion problem using multigrid IMA Journal of Numerical Analysis (2007) 27, 675 688 doi:10.1093/imanum/drm006 Advance Access publication on April 9, 2007 Solving the stochastic steady-state diffusion problem using multigrid HOWARD ELMAN

More information

Stochastic representation of random positive-definite tensor-valued properties: application to 3D anisotropic permeability random fields

Stochastic representation of random positive-definite tensor-valued properties: application to 3D anisotropic permeability random fields Sous la co-tutelle de : LABORATOIRE DE MODÉLISATION ET SIMULATION MULTI ÉCHELLE CNRS UPEC UNIVERSITÉ PARIS-EST CRÉTEIL UPEM UNIVERSITÉ PARIS-EST MARNE-LA-VALLÉE Stochastic representation of random positive-definite

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Mike Giles (Oxford) Monte Carlo methods 1 / 23 Lecture outline

More information

A Reduced Basis Approach for Variational Problems with Stochastic Parameters: Application to Heat Conduction with Variable Robin Coefficient

A Reduced Basis Approach for Variational Problems with Stochastic Parameters: Application to Heat Conduction with Variable Robin Coefficient A Reduced Basis Approach for Variational Problems with Stochastic Parameters: Application to Heat Conduction with Variable Robin Coefficient Sébastien Boyaval a,, Claude Le Bris a, Yvon Maday b, Ngoc Cuong

More information

Scalable kernel methods and their use in black-box optimization

Scalable kernel methods and their use in black-box optimization with derivatives Scalable kernel methods and their use in black-box optimization David Eriksson Center for Applied Mathematics Cornell University dme65@cornell.edu November 9, 2018 1 2 3 4 1/37 with derivatives

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim.

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim. 56 Summary High order FD Finite-order finite differences: Points per Wavelength: Number of passes: D n f(x j ) = f j+n f j n n x df xj = m α m dx n D n f j j n= α m n = ( ) n (m!) (m n)!(m + n)!. PPW =

More information

Multi-Element Probabilistic Collocation Method in High Dimensions

Multi-Element Probabilistic Collocation Method in High Dimensions Multi-Element Probabilistic Collocation Method in High Dimensions Jasmine Foo and George Em Karniadakis Division of Applied Mathematics, Brown University, Providence, RI 02912 USA Abstract We combine multi-element

More information

A Spectral Approach to Linear Bayesian Updating

A Spectral Approach to Linear Bayesian Updating A Spectral Approach to Linear Bayesian Updating Oliver Pajonk 1,2, Bojana V. Rosic 1, Alexander Litvinenko 1, and Hermann G. Matthies 1 1 Institute of Scientific Computing, TU Braunschweig, Germany 2 SPT

More information

Adaptive Collocation with Kernel Density Estimation

Adaptive Collocation with Kernel Density Estimation Examples of with Kernel Density Estimation Howard C. Elman Department of Computer Science University of Maryland at College Park Christopher W. Miller Applied Mathematics and Scientific Computing Program

More information

Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras

Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras Lecture 1: Introduction Course Objectives: The focus of this course is on gaining understanding on how to make an

More information

Principal Component Analysis

Principal Component Analysis Machine Learning Michaelmas 2017 James Worrell Principal Component Analysis 1 Introduction 1.1 Goals of PCA Principal components analysis (PCA) is a dimensionality reduction technique that can be used

More information

Chapter 2 Spectral Expansions

Chapter 2 Spectral Expansions Chapter 2 Spectral Expansions In this chapter, we discuss fundamental and practical aspects of spectral expansions of random model data and of model solutions. We focus on a specific class of random process

More information

Approximating Infinity-Dimensional Stochastic Darcy s Equations without Uniform Ellipticity

Approximating Infinity-Dimensional Stochastic Darcy s Equations without Uniform Ellipticity Approximating Infinity-Dimensional Stochastic Darcy s Equations without Uniform Ellipticity Marcus Sarkis Jointly work with Juan Galvis USC09 Marcus Sarkis (WPI) SPDE without Uniform Ellipticity USC09

More information

arxiv: v2 [math.na] 8 Sep 2017

arxiv: v2 [math.na] 8 Sep 2017 arxiv:1704.06339v [math.na] 8 Sep 017 A Monte Carlo approach to computing stiffness matrices arising in polynomial chaos approximations Juan Galvis O. Andrés Cuervo September 3, 018 Abstract We use a Monte

More information

Block-diagonal preconditioning for spectral stochastic finite-element systems

Block-diagonal preconditioning for spectral stochastic finite-element systems IMA Journal of Numerical Analysis (2009) 29, 350 375 doi:0.093/imanum/drn04 Advance Access publication on April 4, 2008 Block-diagonal preconditioning for spectral stochastic finite-element systems CATHERINE

More information

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champaign June 17-22,2012 SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN

More information

From Completing the Squares and Orthogonal Projection to Finite Element Methods

From Completing the Squares and Orthogonal Projection to Finite Element Methods From Completing the Squares and Orthogonal Projection to Finite Element Methods Mo MU Background In scientific computing, it is important to start with an appropriate model in order to design effective

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Lecture 9: Sensitivity Analysis ST 2018 Tobias Neckel Scientific Computing in Computer Science TUM Repetition of Previous Lecture Sparse grids in Uncertainty Quantification

More information

Sequential Monte Carlo Samplers for Applications in High Dimensions

Sequential Monte Carlo Samplers for Applications in High Dimensions Sequential Monte Carlo Samplers for Applications in High Dimensions Alexandros Beskos National University of Singapore KAUST, 26th February 2014 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Alex

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017 ACM/CMS 17 Linear Analysis & Applications Fall 217 Assignment 2: PDEs and Finite Element Methods Due: 7th November 217 For this assignment the following MATLAB code will be required: Introduction http://wwwmdunloporg/cms17/assignment2zip

More information

A reduced-order stochastic finite element analysis for structures with uncertainties

A reduced-order stochastic finite element analysis for structures with uncertainties A reduced-order stochastic finite element analysis for structures with uncertainties Ji Yang 1, Béatrice Faverjon 1,2, Herwig Peters 1, icole Kessissoglou 1 1 School of Mechanical and Manufacturing Engineering,

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

Multilevel accelerated quadrature for elliptic PDEs with random diffusion. Helmut Harbrecht Mathematisches Institut Universität Basel Switzerland

Multilevel accelerated quadrature for elliptic PDEs with random diffusion. Helmut Harbrecht Mathematisches Institut Universität Basel Switzerland Multilevel accelerated quadrature for elliptic PDEs with random diffusion Mathematisches Institut Universität Basel Switzerland Overview Computation of the Karhunen-Loéve expansion Elliptic PDE with uniformly

More information

Proper Generalized Decomposition for Linear and Non-Linear Stochastic Models

Proper Generalized Decomposition for Linear and Non-Linear Stochastic Models Proper Generalized Decomposition for Linear and Non-Linear Stochastic Models Olivier Le Maître 1 Lorenzo Tamellini 2 and Anthony Nouy 3 1 LIMSI-CNRS, Orsay, France 2 MOX, Politecnico Milano, Italy 3 GeM,

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

Numerical Methods for Large-Scale Nonlinear Systems

Numerical Methods for Large-Scale Nonlinear Systems Numerical Methods for Large-Scale Nonlinear Systems Handouts by Ronald H.W. Hoppe following the monograph P. Deuflhard Newton Methods for Nonlinear Problems Springer, Berlin-Heidelberg-New York, 2004 Num.

More information

FFT-based Galerkin method for homogenization of periodic media

FFT-based Galerkin method for homogenization of periodic media FFT-based Galerkin method for homogenization of periodic media Jaroslav Vondřejc 1,2 Jan Zeman 2,3 Ivo Marek 2 Nachiketa Mishra 4 1 University of West Bohemia in Pilsen, Faculty of Applied Sciences Czech

More information

Second Order Elliptic PDE

Second Order Elliptic PDE Second Order Elliptic PDE T. Muthukumar tmk@iitk.ac.in December 16, 2014 Contents 1 A Quick Introduction to PDE 1 2 Classification of Second Order PDE 3 3 Linear Second Order Elliptic Operators 4 4 Periodic

More information

Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients

Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients Università degli Studi del Sannio Dipartimento e Facoltà di Ingegneria, Benevento, Italia Random fields

More information

Matrix assembly by low rank tensor approximation

Matrix assembly by low rank tensor approximation Matrix assembly by low rank tensor approximation Felix Scholz 13.02.2017 References Angelos Mantzaflaris, Bert Juettler, Boris Khoromskij, and Ulrich Langer. Matrix generation in isogeometric analysis

More information

A Stochastic Collocation based. for Data Assimilation

A Stochastic Collocation based. for Data Assimilation A Stochastic Collocation based Kalman Filter (SCKF) for Data Assimilation Lingzao Zeng and Dongxiao Zhang University of Southern California August 11, 2009 Los Angeles Outline Introduction SCKF Algorithm

More information

Bath Institute For Complex Systems

Bath Institute For Complex Systems BICS Bath Institute for Complex Systems Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and its Application to Multilevel Monte Carlo Methods Julia Charrier, Robert Scheichl and

More information

Stochastic Solvers for the Euler Equations

Stochastic Solvers for the Euler Equations 43rd AIAA Aerospace Sciences Meeting and Exhibit 1-13 January 5, Reno, Nevada 5-873 Stochastic Solvers for the Euler Equations G. Lin, C.-H. Su and G.E. Karniadakis Division of Applied Mathematics Brown

More information

Numerical methods for the discretization of random fields by means of the Karhunen Loève expansion

Numerical methods for the discretization of random fields by means of the Karhunen Loève expansion Numerical methods for the discretization of random fields by means of the Karhunen Loève expansion Wolfgang Betz, Iason Papaioannou, Daniel Straub Engineering Risk Analysis Group, Technische Universität

More information

PART IV Spectral Methods

PART IV Spectral Methods PART IV Spectral Methods Additional References: R. Peyret, Spectral methods for incompressible viscous flow, Springer (2002), B. Mercier, An introduction to the numerical analysis of spectral methods,

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

Quasi-optimal and adaptive sparse grids with control variates for PDEs with random diffusion coefficient

Quasi-optimal and adaptive sparse grids with control variates for PDEs with random diffusion coefficient Quasi-optimal and adaptive sparse grids with control variates for PDEs with random diffusion coefficient F. Nobile, L. Tamellini, R. Tempone, F. Tesei CSQI - MATHICSE, EPFL, Switzerland Dipartimento di

More information

Model Calibration under Uncertainty: Matching Distribution Information

Model Calibration under Uncertainty: Matching Distribution Information Model Calibration under Uncertainty: Matching Distribution Information Laura P. Swiler, Brian M. Adams, and Michael S. Eldred September 11, 008 AIAA Multidisciplinary Analysis and Optimization Conference

More information

Efficient Observation of Random Phenomena

Efficient Observation of Random Phenomena Lecture 9 Efficient Observation of Random Phenomena Tokyo Polytechnic University The 1st Century Center of Excellence Program Yukio Tamura POD Proper Orthogonal Decomposition Stochastic Representation

More information

MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION

MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION P. DOSTERT, Y. EFENDIEV, AND T.Y. HOU Abstract. In this paper, we study multiscale

More information

Uniformly Uniformly-ergodic Markov chains and BSDEs

Uniformly Uniformly-ergodic Markov chains and BSDEs Uniformly Uniformly-ergodic Markov chains and BSDEs Samuel N. Cohen Mathematical Institute, University of Oxford (Based on joint work with Ying Hu, Robert Elliott, Lukas Szpruch) Centre Henri Lebesgue,

More information