Fast Numerical Methods for Stochastic Computations

Size: px
Start display at page:

Download "Fast Numerical Methods for Stochastic Computations"

Transcription

1 Fast AreviewbyDongbinXiu May 16 th,2013

2 Outline Motivation 1 Motivation

3 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1

4 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 It has an exact steady-state solution: u(x) = A tanh A 2ν (x z)

5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 + δ u(1) = 1 It has an exact steady-state solution: u(x) = A tanh A 2ν (x z)

6 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 + δ u(1) = 1 It has an exact steady-state solution: u(x) = A tanh A 2ν (x z)

7 Techniques Motivation 1 Monte Carlo and sampling methods Generate independent realizations of random inputs based on the prescribed PDF and extract statistical information. Straightforward to apply. Large number of executions needed.

8 Techniques Motivation 1 Monte Carlo and sampling methods Generate independent realizations of random inputs based on the prescribed PDF and extract statistical information. Straightforward to apply. Large number of executions needed. 2 Perturbation methods Expand (Taylor) random fields around their mean and truncate at a given order. Small number of uncertainties. Complicated systems of equations beyond 2nd order.

9 Techniques Motivation 1 Monte Carlo and sampling methods Generate independent realizations of random inputs based on the prescribed PDF and extract statistical information. Straightforward to apply. Large number of executions needed. 2 Perturbation methods Expand (Taylor) random fields around their mean and truncate at a given order. Small number of uncertainties. Complicated systems of equations beyond 2nd order. 3 Moment equations Compute moments of the random solution directly from the averages of the original governing equations. Closure problem: Higher moments are needed for the derivation of a moment.

10 Techniques Motivation 1 Monte Carlo and sampling methods Generate independent realizations of random inputs based on the prescribed PDF and extract statistical information. Straightforward to apply. Large number of executions needed. 2 Perturbation methods Expand (Taylor) random fields around their mean and truncate at a given order. Small number of uncertainties. Complicated systems of equations beyond 2nd order. 3 Moment equations Compute moments of the random solution directly from the averages of the original governing equations. Closure problem: Higher moments are needed for the derivation of a moment. 4 Generalized polynomial chaos (gpc) Express stochastic solutions as orthogonal polynomials of the input random parameters. Fast convergence when the solution depends smoothly on the random parameters.

11 Techniques Motivation 1 Monte Carlo and sampling methods Generate independent realizations of random inputs based on the prescribed PDF and extract statistical information. Straightforward to apply. Large number of executions needed. 2 Perturbation methods Expand (Taylor) random fields around their mean and truncate at a given order. Small number of uncertainties. Complicated systems of equations beyond 2nd order. 3 Moment equations Compute moments of the random solution directly from the averages of the original governing equations. Closure problem: Higher moments are needed for the derivation of a moment. 4 Generalized polynomial chaos (gpc) Express stochastic solutions as orthogonal polynomials of the input random parameters. Fast convergence when the solution depends smoothly on the random parameters. 5 Operator based methods Manipulate the stochastic operators in the governing equations (Neumann expansion, weighted integral method...) Small uncertainties. Dependent on the operator. Limited to static problems.

12 Example: Burgers Equation (II) Let us consider the Burger s equation: u t + uu x = 0.05u xx, x [ 1, 1] u( 1) =1 + δ, δ U(0, 0.1) u(1) = 1

13 Example: Burgers Equation (II) Let us consider the Burger s equation: u t + uu x = 0.05u xx, x [ 1, 1] u( 1) =1 + δ, δ U(0, 0.1) u(1) = 1 Monte Carlo method with n realizations vs. gpc fourth-order expansions: n = 100 n = 1000 n = 2000 n = 5000 n = gpc z σ z

14 Example: Burgers Equation (II) Let us consider the Burger s equation: u t + uu x = 0.05u xx, x [ 1, 1] u( 1) =1 + δ, δ U(0, 0.1) u(1) = 1 Monte Carlo method with n realizations vs. gpc fourth-order expansions: n = 100 n = 1000 n = 2000 n = 5000 n = gpc z σ z Perturbation method of order k vs. gpc fourth-order expansions: k = 1 k = 2 k = 3 k = 4 gpc z σ z

15 Example: Burgers Equation (II) Let us consider the Burger s equation: u t + uu x = 0.05u xx, x [ 1, 1] u( 1) =1 + δ, δ U(0, 0.1) u(1) = 1 Monte Carlo method with n realizations vs. gpc fourth-order expansions: n = 100 n = 1000 n = 2000 n = 5000 n = gpc z σ z Perturbation method of order k vs. gpc fourth-order expansions: k = 1 k = 2 k = 3 k = 4 gpc z σ z Monte Carlo needs much more computations to obtain same accuracy as gpc (gpc needs the equivalent to five deterministic simulations). Perturbation methods do not even seem to converge.

16 Governing equations and probabilistic framework Let us consider: where: L is a differential operator L(x, u; y) =0, in D, B(x, u; y) =0, on D, B is a boundary operator (Dirichlet, Neumann...) x =(x 1,...,x d ) D R d are the spatial coordinates y =(y 1,...,y N ) R N are the parameters of interest random and mutually independent, defined in (Ω, A, P). Theycanbephysicalparametersofthe system, continuous random processes on the boundary, random initial conditions...

17 Governing equations and probabilistic framework Let us consider: where: L is a differential operator L(x, u; y) =0, in D, B(x, u; y) =0, on D, B is a boundary operator (Dirichlet, Neumann...) x =(x 1,...,x d ) D R d are the spatial coordinates y =(y 1,...,y N ) R N are the parameters of interest random and mutually independent, defined in (Ω, A, P). Theycanbephysicalparametersofthe system, continuous random processes on the boundary, random initial conditions... We are interested in a set of quantities (QoI), called observables: g =(g 1,...,g K ) R K = G(u)

18 Governing equations and probabilistic framework Let us consider: where: L is a differential operator L(x, u; y) =0, in D, B(x, u; y) =0, on D, B is a boundary operator (Dirichlet, Neumann...) x =(x 1,...,x d ) D R d are the spatial coordinates y =(y 1,...,y N ) R N are the parameters of interest random and mutually independent, defined in (Ω, A, P). Theycanbephysicalparametersofthe system, continuous random processes on the boundary, random initial conditions... We are interested in a set of quantities (QoI), called observables: g =(g 1,...,g K ) R K = G(u) Let ρ i :Γ i R + be the probability density function (PDF) of y i and N ρ(y) = ρ i (y i ), i=1 the joint PDF of y, withsupportγ= N i=1 Γ i.

19 gpc basis and approximations (I) One-dimensional orthogonal polynomial spaces in Γ i : where and W i,d i := {v :Γ i R v span{φ m(y i )} d i m=0 }, i = 1,...,N Γ i ρ i (y i )φ m(y i )φ n(y i )dy i = h 2 mδ mn h 2 m = Γ i ρ i φ 2 mdy i

20 gpc basis and approximations (I) One-dimensional orthogonal polynomial spaces in Γ i : where and W i,d i := {v :Γ i R v span{φ m(y i )} d i m=0 }, i = 1,...,N Γ i ρ i (y i )φ m(y i )φ n(y i )dy i = h 2 mδ mn h 2 m = Γ i ρ i φ 2 mdy i N-dimensional orthogonal polynomial space in Γ: WN P := d P W i,d i where d =(d 1,...,d N ) N N 0 are constructed as: and d = d d N.Theorthonormalpolynomials Φ m = φ m1 (y 1 )...φ mn (y N ), m m N P

21 gpc basis and approximations (II) Examples: Continuous Discrete Distribution gpc basis polynomials Support Gaussian Hermite (, ) Gamma Laguerre [0, ) Beta Jacobi [a, b] Uniform Legendre [a, b] Poisson Charlier {0, 1, 2,...} Binomial Krawtchouk {0, 1,...,N} Negative Binomial Meixner {0, 1, 2,...} Hypergeometric Hahn {0, 1,...,N}

22 gpc basis and approximations (II) Examples: Continuous Discrete Distribution gpc basis polynomials Support Gaussian Hermite (, ) Gamma Laguerre [0, ) Beta Jacobi [a, b] Uniform Legendre [a, b] Poisson Charlier {0, 1, 2,...} Binomial Krawtchouk {0, 1,...,N} Negative Binomial Meixner {0, 1, 2,...} Hypergeometric Hahn {0, 1,...,N} The P th -order gpc approximation of u is: where û m(x) = M un P (x, y) = û m(x)φ m(y), M = m=1 N + P N u(x, y)φ m(y)ρ(y)dy = E[u(x, y)φ m(y)], 1 m M

23 Statistical information We can compute, for instance, the following statistical information: Mean: M E[u](x) E[uN P ]= û m(x)φ m(y) ρ(y)dy =û 1 (x) Covariance: m=1 Cov[u](x 1, x 2 ) E u P N (x 1, y) E[u P N (x 1, y)] u P N (x 2, y) E[u P N (x 2, y)] Variance: = M û m(x 1 )û m(x 2 ) m=2 Var[u](x) E u P N (x, y) E[uP N (x, y)] 2 = M û m(x) 2 Sensitivity coefficients: m=2 u M Φm(y) E û m(x) ρ(y)dy, j = 1,...,N y j y j m=1

24 Galerkin method Motivation Stochastic Galerkin method Stochastic collocation methods We approximate un P by such that M vn P (x, y) = ˆv m(x)φ m(y) m=1 L(x, vn P ; y)w(y)ρ(y)dy = 0, in D, B(x, vn P ; y)w(y)ρ(y)dy = 0, on D, for all w W P N.

25 Galerkin method Motivation Stochastic Galerkin method Stochastic collocation methods We approximate un P by such that M vn P (x, y) = ˆv m(x)φ m(y) m=1 L(x, vn P ; y)w(y)ρ(y)dy = 0, in D, B(x, vn P ; y)w(y)ρ(y)dy = 0, on D, for all w W P N. The resulting equations are a coupled system of M deterministic PDEs for {ˆv m}.

26 Collocation methods Motivation Stochastic Galerkin method Stochastic collocation methods Lagrange interpolation approach: Let Θ N = {y (i) } Q i=1 Γ asetofnodes. Then: Q u(x, y) Iu(x, y) = ũ k (x)l k (y), x D k=1 where L i (y (j) )=δ ij and ũ k (x) =u(x, y (k) ), 1 i, j, k Q

27 Collocation methods Motivation Stochastic Galerkin method Stochastic collocation methods Lagrange interpolation approach: Let Θ N = {y (i) } Q i=1 Γ asetofnodes. Then: Q u(x, y) Iu(x, y) = ũ k (x)l k (y), x D k=1 where L i (y (j) )=δ ij and ũ k (x) =u(x, y (k) ), 1 i, j, k Q Pseudo-spectral approach: Let Θ N = {y (i),α (j) } Q i=1 Γ asetofnodesand weights. Then: M Q wn P (x, y) = ŵ m(x)φ m(y), with ŵ m(x) = u(x, y (j) )Φ m(y (j)) )α (j) m=1 j=1

28 Collocation methods Motivation Stochastic Galerkin method Stochastic collocation methods Lagrange interpolation approach: Let Θ N = {y (i) } Q i=1 Γ asetofnodes. Then: Q u(x, y) Iu(x, y) = ũ k (x)l k (y), x D k=1 where L i (y (j) )=δ ij and ũ k (x) =u(x, y (k) ), 1 i, j, k Q Pseudo-spectral approach: Let Θ N = {y (i),α (j) } Q i=1 Γ asetofnodesand weights. Then: M Q wn P (x, y) = ŵ m(x)φ m(y), with ŵ m(x) = u(x, y (j) )Φ m(y (j)) )α (j) m=1 j=1 In both cases, for each y (k),wehavetosolveq uncoupled problems: L(x, ũ k ; y (k) )=0, in D, B(x, ũ k ; y (k) )=0, on D,

29 Points selection Motivation Stochastic Galerkin method Stochastic collocation methods It is straightforward in one-dimensional (N = 1) problems, where the Gauss quadratures are usually the optimal choice. But, for large (N 1) dimensions? Tensor products of one-dimensional nodes Sparse grids, subsets of the full tensor product based on Smolyak algorithm Cubature rules

30 Thanks for your attention!

Fast Numerical Methods for Stochastic Computations: A Review

Fast Numerical Methods for Stochastic Computations: A Review COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol. 5, No. 2-4, pp. 242-272 Commun. Comput. Phys. February 2009 REVIEW ARTICLE Fast Numerical Methods for Stochastic Computations: A Review Dongbin Xiu Department

More information

Introduction to Uncertainty Quantification in Computational Science Handout #3

Introduction to Uncertainty Quantification in Computational Science Handout #3 Introduction to Uncertainty Quantification in Computational Science Handout #3 Gianluca Iaccarino Department of Mechanical Engineering Stanford University June 29 - July 1, 2009 Scuola di Dottorato di

More information

Spectral Representation of Random Processes

Spectral Representation of Random Processes Spectral Representation of Random Processes Example: Represent u(t,x,q) by! u K (t, x, Q) = u k (t, x) k(q) where k(q) are orthogonal polynomials. Single Random Variable:! Let k (Q) be orthogonal with

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Performance Evaluation of Generalized Polynomial Chaos

Performance Evaluation of Generalized Polynomial Chaos Performance Evaluation of Generalized Polynomial Chaos Dongbin Xiu, Didier Lucor, C.-H. Su, and George Em Karniadakis 1 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA, gk@dam.brown.edu

More information

Multilevel stochastic collocations with dimensionality reduction

Multilevel stochastic collocations with dimensionality reduction Multilevel stochastic collocations with dimensionality reduction Ionut Farcas TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017 Outline 1 Motivation 2 Theoretical background Uncertainty

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Lecture 9: Sensitivity Analysis ST 2018 Tobias Neckel Scientific Computing in Computer Science TUM Repetition of Previous Lecture Sparse grids in Uncertainty Quantification

More information

A Polynomial Chaos Approach to Robust Multiobjective Optimization

A Polynomial Chaos Approach to Robust Multiobjective Optimization A Polynomial Chaos Approach to Robust Multiobjective Optimization Silvia Poles 1, Alberto Lovison 2 1 EnginSoft S.p.A., Optimization Consulting Via Giambellino, 7 35129 Padova, Italy s.poles@enginsoft.it

More information

STOCHASTIC SAMPLING METHODS

STOCHASTIC SAMPLING METHODS STOCHASTIC SAMPLING METHODS APPROXIMATING QUANTITIES OF INTEREST USING SAMPLING METHODS Recall that quantities of interest often require the evaluation of stochastic integrals of functions of the solutions

More information

arxiv: v1 [math.na] 3 Apr 2019

arxiv: v1 [math.na] 3 Apr 2019 arxiv:1904.02017v1 [math.na] 3 Apr 2019 Poly-Sinc Solution of Stochastic Elliptic Differential Equations Maha Youssef and Roland Pulch Institute of Mathematics and Computer Science, University of Greifswald,

More information

Research Article A Pseudospectral Approach for Kirchhoff Plate Bending Problems with Uncertainties

Research Article A Pseudospectral Approach for Kirchhoff Plate Bending Problems with Uncertainties Mathematical Problems in Engineering Volume 22, Article ID 7565, 4 pages doi:.55/22/7565 Research Article A Pseudospectral Approach for Kirchhoff Plate Bending Problems with Uncertainties Ling Guo, 2 and

More information

Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos

Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos Dongbin Xiu and George Em Karniadakis Division of Applied Mathematics Brown University Providence, RI 9 Submitted to Journal of

More information

Uncertainty Quantification of Radionuclide Release Models using Non-Intrusive Polynomial Chaos. Casper Hoogwerf

Uncertainty Quantification of Radionuclide Release Models using Non-Intrusive Polynomial Chaos. Casper Hoogwerf Uncertainty Quantification of Radionuclide Release Models using Non-Intrusive Polynomial Chaos. Casper Hoogwerf 1 Foreword This report presents the final thesis of the Master of Science programme in Applied

More information

Accuracy, Precision and Efficiency in Sparse Grids

Accuracy, Precision and Efficiency in Sparse Grids John, Information Technology Department, Virginia Tech.... http://people.sc.fsu.edu/ jburkardt/presentations/ sandia 2009.pdf... Computer Science Research Institute, Sandia National Laboratory, 23 July

More information

Downloaded 01/28/13 to Redistribution subject to SIAM license or copyright; see

Downloaded 01/28/13 to Redistribution subject to SIAM license or copyright; see SIAM J. SCI. COMPUT. Vol. 27, No. 3, pp. 1118 1139 c 2005 Society for Industrial and Applied Mathematics HIGH-ORDER COLLOCATION METHODS FOR DIFFERENTIAL EQUATIONS WITH RANDOM INPUTS DONGBIN XIU AND JAN

More information

Simulating with uncertainty : the rough surface scattering problem

Simulating with uncertainty : the rough surface scattering problem Simulating with uncertainty : the rough surface scattering problem Uday Khankhoje Assistant Professor, Electrical Engineering Indian Institute of Technology Madras Uday Khankhoje (EE, IITM) Simulating

More information

Polynomial chaos expansions for sensitivity analysis

Polynomial chaos expansions for sensitivity analysis c DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Polynomial chaos expansions for sensitivity analysis B. Sudret Chair of Risk, Safety & Uncertainty

More information

Sparse Grids. Léopold Cambier. February 17, ICME, Stanford University

Sparse Grids. Léopold Cambier. February 17, ICME, Stanford University Sparse Grids & "A Dynamically Adaptive Sparse Grid Method for Quasi-Optimal Interpolation of Multidimensional Analytic Functions" from MK Stoyanov, CG Webster Léopold Cambier ICME, Stanford University

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Quadrature for Uncertainty Analysis Stochastic Collocation. What does quadrature have to do with uncertainty?

Quadrature for Uncertainty Analysis Stochastic Collocation. What does quadrature have to do with uncertainty? Quadrature for Uncertainty Analysis Stochastic Collocation What does quadrature have to do with uncertainty? Quadrature for Uncertainty Analysis Stochastic Collocation What does quadrature have to do with

More information

Final Report: DE-FG02-95ER25239 Spectral Representations of Uncertainty: Algorithms and Applications

Final Report: DE-FG02-95ER25239 Spectral Representations of Uncertainty: Algorithms and Applications Final Report: DE-FG02-95ER25239 Spectral Representations of Uncertainty: Algorithms and Applications PI: George Em Karniadakis Division of Applied Mathematics, Brown University April 25, 2005 1 Objectives

More information

An Empirical Chaos Expansion Method for Uncertainty Quantification

An Empirical Chaos Expansion Method for Uncertainty Quantification An Empirical Chaos Expansion Method for Uncertainty Quantification Melvin Leok and Gautam Wilkins Abstract. Uncertainty quantification seeks to provide a quantitative means to understand complex systems

More information

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere Michael Levy University of Colorado at Boulder Department of Applied Mathematics August 10, 2007 Outline 1 Background

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

A Unified Framework for Uncertainty and Sensitivity Analysis of Computational Models with Many Input Parameters

A Unified Framework for Uncertainty and Sensitivity Analysis of Computational Models with Many Input Parameters A Unified Framework for Uncertainty and Sensitivity Analysis of Computational Models with Many Input Parameters C. F. Jeff Wu H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute

More information

Multi-Element Probabilistic Collocation Method in High Dimensions

Multi-Element Probabilistic Collocation Method in High Dimensions Multi-Element Probabilistic Collocation Method in High Dimensions Jasmine Foo and George Em Karniadakis Division of Applied Mathematics, Brown University, Providence, RI 02912 USA Abstract We combine multi-element

More information

Nonlinear stochastic Galerkin and collocation methods: application to a ferromagnetic cylinder rotating at high speed

Nonlinear stochastic Galerkin and collocation methods: application to a ferromagnetic cylinder rotating at high speed Nonlinear stochastic Galerkin and collocation methods: application to a ferromagnetic cylinder rotating at high speed Eveline Rosseel Herbert De Gersem Stefan Vandewalle Report TW 541, July 29 Katholieke

More information

Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos

Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 6t 7 - April 28, Schaumburg, IL AIAA 28-892 Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized

More information

Stochastic structural dynamic analysis with random damping parameters

Stochastic structural dynamic analysis with random damping parameters Stochastic structural dynamic analysis with random damping parameters K. Sepahvand 1, F. Saati Khosroshahi, C. A. Geweth and S. Marburg Chair of Vibroacoustics of Vehicles and Machines Department of Mechanical

More information

Multilevel accelerated quadrature for elliptic PDEs with random diffusion. Helmut Harbrecht Mathematisches Institut Universität Basel Switzerland

Multilevel accelerated quadrature for elliptic PDEs with random diffusion. Helmut Harbrecht Mathematisches Institut Universität Basel Switzerland Multilevel accelerated quadrature for elliptic PDEs with random diffusion Mathematisches Institut Universität Basel Switzerland Overview Computation of the Karhunen-Loéve expansion Elliptic PDE with uniformly

More information

AN EFFICIENT COMPUTATIONAL FRAMEWORK FOR UNCERTAINTY QUANTIFICATION IN MULTISCALE SYSTEMS

AN EFFICIENT COMPUTATIONAL FRAMEWORK FOR UNCERTAINTY QUANTIFICATION IN MULTISCALE SYSTEMS AN EFFICIENT COMPUTATIONAL FRAMEWORK FOR UNCERTAINTY QUANTIFICATION IN MULTISCALE SYSTEMS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

New issues in LES of turbulent flows: multiphysics and uncertainty modelling

New issues in LES of turbulent flows: multiphysics and uncertainty modelling New issues in LES of turbulent flows: multiphysics and uncertainty modelling Pierre Sagaut Institut Jean Le Rond d Alembert Université Pierre et Marie Curie- Paris 6, France http://www.lmm.jussieu.fr/~sagaut

More information

NONLOCALITY AND STOCHASTICITY TWO EMERGENT DIRECTIONS FOR APPLIED MATHEMATICS. Max Gunzburger

NONLOCALITY AND STOCHASTICITY TWO EMERGENT DIRECTIONS FOR APPLIED MATHEMATICS. Max Gunzburger NONLOCALITY AND STOCHASTICITY TWO EMERGENT DIRECTIONS FOR APPLIED MATHEMATICS Max Gunzburger Department of Scientific Computing Florida State University North Carolina State University, March 10, 2011

More information

Chapter 2 Spectral Expansions

Chapter 2 Spectral Expansions Chapter 2 Spectral Expansions In this chapter, we discuss fundamental and practical aspects of spectral expansions of random model data and of model solutions. We focus on a specific class of random process

More information

Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3

Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3 2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 2010 WeC17.1 Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3 (1) Graduate Student, (2) Assistant

More information

Uncertainty Quantification in Computational Science

Uncertainty Quantification in Computational Science DTU 2010 - Lecture I Uncertainty Quantification in Computational Science Jan S Hesthaven Brown University Jan.Hesthaven@Brown.edu Objective of lectures The main objective of these lectures are To offer

More information

Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients

Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients Università degli Studi del Sannio Dipartimento e Facoltà di Ingegneria, Benevento, Italia Random fields

More information

c 2004 Society for Industrial and Applied Mathematics

c 2004 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 6, No., pp. 578 59 c Society for Industrial and Applied Mathematics STOCHASTIC SOLUTIONS FOR THE TWO-DIMENSIONAL ADVECTION-DIFFUSION EQUATION XIAOLIANG WAN, DONGBIN XIU, AND GEORGE

More information

Hyperbolic Polynomial Chaos Expansion (HPCE) and its Application to Statistical Analysis of Nonlinear Circuits

Hyperbolic Polynomial Chaos Expansion (HPCE) and its Application to Statistical Analysis of Nonlinear Circuits Hyperbolic Polynomial Chaos Expansion HPCE and its Application to Statistical Analysis of Nonlinear Circuits Majid Ahadi, Aditi Krishna Prasad, Sourajeet Roy High Speed System Simulations Laboratory Department

More information

Uncertainty Propagation and Global Sensitivity Analysis in Hybrid Simulation using Polynomial Chaos Expansion

Uncertainty Propagation and Global Sensitivity Analysis in Hybrid Simulation using Polynomial Chaos Expansion Uncertainty Propagation and Global Sensitivity Analysis in Hybrid Simulation using Polynomial Chaos Expansion EU-US-Asia workshop on hybrid testing Ispra, 5-6 October 2015 G. Abbiati, S. Marelli, O.S.

More information

PART IV Spectral Methods

PART IV Spectral Methods PART IV Spectral Methods Additional References: R. Peyret, Spectral methods for incompressible viscous flow, Springer (2002), B. Mercier, An introduction to the numerical analysis of spectral methods,

More information

Dimension-adaptive sparse grid for industrial applications using Sobol variances

Dimension-adaptive sparse grid for industrial applications using Sobol variances Master of Science Thesis Dimension-adaptive sparse grid for industrial applications using Sobol variances Heavy gas flow over a barrier March 11, 2015 Ad Dimension-adaptive sparse grid for industrial

More information

Solving the steady state diffusion equation with uncertainty Final Presentation

Solving the steady state diffusion equation with uncertainty Final Presentation Solving the steady state diffusion equation with uncertainty Final Presentation Virginia Forstall vhfors@gmail.com Advisor: Howard Elman elman@cs.umd.edu Department of Computer Science May 6, 2012 Problem

More information

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes).

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes). CE 025 - Lecture 6 LECTURE 6 GAUSS QUADRATURE In general for ewton-cotes (equispaced interpolation points/ data points/ integration points/ nodes). x E x S fx dx hw' o f o + w' f + + w' f + E 84 f 0 f

More information

EFFICIENT STOCHASTIC GALERKIN METHODS FOR RANDOM DIFFUSION EQUATIONS

EFFICIENT STOCHASTIC GALERKIN METHODS FOR RANDOM DIFFUSION EQUATIONS EFFICIENT STOCHASTIC GALERKIN METHODS FOR RANDOM DIFFUSION EQUATIONS DONGBIN XIU AND JIE SHEN Abstract. We discuss in this paper efficient solvers for stochastic diffusion equations in random media. We

More information

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim.

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim. 56 Summary High order FD Finite-order finite differences: Points per Wavelength: Number of passes: D n f(x j ) = f j+n f j n n x df xj = m α m dx n D n f j j n= α m n = ( ) n (m!) (m n)!(m + n)!. PPW =

More information

Polynomial chaos expansions for structural reliability analysis

Polynomial chaos expansions for structural reliability analysis DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Polynomial chaos expansions for structural reliability analysis B. Sudret & S. Marelli Incl.

More information

Adaptive Collocation with Kernel Density Estimation

Adaptive Collocation with Kernel Density Estimation Examples of with Kernel Density Estimation Howard C. Elman Department of Computer Science University of Maryland at College Park Christopher W. Miller Applied Mathematics and Scientific Computing Program

More information

Robust Optimal Control using Polynomial Chaos and Adjoints for Systems with Uncertain Inputs

Robust Optimal Control using Polynomial Chaos and Adjoints for Systems with Uncertain Inputs 2th AIAA Computational Fluid Dynamics Conference 27-3 June 211, Honolulu, Hawaii AIAA 211-369 Robust Optimal Control using Polynomial Chaos and Adjoints for Systems with Uncertain Inputs Sriram General

More information

Electromagnetic Relaxation Time Distribution Inverse Problems in the Time-domain

Electromagnetic Relaxation Time Distribution Inverse Problems in the Time-domain Electromagnetic Relaxation Time Distribution Inverse Problems in the Time-domain Prof Nathan L Gibson Department of Mathematics Joint Math Meeting Jan 9, 2011 Prof Gibson (OSU) Inverse Problems for Distributions

More information

Numerical Analysis Comprehensive Exam Questions

Numerical Analysis Comprehensive Exam Questions Numerical Analysis Comprehensive Exam Questions 1. Let f(x) = (x α) m g(x) where m is an integer and g(x) C (R), g(α). Write down the Newton s method for finding the root α of f(x), and study the order

More information

CLASSROOM NOTES PART II: SPECIAL TOPICS. APM526, Spring 2018 Last update: Apr 11

CLASSROOM NOTES PART II: SPECIAL TOPICS. APM526, Spring 2018 Last update: Apr 11 CLASSROOM NOTES PART II: SPECIAL TOPICS APM526, Spring 2018 Last update: Apr 11 1 Function Space Methods General Setting: Projection into finite dimensional subspaces t u = F (u), u(t = 0) = u I, F : B

More information

Uncertainty Quantification and Validation Using RAVEN. A. Alfonsi, C. Rabiti. Risk-Informed Safety Margin Characterization. https://lwrs.inl.

Uncertainty Quantification and Validation Using RAVEN. A. Alfonsi, C. Rabiti. Risk-Informed Safety Margin Characterization. https://lwrs.inl. Risk-Informed Safety Margin Characterization Uncertainty Quantification and Validation Using RAVEN https://lwrs.inl.gov A. Alfonsi, C. Rabiti North Carolina State University, Raleigh 06/28/2017 Assumptions

More information

Estimating functional uncertainty using polynomial chaos and adjoint equations

Estimating functional uncertainty using polynomial chaos and adjoint equations 0. Estimating functional uncertainty using polynomial chaos and adjoint equations February 24, 2011 1 Florida State University, Tallahassee, Florida, Usa 2 Moscow Institute of Physics and Technology, Moscow,

More information

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champaign June 17-22,2012 SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN

More information

A stochastic collocation approach for efficient integrated gear health prognosis

A stochastic collocation approach for efficient integrated gear health prognosis A stochastic collocation approach for efficient integrated gear health prognosis Fuqiong Zhao a, Zhigang Tian b,, Yong Zeng b a Department of Mechanical and Industrial Engineering, Concordia University,

More information

Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos

Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos Dongbin Xiu and George Em Karniadakis Division of Applied Mathematics Brown University Providence, RI 09 Submitted

More information

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Journal of Scientific Computing, Vol. 27, Nos. 1 3, June 2006 ( 2005) DOI: 10.1007/s10915-005-9038-8 Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Xiaoliang Wan 1 and George Em Karniadakis 1

More information

A sparse grid stochastic collocation method for elliptic partial differential equations with random input data

A sparse grid stochastic collocation method for elliptic partial differential equations with random input data A sparse grid stochastic collocation method for elliptic partial differential equations with random input data F. Nobile R. Tempone C. G. Webster June 22, 2006 Abstract This work proposes and analyzes

More information

arxiv: v1 [math.na] 14 Sep 2017

arxiv: v1 [math.na] 14 Sep 2017 Stochastic collocation approach with adaptive mesh refinement for parametric uncertainty analysis arxiv:1709.04584v1 [math.na] 14 Sep 2017 Anindya Bhaduri a, Yanyan He 1b, Michael D. Shields a, Lori Graham-Brady

More information

Numerical Approximation of Stochastic Elliptic Partial Differential Equations

Numerical Approximation of Stochastic Elliptic Partial Differential Equations Numerical Approximation of Stochastic Elliptic Partial Differential Equations Hermann G. Matthies, Andreas Keese Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig wire@tu-bs.de

More information

Pascal s Triangle on a Budget. Accuracy, Precision and Efficiency in Sparse Grids

Pascal s Triangle on a Budget. Accuracy, Precision and Efficiency in Sparse Grids Covering : Accuracy, Precision and Efficiency in Sparse Grids https://people.sc.fsu.edu/ jburkardt/presentations/auburn 2009.pdf... John Interdisciplinary Center for Applied Mathematics & Information Technology

More information

Emulation of Numerical Models with Over-specified Basis Functions

Emulation of Numerical Models with Over-specified Basis Functions Emulation of Numerical Models with Over-specified Basis Functions Avishek Chakraborty, Derek Bingham and Bani Mallick Abstract: We propose a Bayesian approach to statistical inference in emulation and

More information

Stochastic Solvers for the Euler Equations

Stochastic Solvers for the Euler Equations 43rd AIAA Aerospace Sciences Meeting and Exhibit 1-13 January 5, Reno, Nevada 5-873 Stochastic Solvers for the Euler Equations G. Lin, C.-H. Su and G.E. Karniadakis Division of Applied Mathematics Brown

More information

Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics

Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information

Downloaded 08/15/18 to Redistribution subject to SIAM license or copyright; see

Downloaded 08/15/18 to Redistribution subject to SIAM license or copyright; see SIAM J. SCI. COMPUT. Vol. 40, No. 4, pp. A2152 A2173 c 2018 Society for Industrial and Applied Mathematics STOCHASTIC DOMAIN DECOMPOSITION VIA MOMENT MINIMIZATION DONGKUN ZHANG, HESSAM BABAEE, AND GEORGE

More information

MULTI-ELEMENT GENERALIZED POLYNOMIAL CHAOS FOR ARBITRARY PROBABILITY MEASURES

MULTI-ELEMENT GENERALIZED POLYNOMIAL CHAOS FOR ARBITRARY PROBABILITY MEASURES SIAM J. SCI. COMPUT. Vol. 8, No. 3, pp. 9 98 c 6 Society for Industrial and Applied Mathematics MULTI-ELEMENT GENERALIZED POLYNOMIAL CHAOS FOR ARBITRARY PROBABILITY MEASURES XIAOLIANG WAN AND GEORGE EM

More information

Random Eigenvalue Problems Revisited

Random Eigenvalue Problems Revisited Random Eigenvalue Problems Revisited S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. Email: S.Adhikari@bristol.ac.uk URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information

AN ALGORITHMIC INTRODUCTION TO NUMERICAL METHODS FOR PDES WITH RANDOM INPUTS DRAFT. Max Gunzburger

AN ALGORITHMIC INTRODUCTION TO NUMERICAL METHODS FOR PDES WITH RANDOM INPUTS DRAFT. Max Gunzburger AN ALGORITHMIC INTRODUCTION TO NUMERICAL METHODS FOR PDES WITH RANDOM INPUTS Max Gunzburger Department of Scientific Computing Florida State University mgunzburger@fsu.edu with Clayton Webster John Burkardt

More information

Application and validation of polynomial chaos methods to quantify uncertainties in simulating the Gulf of Mexico circulation using HYCOM.

Application and validation of polynomial chaos methods to quantify uncertainties in simulating the Gulf of Mexico circulation using HYCOM. Application and validation of polynomial chaos methods to quantify uncertainties in simulating the Gulf of Mexico circulation using HYCOM. Mohamed Iskandarani Matthieu Le Hénaff Carlisle Thacker University

More information

ON DISCRETE LEAST-SQUARES PROJECTION IN UNBOUNDED DOMAIN WITH RANDOM EVALUATIONS AND ITS APPLICATION TO PARAMETRIC UNCERTAINTY QUANTIFICATION

ON DISCRETE LEAST-SQUARES PROJECTION IN UNBOUNDED DOMAIN WITH RANDOM EVALUATIONS AND ITS APPLICATION TO PARAMETRIC UNCERTAINTY QUANTIFICATION SIAM J. SCI. COMPUT. Vol. 36, No. 5, pp. A2272 A2295 c 2014 Society for Industrial and Applied Mathematics ON DISCRETE LEAST-SQUARES PROJECTION IN UNBOUNDED DOMAIN WITH RANDOM EVALUATIONS AND ITS APPLICATION

More information

Quasi-optimal and adaptive sparse grids with control variates for PDEs with random diffusion coefficient

Quasi-optimal and adaptive sparse grids with control variates for PDEs with random diffusion coefficient Quasi-optimal and adaptive sparse grids with control variates for PDEs with random diffusion coefficient F. Nobile, L. Tamellini, R. Tempone, F. Tesei CSQI - MATHICSE, EPFL, Switzerland Dipartimento di

More information

Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials

Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials Paolo Manfredi, Igor S. Stievano, Flavio G. Canavero Department of Electronics and Telecommunications (DET) Politecnico

More information

Weighted Residual Methods

Weighted Residual Methods Weighted Residual Methods Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy of Sciences

More information

Sampling and low-rank tensor approximation of the response surface

Sampling and low-rank tensor approximation of the response surface Sampling and low-rank tensor approximation of the response surface tifica Alexander Litvinenko 1,2 (joint work with Hermann G. Matthies 3 ) 1 Group of Raul Tempone, SRI UQ, and 2 Group of David Keyes,

More information

Accepted Manuscript. SAMBA: Sparse approximation of moment-based arbitrary polynomial chaos. R. Ahlfeld, B. Belkouchi, F.

Accepted Manuscript. SAMBA: Sparse approximation of moment-based arbitrary polynomial chaos. R. Ahlfeld, B. Belkouchi, F. Accepted Manuscript SAMBA: Sparse approximation of moment-based arbitrary polynomial chaos R. Ahlfeld, B. Belkouchi, F. Montomoli PII: S0021-9991(16)30151-6 DOI: http://dx.doi.org/10.1016/j.jcp.2016.05.014

More information

Sparse Quadrature Algorithms for Bayesian Inverse Problems

Sparse Quadrature Algorithms for Bayesian Inverse Problems Sparse Quadrature Algorithms for Bayesian Inverse Problems Claudia Schillings, Christoph Schwab Pro*Doc Retreat Disentis 2013 Numerical Analysis and Scientific Computing Disentis - 15 August, 2013 research

More information

THE CHOICE OF AUXILIARY DENSITY FUNCTION IN STOCHASTIC COLLOCATION

THE CHOICE OF AUXILIARY DENSITY FUNCTION IN STOCHASTIC COLLOCATION IN STOCHASTIC COLLOCATION KELLIN RUMSEY & NEVIN MARTIN 12/06/2016 1 IN STOCHASTIC COLLOCATION 2 1. Introduction Stochastic collocation has been used in a wide range of application spaces as a way to efficiently

More information

Strain and stress computations in stochastic finite element. methods

Strain and stress computations in stochastic finite element. methods INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2007; 00:1 6 [Version: 2002/09/18 v2.02] Strain and stress computations in stochastic finite element methods Debraj

More information

Keywords: Sonic boom analysis, Atmospheric uncertainties, Uncertainty quantification, Monte Carlo method, Polynomial chaos method.

Keywords: Sonic boom analysis, Atmospheric uncertainties, Uncertainty quantification, Monte Carlo method, Polynomial chaos method. Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm SONIC BOOM ANALYSIS UNDER ATMOSPHERIC UNCERTAINTIES BY A NON-INTRUSIVE POLYNOMIAL CHAOS

More information

Hierarchical Parallel Solution of Stochastic Systems

Hierarchical Parallel Solution of Stochastic Systems Hierarchical Parallel Solution of Stochastic Systems Second M.I.T. Conference on Computational Fluid and Solid Mechanics Contents: Simple Model of Stochastic Flow Stochastic Galerkin Scheme Resulting Equations

More information

An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations

An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations Xiaoliang Wan and George Em Karniadakis Division of Applied Mathematics, Brown University, Providence,

More information

CAM Ph.D. Qualifying Exam in Numerical Analysis CONTENTS

CAM Ph.D. Qualifying Exam in Numerical Analysis CONTENTS CAM Ph.D. Qualifying Exam in Numerical Analysis CONTENTS Preliminaries Round-off errors and computer arithmetic, algorithms and convergence Solutions of Equations in One Variable Bisection method, fixed-point

More information

Sparse polynomial chaos expansions in engineering applications

Sparse polynomial chaos expansions in engineering applications DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Sparse polynomial chaos expansions in engineering applications B. Sudret G. Blatman (EDF R&D,

More information

An Efficient Spectral Method for Acoustic Scattering from Rough Surfaces

An Efficient Spectral Method for Acoustic Scattering from Rough Surfaces COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol. 2, No. 1, pp. 54-72 Commun. Comput. Phys. February 27 An Efficient Spectral Method for Acoustic Scattering from Rough Surfaces Dongbin Xiu and Jie Shen Department

More information

Projection Methods. Michal Kejak CERGE CERGE-EI ( ) 1 / 29

Projection Methods. Michal Kejak CERGE CERGE-EI ( ) 1 / 29 Projection Methods Michal Kejak CERGE CERGE-EI ( ) 1 / 29 Introduction numerical methods for dynamic economies nite-di erence methods initial value problems (Euler method) two-point boundary value problems

More information

Slow Growth for Gauss Legendre Sparse Grids

Slow Growth for Gauss Legendre Sparse Grids Slow Growth for Gauss Legendre Sparse Grids John Burkardt, Clayton Webster April 4, 2014 Abstract A sparse grid for multidimensional quadrature can be constructed from products of 1D rules. For multidimensional

More information

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems Efficient Solvers for Stochastic Finite Element Saddle Point Problems Catherine E. Powell c.powell@manchester.ac.uk School of Mathematics University of Manchester, UK Efficient Solvers for Stochastic Finite

More information

Special Functions of Mathematical Physics

Special Functions of Mathematical Physics Arnold F. Nikiforov Vasilii B. Uvarov Special Functions of Mathematical Physics A Unified Introduction with Applications Translated from the Russian by Ralph P. Boas 1988 Birkhäuser Basel Boston Table

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO. An Empirical Chaos Expansion Method for Uncertainty Quantification

UNIVERSITY OF CALIFORNIA, SAN DIEGO. An Empirical Chaos Expansion Method for Uncertainty Quantification UNIVERSITY OF CALIFORNIA, SAN DIEGO An Empirical Chaos Expansion Method for Uncertainty Quantification A Dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy

More information

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Roman Andreev ETH ZÜRICH / 29 JAN 29 TOC of the Talk Motivation & Set-Up Model Problem Stochastic Galerkin FEM Conclusions & Outlook Motivation

More information

Numerical Analysis for Statisticians

Numerical Analysis for Statisticians Kenneth Lange Numerical Analysis for Statisticians Springer Contents Preface v 1 Recurrence Relations 1 1.1 Introduction 1 1.2 Binomial CoefRcients 1 1.3 Number of Partitions of a Set 2 1.4 Horner's Method

More information

Poisson Equation in 2D

Poisson Equation in 2D A Parallel Strategy Department of Mathematics and Statistics McMaster University March 31, 2010 Outline Introduction 1 Introduction Motivation Discretization Iterative Methods 2 Additive Schwarz Method

More information

Collocation based high dimensional model representation for stochastic partial differential equations

Collocation based high dimensional model representation for stochastic partial differential equations Collocation based high dimensional model representation for stochastic partial differential equations S Adhikari 1 1 Swansea University, UK ECCM 2010: IV European Conference on Computational Mechanics,

More information

Instructions for Matlab Routines

Instructions for Matlab Routines Instructions for Matlab Routines August, 2011 2 A. Introduction This note is devoted to some instructions to the Matlab routines for the fundamental spectral algorithms presented in the book: Jie Shen,

More information

LEAST-SQUARES FINITE ELEMENT MODELS

LEAST-SQUARES FINITE ELEMENT MODELS LEAST-SQUARES FINITE ELEMENT MODELS General idea of the least-squares formulation applied to an abstract boundary-value problem Works of our group Application to Poisson s equation Application to flows

More information

Polynomial Chaos and Karhunen-Loeve Expansion

Polynomial Chaos and Karhunen-Loeve Expansion Polynomial Chaos and Karhunen-Loeve Expansion 1) Random Variables Consider a system that is modeled by R = M(x, t, X) where X is a random variable. We are interested in determining the probability of the

More information

Numerical Analysis Preliminary Exam 10.00am 1.00pm, January 19, 2018

Numerical Analysis Preliminary Exam 10.00am 1.00pm, January 19, 2018 Numerical Analysis Preliminary Exam 0.00am.00pm, January 9, 208 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

Outline. 1 Boundary Value Problems. 2 Numerical Methods for BVPs. Boundary Value Problems Numerical Methods for BVPs

Outline. 1 Boundary Value Problems. 2 Numerical Methods for BVPs. Boundary Value Problems Numerical Methods for BVPs Boundary Value Problems Numerical Methods for BVPs Outline Boundary Value Problems 2 Numerical Methods for BVPs Michael T. Heath Scientific Computing 2 / 45 Boundary Value Problems Numerical Methods for

More information