Spectral Representation of Random Processes

Size: px
Start display at page:

Download "Spectral Representation of Random Processes"

Transcription

1 Spectral Representation of Random Processes Example: Represent u(t,x,q) by! u K (t, x, Q) = u k (t, x) k(q) where k(q) are orthogonal polynomials. Single Random Variable:! Let k (Q) be orthogonal with respect to Q (q) with 0 (Q) =1. Then and! E[ 0 (Q)] = 1 E[ i (Q) j (Q)] = i(q) j (q) Q (q)dq = h i, j i Normalization factor:! = ij i i = E[ i (Q)] = h i, i i

2 Spectral Representation of Random Processes Random Process:! E u K (t, x, Q) " K # X = E u k (t, x) k (Q) = u 0 (t, x)e[ 0 (Q)] + = u 0 (t, x) u k (t, x)e[ k (Q)] k=1 h var[u K (t, x, Q)] = E = E 4 = E 4 u K (t, x, Q) E[u K (t, x, Q)] i! 3 u k (t, x) k (Q) u 0 (t, x) 5! 3 u k (t, x) k (Q) 5 k=1 = u k(t, x) k k=1

3 Spectral Representation of Random Processes Hermite Polynomials:! Q N(0, 1) H 0 (Q) =1, H 1 (Q) =Q, H (Q) =Q 1 H 3 (Q) =Q 3 3Q, H 4 (Q) =Q 4 6Q +3 with the weight! Q (q) = 1 p e q / Normalization factor:! i = R (q) Q (q)dq = i! Legendre Polynomials:!Q U( 1, 1) P 0 (Q) =1, P 1 (Q) =Q, P (Q) = 3 Q 1 P 3 (Q) = 5 Q 3 3 Q, P 4(Q) = 35 8 Q Q + 3 8, with the weight! Q (q) = 1

4 Spectral Representation of Random Processes Multiple Random Variables:! Definition: (p-dimensional Multi-Index): a p-tuple! k 0 =(k 1,,k p ) N p 0 of non-negative integers is termed a p-dimensional multi-index with magnitude k 0 = k 1 + k + + k p and satisfying the ordering j 0 apple k 0, j i apple k i for i =1,,p. Consider the p-variate basis functions! which satisfy! i 0(Q) = i 1 (Q 1 ),, ip (Q p ) E[ i 0(Q) j 0(Q)] = i 0(q) j 0(q) Q(q)dq = h i 0, j 0i = i 0 j 0 i 0

5 Spectral Representation of Random Processes Multi-Index Representation:! u K (t, x, Q) = u k 0(t, x) k 0(Q) k 0 =0 Single Index Representation:! u K (t, x, Q) = u k (t, x) k(q) k k 0 Multi-Index Polynomial 0 0 (0, 0, 0) 0 (Q 1 ) 0 (Q ) 0 (Q 3 ) 1 1 (1, 0, 0) 1 (Q 1 ) 0 (Q ) 0 (Q 3 ) (0, 1, 0) 0 (Q 1 ) 1 (Q ) 0 (Q 3 ) 3 (0, 0, 1) 0 (Q 1 ) 0 (Q ) 1 (Q 3 ) 4 (, 0, 0) (Q 1 ) 0 (Q ) 0 (Q 3 ) 5 (1, 1, 0) 1 (Q 1 ) 1 (Q ) 0 (Q 3 ) 6 (1, 0, 1) 1 (Q 1 ) 0 (Q ) 1 (Q 3 ) 7 (0,, 0) 0 (Q 1 ) (Q ) 0 (Q 3 ) 8 (0, 1, 1) 0 (Q 1 ) 1 (Q ) 1 (Q 3 ) 9 (0, 0, ) 0 (Q 1 ) 0 (Q ) (Q 3 )

6 Problem:! du dx = f(t, Q,u),t>0 u(0, Q) =u 0 Quantity of Interest:! y(t) = u(t, q) Q (q)dq Scalar Initial Value Problem Finite-Dimensional Representation:! u K (t, Q) = u k (t) k(q) where! u k (t) = 1 k u(t, q) k(q) Q (q)dq

7 Stochastic Galerkin Method Weak Stochastic Formulation: For i=0,, K! 0= = du K dt " X K f, i du k dt (t) k(q) f t, q,!# u k (t) k(q) i(q) Q (q)dq which is equivalent to! apple du K (t, Q) E dt Quadrature yields! RX r=1 i(q r ) Q (q r )w r " K X i(q) = E f t, Q,u K i(q) du k dt (t) k(q r ) f t, q r,!# u k (t) k(q r ) =0

8 Example: Consider! du dt = (!)u u(0,!) = Stochastic Galerkin Method where is fixed and N(, ) with > 0. Here NX = N = n n (Q), 0 =, 1 =, n =0,n>1 = N = Analytic solution:! n=0 NX n=0 u(t, Q) = e ( + Q)t n n (Q), 0 =, n =0,n>0

9 Approximate solution: Find! u K (t, Q) = u k (t) k (Q) subject to! Stochastic Galerkin Method du K 0= + N u K, i dt du k = R dt (t) k(q) i (q) Q (q)dq + N R which is equivalent to! du i NX dt = i n u k (t)e ink where! n=0 i = E[ i (Q)] = R i (q) Q (q)dq e ink = E[ i (q) n (q) k (q)] = R K X u k (t) k (q) i (q) Q (q)dq Initial Conditions:! since! u k (0) = k,,,k u K (0, Q) = i(q) n (q) k (q) Q (q)dq u k (0) k (Q) = = NX n=1 n n (q)

10 Stochastic Galerkin Method Note: To evaluate QoI, we observe that! E u K (t, Q) = u 0 (t) var[u K (t, Q)] = u k(t) k. k=1 Exact Mean and Variance:! ( + ū(t) = e q)t R = e t e t / 1 p e q / dq var[u] =E u (t) ū (t) = e t e t e t 10 8 True Approximate 10 8 True Approximate Displacement (m) 6 4 Displacement (m) Time (s) Time (s) K = 8! K = 16!

11 Properties:! Accuracy is optimal in L sense.! Disadvantages! Stochastic Galerkin Method Method is intrusive and hence difficult to implement with legacy codes or codes for which only executable is available.! Method requires densities with associated orthogonal polynomials. These can sometimes be constructed from empirical histograms.! Method requires mutually independent parameters.!

12 Stochastic Collocation Strategy: Using either deterministic or stochastic techniques, generate M samples from parameter space and enforce! Vandemonde System:! 6 4 u(t, q m )=u K (t, q m ) 0(q 1 ) K(q 1 ).. 0(q M ) K(q M ) u 0 (t). u K (t) = Issues: System typically ill-conditioned and dense! 6 4 u(t, q 1 ). u(t, q M ) Alternative Strategy: Employ Lagrange basis functions which yield identity and! u m (t) =u(t, q m ) for m =1, M Equivalent Formulation:!Employ i(q) =L k (q) and take q m = q r to get du m dt (t) =f(t, qm,u m ),m=1,,m 3 7 5

13 Properties:! Stochastic Collocation Whereas motivated in the context of a Galerkin method, collocation is based on interpolation theory.! Advantages! Method is nonintrusive in the sense that once M collocation points are specified, one solves M deterministic problems using existing software.! Method is applicable to general parameter distributions with correlated parameters.! Algorithms available in Sandia Dakota package.! Disadvantages! Evaluation of QoI typically requires sampling from joint distribution, which may not be available.!

14 Problem:! du dx = f(t, Q,u),t>0 u(0, Q) =u 0 Finite-Dimensional Representation:! u K (t, Q) = u k (t) k(q) Discrete Projection Method where! u k (t) = 1 k u(t, q) k(q) Q (q)dq Discrete Projection (Pseudo-spectral):! u k (t) = 1 k RX u(t, q r ) k(q r ) Q (q r )w r r=1

15 Example: We revisit the spring model! Discrete Projection Method m d z dt + cdz dt + kz = f 0 cos(! F t) z(0) = z 0, with the response! y(! F, Q) = where Q N( q, V ) dz dt (0) = z 1 1 p (k m! F ) +(c! F ) Parameters:! m = m 0(Q)+ m 1(Q) = m + m Q 1 c = c 0(Q)+ c (Q) = c + c Q k = k 0(Q)+ k 3(Q) = k + k Q 3 where k(q) = k1 (Q 1 ) k (Q ) k3 (Q 3 ) are tensored Hermite polynomials.

16 Discrete Projection Method Approximated Response:! y K (! F, Q) = y k (! F ) k(q) where! and! y k (! F )= 1 k 1 k R 3 y(! F,q) k(q) Q (q)dq X R`1 X R` X R`3 r 1 =1 r =1 r 3 =1 y(! F,q r ) k(q r ) Q (q r )w r` Q (q) = 1 p 3 e m / e c / e k / Note:! ȳ(! F )=y 0 (! F ) var y K (! F, Q) = y k (! F ) k k=1

17 Discrete Projection Method Results:! Response Mean Discrete Projection Monte Carlo Deterministic Solution Response Standard Deviation Discrete Projection Monte Carlo F

18 Properties:! Advantages! Discrete Projection Like collocation, the method is nonintrusive and hence can be employed with post-processing to existing codes. The method is often referred to as nonintrusive PCE.! Algorithms available in Sandia Dakota package.! Disadvantages! Requires the construction of the joint density which often relies on mutually independent parameters.!

19 Boundary Value Problems and Elliptic PDE Model:! N (u, Q) =F (Q) B(u, Q) =G(Q),x Quantity of Interest:! y(x) = u(x, q) Q (q)dq Deterministic Weak Formulation:! Find u V, which satisfies D N(u, Q)S(v)dx = D F (Q)vdx for all v V Stochastic Weak Formulation:!Find u V that satisfies N(u, q)s(v(x))z(q) Q (q)dxdq = F (q)v(x)z(q) Q (q)dxdq D for all test functions v V,z D

20 Boundary Value Problems and Elliptic PDE Approximated Solution:! u K (x, Q) = u k (x) k(q) = JX j=1 Galerkin Method:! RX i(q r ) Q (q r )w r r=1 Quantity of Interest:! = D RX r=1 u jk X K N j (x) k(q). JX j=1 u jk i(q r ) Q (q r )w r j (x) k(q r ),q r S( `(x))dx D F (q r ) `(x)dx y(x) = RX JX w r Q (q r ) u jk j (x) k(q r ) r=1 j=1

21 Boundary Value Problems and Elliptic PDE Collocation: Enforce! JX u(x, q m )=u K (x, q m )= j=1 u jm j (x) at M collocation points to yield M relations! 0 1 JX u jm j (x),q m A S( `(x))dx = D j=1 for ` =1,,J D F (q m ) `(x)dx Quantity of Interest:! RX JX y = w r Q (q r ) r=1 j=1 u jr RX = w r Q (q r )û r (x) r=1 j (x)

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

Steps in Uncertainty Quantification

Steps in Uncertainty Quantification Steps in Uncertainty Quantification Challenge: How do we do uncertainty quantification for computationally expensive models? Example: We have a computational budget of 5 model evaluations. Bayesian inference

More information

Parameter Selection Techniques and Surrogate Models

Parameter Selection Techniques and Surrogate Models Parameter Selection Techniques and Surrogate Models Model Reduction: Will discuss two forms Parameter space reduction Surrogate models to reduce model complexity Input Representation Local Sensitivity

More information

Polynomial chaos expansions for sensitivity analysis

Polynomial chaos expansions for sensitivity analysis c DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Polynomial chaos expansions for sensitivity analysis B. Sudret Chair of Risk, Safety & Uncertainty

More information

Introduction to Uncertainty Quantification in Computational Science Handout #3

Introduction to Uncertainty Quantification in Computational Science Handout #3 Introduction to Uncertainty Quantification in Computational Science Handout #3 Gianluca Iaccarino Department of Mechanical Engineering Stanford University June 29 - July 1, 2009 Scuola di Dottorato di

More information

Chaospy: A modular implementation of Polynomial Chaos expansions and Monte Carlo methods

Chaospy: A modular implementation of Polynomial Chaos expansions and Monte Carlo methods Chaospy: A modular implementation of Polynomial Chaos expansions and Monte Carlo methods Simen Tennøe Supervisors: Jonathan Feinberg Hans Petter Langtangen Gaute Einevoll Geir Halnes University of Oslo,

More information

Multilevel stochastic collocations with dimensionality reduction

Multilevel stochastic collocations with dimensionality reduction Multilevel stochastic collocations with dimensionality reduction Ionut Farcas TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017 Outline 1 Motivation 2 Theoretical background Uncertainty

More information

Uncertainty Propagation

Uncertainty Propagation Setting: Uncertainty Propagation We assume that we have determined distributions for parameters e.g., Bayesian inference, prior experiments, expert opinion Ṫ 1 = 1 - d 1 T 1 - (1 - ")k 1 VT 1 Ṫ 2 = 2 -

More information

arxiv: v1 [math.na] 3 Apr 2019

arxiv: v1 [math.na] 3 Apr 2019 arxiv:1904.02017v1 [math.na] 3 Apr 2019 Poly-Sinc Solution of Stochastic Elliptic Differential Equations Maha Youssef and Roland Pulch Institute of Mathematics and Computer Science, University of Greifswald,

More information

Solving the steady state diffusion equation with uncertainty Final Presentation

Solving the steady state diffusion equation with uncertainty Final Presentation Solving the steady state diffusion equation with uncertainty Final Presentation Virginia Forstall vhfors@gmail.com Advisor: Howard Elman elman@cs.umd.edu Department of Computer Science May 6, 2012 Problem

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

PROJECTION METHODS FOR DYNAMIC MODELS

PROJECTION METHODS FOR DYNAMIC MODELS PROJECTION METHODS FOR DYNAMIC MODELS Kenneth L. Judd Hoover Institution and NBER June 28, 2006 Functional Problems Many problems involve solving for some unknown function Dynamic programming Consumption

More information

STOCHASTIC SAMPLING METHODS

STOCHASTIC SAMPLING METHODS STOCHASTIC SAMPLING METHODS APPROXIMATING QUANTITIES OF INTEREST USING SAMPLING METHODS Recall that quantities of interest often require the evaluation of stochastic integrals of functions of the solutions

More information

SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS

SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS SPECTRAL METHODS: ORTHOGONAL POLYNOMIALS 31 October, 2007 1 INTRODUCTION 2 ORTHOGONAL POLYNOMIALS Properties of Orthogonal Polynomials 3 GAUSS INTEGRATION Gauss- Radau Integration Gauss -Lobatto Integration

More information

PART IV Spectral Methods

PART IV Spectral Methods PART IV Spectral Methods Additional References: R. Peyret, Spectral methods for incompressible viscous flow, Springer (2002), B. Mercier, An introduction to the numerical analysis of spectral methods,

More information

Uncertainty Quantification in Computational Science

Uncertainty Quantification in Computational Science DTU 2010 - Lecture I Uncertainty Quantification in Computational Science Jan S Hesthaven Brown University Jan.Hesthaven@Brown.edu Objective of lectures The main objective of these lectures are To offer

More information

The Spectral-Element Method: Introduction

The Spectral-Element Method: Introduction The Spectral-Element Method: Introduction Heiner Igel Department of Earth and Environmental Sciences Ludwig-Maximilians-University Munich Computational Seismology 1 / 59 Outline 1 Introduction 2 Lagrange

More information

Quadrature for Uncertainty Analysis Stochastic Collocation. What does quadrature have to do with uncertainty?

Quadrature for Uncertainty Analysis Stochastic Collocation. What does quadrature have to do with uncertainty? Quadrature for Uncertainty Analysis Stochastic Collocation What does quadrature have to do with uncertainty? Quadrature for Uncertainty Analysis Stochastic Collocation What does quadrature have to do with

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Lecture 9: Sensitivity Analysis ST 2018 Tobias Neckel Scientific Computing in Computer Science TUM Repetition of Previous Lecture Sparse grids in Uncertainty Quantification

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs

Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Journal of Scientific Computing, Vol. 27, Nos. 1 3, June 2006 ( 2005) DOI: 10.1007/s10915-005-9038-8 Beyond Wiener Askey Expansions: Handling Arbitrary PDFs Xiaoliang Wan 1 and George Em Karniadakis 1

More information

Hyperbolic Polynomial Chaos Expansion (HPCE) and its Application to Statistical Analysis of Nonlinear Circuits

Hyperbolic Polynomial Chaos Expansion (HPCE) and its Application to Statistical Analysis of Nonlinear Circuits Hyperbolic Polynomial Chaos Expansion HPCE and its Application to Statistical Analysis of Nonlinear Circuits Majid Ahadi, Aditi Krishna Prasad, Sourajeet Roy High Speed System Simulations Laboratory Department

More information

Weighted Residual Methods

Weighted Residual Methods Weighted Residual Methods Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy of Sciences

More information

Uncertainty Quantification in Computational Models

Uncertainty Quantification in Computational Models Uncertainty Quantification in Computational Models Habib N. Najm Sandia National Laboratories, Livermore, CA, USA Workshop on Understanding Climate Change from Data (UCC11) University of Minnesota, Minneapolis,

More information

Outline. 1 Boundary Value Problems. 2 Numerical Methods for BVPs. Boundary Value Problems Numerical Methods for BVPs

Outline. 1 Boundary Value Problems. 2 Numerical Methods for BVPs. Boundary Value Problems Numerical Methods for BVPs Boundary Value Problems Numerical Methods for BVPs Outline Boundary Value Problems 2 Numerical Methods for BVPs Michael T. Heath Scientific Computing 2 / 45 Boundary Value Problems Numerical Methods for

More information

Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials

Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials Paolo Manfredi, Igor S. Stievano, Flavio G. Canavero Department of Electronics and Telecommunications (DET) Politecnico

More information

Parametric Problems, Stochastics, and Identification

Parametric Problems, Stochastics, and Identification Parametric Problems, Stochastics, and Identification Hermann G. Matthies a B. Rosić ab, O. Pajonk ac, A. Litvinenko a a, b University of Kragujevac c SPT Group, Hamburg wire@tu-bs.de http://www.wire.tu-bs.de

More information

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals 1/31 Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals Dr. Abebe Geletu May, 2010 Technische Universität Ilmenau, Institut für Automatisierungs- und Systemtechnik Fachgebiet

More information

Dimension-adaptive sparse grid for industrial applications using Sobol variances

Dimension-adaptive sparse grid for industrial applications using Sobol variances Master of Science Thesis Dimension-adaptive sparse grid for industrial applications using Sobol variances Heavy gas flow over a barrier March 11, 2015 Ad Dimension-adaptive sparse grid for industrial

More information

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004 Department of Applied Mathematics and Theoretical Physics AMA 204 Numerical analysis Exam Winter 2004 The best six answers will be credited All questions carry equal marks Answer all parts of each question

More information

Method of Finite Elements I

Method of Finite Elements I Method of Finite Elements I PhD Candidate - Charilaos Mylonas HIL H33.1 and Boundary Conditions, 26 March, 2018 Institute of Structural Engineering Method of Finite Elements I 1 Outline 1 2 Penalty method

More information

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes).

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes). CE 025 - Lecture 6 LECTURE 6 GAUSS QUADRATURE In general for ewton-cotes (equispaced interpolation points/ data points/ integration points/ nodes). x E x S fx dx hw' o f o + w' f + + w' f + E 84 f 0 f

More information

An Introduction to Numerical Methods for Differential Equations. Janet Peterson

An Introduction to Numerical Methods for Differential Equations. Janet Peterson An Introduction to Numerical Methods for Differential Equations Janet Peterson Fall 2015 2 Chapter 1 Introduction Differential equations arise in many disciplines such as engineering, mathematics, sciences

More information

Mathematics 22: Lecture 19

Mathematics 22: Lecture 19 Mathematics 22: Lecture 19 Legendre s Equation Dan Sloughter Furman University February 5, 2008 Dan Sloughter (Furman University) Mathematics 22: Lecture 19 February 5, 2008 1 / 11 Example: Legendre s

More information

Ex. 1. Find the general solution for each of the following differential equations:

Ex. 1. Find the general solution for each of the following differential equations: MATH 261.007 Instr. K. Ciesielski Spring 2010 NAME (print): SAMPLE TEST # 2 Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.) Ex. 1.

More information

Linear Algebra Review (Course Notes for Math 308H - Spring 2016)

Linear Algebra Review (Course Notes for Math 308H - Spring 2016) Linear Algebra Review (Course Notes for Math 308H - Spring 2016) Dr. Michael S. Pilant February 12, 2016 1 Background: We begin with one of the most fundamental notions in R 2, distance. Letting (x 1,

More information

An Empirical Chaos Expansion Method for Uncertainty Quantification

An Empirical Chaos Expansion Method for Uncertainty Quantification An Empirical Chaos Expansion Method for Uncertainty Quantification Melvin Leok and Gautam Wilkins Abstract. Uncertainty quantification seeks to provide a quantitative means to understand complex systems

More information

Weighted Residual Methods

Weighted Residual Methods Weighted Residual Methods Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Table of Contents Problem definition. oundary-value Problem..................

More information

Lecture two. January 17, 2019

Lecture two. January 17, 2019 Lecture two January 17, 2019 We will learn how to solve rst-order linear equations in this lecture. Example 1. 1) Find all solutions satisfy the equation u x (x, y) = 0. 2) Find the solution if we know

More information

Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients

Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients Università degli Studi del Sannio Dipartimento e Facoltà di Ingegneria, Benevento, Italia Random fields

More information

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation Journal of Applied Mathematics & Bioinformatics, vol.1, no.2, 2011, 1-12 ISSN: 1792-6602 (print), 1792-6939 (online) International Scientific Press, 2011 An Efficient Numerical Method for Solving the Fractional

More information

Sec. 1.1: Basics of Vectors

Sec. 1.1: Basics of Vectors Sec. 1.1: Basics of Vectors Notation for Euclidean space R n : all points (x 1, x 2,..., x n ) in n-dimensional space. Examples: 1. R 1 : all points on the real number line. 2. R 2 : all points (x 1, x

More information

Fast Numerical Methods for Stochastic Computations: A Review

Fast Numerical Methods for Stochastic Computations: A Review COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol. 5, No. 2-4, pp. 242-272 Commun. Comput. Phys. February 2009 REVIEW ARTICLE Fast Numerical Methods for Stochastic Computations: A Review Dongbin Xiu Department

More information

NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE

NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE tifica NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE Alexander Litvinenko 1, Hermann G. Matthies 2, Elmar Zander 2 http://sri-uq.kaust.edu.sa/ 1 Extreme Computing Research Center, KAUST, 2 Institute of Scientific

More information

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH

SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN SALINE AQUIFERS USING THE PROBABILISTIC COLLOCATION APPROACH XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champaign June 17-22,2012 SENSITIVITY ANALYSIS IN NUMERICAL SIMULATION OF MULTIPHASE FLOW FOR CO 2 STORAGE IN

More information

D(u(x)) = p(x). a i ϕ i (2.1) i=1

D(u(x)) = p(x). a i ϕ i (2.1) i=1 Chapter 2 Method of Weighted Residuals Prior to development of the Finite Element Method, there existed an approximation technique for solving differential equations called the Method of Weighted Residuals

More information

Simultaneous Gaussian quadrature for Angelesco systems

Simultaneous Gaussian quadrature for Angelesco systems for Angelesco systems 1 KU Leuven, Belgium SANUM March 22, 2016 1 Joint work with Doron Lubinsky Introduced by C.F. Borges in 1994 Introduced by C.F. Borges in 1994 (goes back to Angelesco 1918). Introduced

More information

A Gauss Lobatto quadrature method for solving optimal control problems

A Gauss Lobatto quadrature method for solving optimal control problems ANZIAM J. 47 (EMAC2005) pp.c101 C115, 2006 C101 A Gauss Lobatto quadrature method for solving optimal control problems P. Williams (Received 29 August 2005; revised 13 July 2006) Abstract This paper proposes

More information

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim.

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim. 56 Summary High order FD Finite-order finite differences: Points per Wavelength: Number of passes: D n f(x j ) = f j+n f j n n x df xj = m α m dx n D n f j j n= α m n = ( ) n (m!) (m n)!(m + n)!. PPW =

More information

Fourth Order RK-Method

Fourth Order RK-Method Fourth Order RK-Method The most commonly used method is Runge-Kutta fourth order method. The fourth order RK-method is y i+1 = y i + 1 6 (k 1 + 2k 2 + 2k 3 + k 4 ), Ordinary Differential Equations (ODE)

More information

Hierarchical Parallel Solution of Stochastic Systems

Hierarchical Parallel Solution of Stochastic Systems Hierarchical Parallel Solution of Stochastic Systems Second M.I.T. Conference on Computational Fluid and Solid Mechanics Contents: Simple Model of Stochastic Flow Stochastic Galerkin Scheme Resulting Equations

More information

ON THE NUMERICAL SOLUTION FOR THE FRACTIONAL WAVE EQUATION USING LEGENDRE PSEUDOSPECTRAL METHOD

ON THE NUMERICAL SOLUTION FOR THE FRACTIONAL WAVE EQUATION USING LEGENDRE PSEUDOSPECTRAL METHOD International Journal of Pure and Applied Mathematics Volume 84 No. 4 2013, 307-319 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v84i4.1

More information

A Comparison between Solving Two Dimensional Integral Equations by the Traditional Collocation Method and Radial Basis Functions

A Comparison between Solving Two Dimensional Integral Equations by the Traditional Collocation Method and Radial Basis Functions Applied Mathematical Sciences, Vol. 5, 2011, no. 23, 1145-1152 A Comparison between Solving Two Dimensional Integral Equations by the Traditional Collocation Method and Radial Basis Functions Z. Avazzadeh

More information

TECHNISCHE UNIVERSITÄT MÜNCHEN. Uncertainty Quantification in Fluid Flows via Polynomial Chaos Methodologies

TECHNISCHE UNIVERSITÄT MÜNCHEN. Uncertainty Quantification in Fluid Flows via Polynomial Chaos Methodologies TECHNISCHE UNIVERSITÄT MÜNCHEN Bachelor s Thesis in Engineering Science Uncertainty Quantification in Fluid Flows via Polynomial Chaos Methodologies Jan Sültemeyer DEPARTMENT OF INFORMATICS MUNICH SCHOOL

More information

Math 241 Final Exam Spring 2013

Math 241 Final Exam Spring 2013 Name: Math 241 Final Exam Spring 213 1 Instructor (circle one): Epstein Hynd Wong Please turn off and put away all electronic devices. You may use both sides of a 3 5 card for handwritten notes while you

More information

A Posteriori Adaptive Low-Rank Approximation of Probabilistic Models

A Posteriori Adaptive Low-Rank Approximation of Probabilistic Models A Posteriori Adaptive Low-Rank Approximation of Probabilistic Models Rainer Niekamp and Martin Krosche. Institute for Scientific Computing TU Braunschweig ILAS: 22.08.2011 A Posteriori Adaptive Low-Rank

More information

Solving Integral Equations of the Second Kind by Using Wavelet Basis in the PG Method

Solving Integral Equations of the Second Kind by Using Wavelet Basis in the PG Method 5 1 July 24, Antalya, Turkey Dynamical Systems and Applications, Proceedings, pp. 515 52 Solving Integral Equations of the Second Kind by Using Wavelet Basis in the PG Method K. Maleknejad Department of

More information

LEAST SQUARES APPROXIMATION

LEAST SQUARES APPROXIMATION LEAST SQUARES APPROXIMATION One more approach to approximating a function f (x) on an interval a x b is to seek an approximation p(x) with a small average error over the interval of approximation. A convenient

More information

AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy

AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy Antony Jameson 1 1 Thomas V. Jones Professor of Engineering Department of Aeronautics and Astronautics Stanford University

More information

Solving Integral Equations by Petrov-Galerkin Method and Using Hermite-type 3 1 Elements

Solving Integral Equations by Petrov-Galerkin Method and Using Hermite-type 3 1 Elements 5 1 July 24, Antalya, Turkey Dynamical Systems and Applications, Proceedings, pp. 436 442 Solving Integral Equations by Petrov-Galerkin Method and Using Hermite-type 3 1 Elements M. Karami Department of

More information

Introduction to Differential Equations

Introduction to Differential Equations Chapter 1 Introduction to Differential Equations 1.1 Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

arxiv: v2 [math.na] 8 Sep 2017

arxiv: v2 [math.na] 8 Sep 2017 arxiv:1704.06339v [math.na] 8 Sep 017 A Monte Carlo approach to computing stiffness matrices arising in polynomial chaos approximations Juan Galvis O. Andrés Cuervo September 3, 018 Abstract We use a Monte

More information

Research Article A Pseudospectral Approach for Kirchhoff Plate Bending Problems with Uncertainties

Research Article A Pseudospectral Approach for Kirchhoff Plate Bending Problems with Uncertainties Mathematical Problems in Engineering Volume 22, Article ID 7565, 4 pages doi:.55/22/7565 Research Article A Pseudospectral Approach for Kirchhoff Plate Bending Problems with Uncertainties Ling Guo, 2 and

More information

12.0 Properties of orthogonal polynomials

12.0 Properties of orthogonal polynomials 12.0 Properties of orthogonal polynomials In this section we study orthogonal polynomials to use them for the construction of quadrature formulas investigate projections on polynomial spaces and their

More information

Before you begin read these instructions carefully.

Before you begin read these instructions carefully. MATHEMATICAL TRIPOS Part IA Friday, 1 June, 2018 1:30 pm to 4:30 pm PAPER 2 Before you begin read these instructions carefully. The examination paper is divided into two sections. Each question in Section

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 50 AA242B: MECHANICAL VIBRATIONS Undamped Vibrations of n-dof Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations:

More information

SPECTRAL METHODS ON ARBITRARY GRIDS. Mark H. Carpenter. Research Scientist. Aerodynamic and Acoustic Methods Branch. NASA Langley Research Center

SPECTRAL METHODS ON ARBITRARY GRIDS. Mark H. Carpenter. Research Scientist. Aerodynamic and Acoustic Methods Branch. NASA Langley Research Center SPECTRAL METHODS ON ARBITRARY GRIDS Mark H. Carpenter Research Scientist Aerodynamic and Acoustic Methods Branch NASA Langley Research Center Hampton, VA 368- David Gottlieb Division of Applied Mathematics

More information

JACOBI SPECTRAL GALERKIN METHODS FOR VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR KERNEL

JACOBI SPECTRAL GALERKIN METHODS FOR VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR KERNEL Bull. Korean Math. Soc. 53 (016), No. 1, pp. 47 6 http://dx.doi.org/10.4134/bkms.016.53.1.47 JACOBI SPECTRAL GALERKIN METHODS FOR VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR KERNEL Yin Yang Abstract.

More information

Utilizing Adjoint-Based Techniques to Improve the Accuracy and Reliability in Uncertainty Quantification

Utilizing Adjoint-Based Techniques to Improve the Accuracy and Reliability in Uncertainty Quantification Utilizing Adjoint-Based Techniques to Improve the Accuracy and Reliability in Uncertainty Quantification Tim Wildey Sandia National Laboratories Center for Computing Research (CCR) Collaborators: E. Cyr,

More information

Estimating functional uncertainty using polynomial chaos and adjoint equations

Estimating functional uncertainty using polynomial chaos and adjoint equations 0. Estimating functional uncertainty using polynomial chaos and adjoint equations February 24, 2011 1 Florida State University, Tallahassee, Florida, Usa 2 Moscow Institute of Physics and Technology, Moscow,

More information

K. BLACK To avoid these diculties, Boyd has proposed a method that proceeds by mapping a semi-innite interval to a nite interval [2]. The method is co

K. BLACK To avoid these diculties, Boyd has proposed a method that proceeds by mapping a semi-innite interval to a nite interval [2]. The method is co Journal of Mathematical Systems, Estimation, and Control Vol. 8, No. 2, 1998, pp. 1{2 c 1998 Birkhauser-Boston Spectral Element Approximations and Innite Domains Kelly Black Abstract A spectral-element

More information

Taylor expansions for the HJB equation associated with a bilinear control problem

Taylor expansions for the HJB equation associated with a bilinear control problem Taylor expansions for the HJB equation associated with a bilinear control problem Tobias Breiten, Karl Kunisch and Laurent Pfeiffer University of Graz, Austria Rome, June 217 Motivation dragged Brownian

More information

Sparse polynomial chaos expansions in engineering applications

Sparse polynomial chaos expansions in engineering applications DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Sparse polynomial chaos expansions in engineering applications B. Sudret G. Blatman (EDF R&D,

More information

INTRODUCTORY ECONOMETRICS

INTRODUCTORY ECONOMETRICS INTRODUCTORY ECONOMETRICS Lesson 2b Dr Javier Fernández etpfemaj@ehu.es Dpt. of Econometrics & Statistics UPV EHU c J Fernández (EA3-UPV/EHU), February 21, 2009 Introductory Econometrics - p. 1/192 GLRM:

More information

Math 255 Honors: Gram-Schmidt Orthogonalization on the Space of Polynomials

Math 255 Honors: Gram-Schmidt Orthogonalization on the Space of Polynomials Math 55 Honors: Gram-Schmidt Orthogonalization on the Space of Polynomials David Moore May, 03 Abstract Gram-Schmidt Orthogonalization is a process to construct orthogonal vectors from some basis for a

More information

Locally Linearized Euler Equations in Discontinuous Galerkin with Legendre Polynomials

Locally Linearized Euler Equations in Discontinuous Galerkin with Legendre Polynomials Locally Linearized Euler Equations in Discontinuous Galerkin with Legendre Polynomials Harald Klimach, Michael Gaida, Sabine Roller harald.klimach@uni-siegen.de 26th WSSP 2017 Motivation Fluid-Dynamic

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI http://afni.nimh.nih.gov/afni/ Next lecture, DTI For this lecture, think in terms of a single voxel We re still

More information

Finite-Elements Method 2

Finite-Elements Method 2 Finite-Elements Method 2 January 29, 2014 2 From Applied Numerical Analysis Gerald-Wheatley (2004), Chapter 9. Finite-Elements Method 3 Introduction Finite-element methods (FEM) are based on some mathematical

More information

CLASSROOM NOTES PART II: SPECIAL TOPICS. APM526, Spring 2018 Last update: Apr 11

CLASSROOM NOTES PART II: SPECIAL TOPICS. APM526, Spring 2018 Last update: Apr 11 CLASSROOM NOTES PART II: SPECIAL TOPICS APM526, Spring 2018 Last update: Apr 11 1 Function Space Methods General Setting: Projection into finite dimensional subspaces t u = F (u), u(t = 0) = u I, F : B

More information

NONLOCALITY AND STOCHASTICITY TWO EMERGENT DIRECTIONS FOR APPLIED MATHEMATICS. Max Gunzburger

NONLOCALITY AND STOCHASTICITY TWO EMERGENT DIRECTIONS FOR APPLIED MATHEMATICS. Max Gunzburger NONLOCALITY AND STOCHASTICITY TWO EMERGENT DIRECTIONS FOR APPLIED MATHEMATICS Max Gunzburger Department of Scientific Computing Florida State University North Carolina State University, March 10, 2011

More information

Schwarz Preconditioner for the Stochastic Finite Element Method

Schwarz Preconditioner for the Stochastic Finite Element Method Schwarz Preconditioner for the Stochastic Finite Element Method Waad Subber 1 and Sébastien Loisel 2 Preprint submitted to DD22 conference 1 Introduction The intrusive polynomial chaos approach for uncertainty

More information

Post-processing of solutions of incompressible Navier Stokes equations on rotating spheres

Post-processing of solutions of incompressible Navier Stokes equations on rotating spheres ANZIAM J. 50 (CTAC2008) pp.c90 C106, 2008 C90 Post-processing of solutions of incompressible Navier Stokes equations on rotating spheres M. Ganesh 1 Q. T. Le Gia 2 (Received 14 August 2008; revised 03

More information

Lesson 17: Vector AutoRegressive Models

Lesson 17: Vector AutoRegressive Models Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Vector AutoRegressive models The extension of ARMA models into a multivariate framework

More information

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Roman Andreev ETH ZÜRICH / 29 JAN 29 TOC of the Talk Motivation & Set-Up Model Problem Stochastic Galerkin FEM Conclusions & Outlook Motivation

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre s equation. When α Z +, the equation has polynomial

More information

Simulating with uncertainty : the rough surface scattering problem

Simulating with uncertainty : the rough surface scattering problem Simulating with uncertainty : the rough surface scattering problem Uday Khankhoje Assistant Professor, Electrical Engineering Indian Institute of Technology Madras Uday Khankhoje (EE, IITM) Simulating

More information

Advanced Dynamics. - Lecture 4 Lagrange Equations. Paolo Tiso Spring Semester 2017 ETH Zürich

Advanced Dynamics. - Lecture 4 Lagrange Equations. Paolo Tiso Spring Semester 2017 ETH Zürich Advanced Dynamics - Lecture 4 Lagrange Equations Paolo Tiso Spring Semester 2017 ETH Zürich LECTURE OBJECTIVES 1. Derive the Lagrange equations of a system of particles; 2. Show that the equation of motion

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA5 Numerical Methods Spring 5 Solutions to exercise set 9 Find approximate values of the following integrals using the adaptive

More information

Estimation of the quantile function using Bernstein-Durrmeyer polynomials

Estimation of the quantile function using Bernstein-Durrmeyer polynomials Estimation of the quantile function using Bernstein-Durrmeyer polynomials Andrey Pepelyshev Ansgar Steland Ewaryst Rafaj lowic The work is supported by the German Federal Ministry of the Environment, Nature

More information

Approximation theory

Approximation theory Approximation theory Xiaojing Ye, Math & Stat, Georgia State University Spring 2019 Numerical Analysis II Xiaojing Ye, Math & Stat, Georgia State University 1 1 1.3 6 8.8 2 3.5 7 10.1 Least 3squares 4.2

More information

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically Finite difference and finite element methods Lecture 1 Scope of the course Analysis and implementation of numerical methods for pricing options. Models: Black-Scholes, stochastic volatility, exponential

More information

Math 250B Final Exam Review Session Spring 2015 SOLUTIONS

Math 250B Final Exam Review Session Spring 2015 SOLUTIONS Math 5B Final Exam Review Session Spring 5 SOLUTIONS Problem Solve x x + y + 54te 3t and y x + 4y + 9e 3t λ SOLUTION: We have det(a λi) if and only if if and 4 λ only if λ 3λ This means that the eigenvalues

More information

Question 9: PDEs Given the function f(x, y), consider the problem: = f(x, y) 2 y2 for 0 < x < 1 and 0 < x < 1. x 2 u. u(x, 0) = u(x, 1) = 0 for 0 x 1

Question 9: PDEs Given the function f(x, y), consider the problem: = f(x, y) 2 y2 for 0 < x < 1 and 0 < x < 1. x 2 u. u(x, 0) = u(x, 1) = 0 for 0 x 1 Question 9: PDEs Given the function f(x, y), consider the problem: 2 u x 2 u = f(x, y) 2 y2 for 0 < x < 1 and 0 < x < 1 u(x, 0) = u(x, 1) = 0 for 0 x 1 u(0, y) = u(1, y) = 0 for 0 y 1. a. Discuss how you

More information

8 STOCHASTIC SIMULATION

8 STOCHASTIC SIMULATION 8 STOCHASTIC SIMULATIO 59 8 STOCHASTIC SIMULATIO Whereas in optimization we seek a set of parameters x to minimize a cost, or to maximize a reward function J( x), here we pose a related but different question.

More information

Uncertainty Propagation and Global Sensitivity Analysis in Hybrid Simulation using Polynomial Chaos Expansion

Uncertainty Propagation and Global Sensitivity Analysis in Hybrid Simulation using Polynomial Chaos Expansion Uncertainty Propagation and Global Sensitivity Analysis in Hybrid Simulation using Polynomial Chaos Expansion EU-US-Asia workshop on hybrid testing Ispra, 5-6 October 2015 G. Abbiati, S. Marelli, O.S.

More information

WRT in 2D: Poisson Example

WRT in 2D: Poisson Example WRT in 2D: Poisson Example Consider 2 u f on [, L x [, L y with u. WRT: For all v X N, find u X N a(v, u) such that v u dv v f dv. Follows from strong form plus integration by parts: ( ) 2 u v + 2 u dx

More information

Contents as of 12/8/2017. Preface. 1. Overview...1

Contents as of 12/8/2017. Preface. 1. Overview...1 Contents as of 12/8/2017 Preface 1. Overview...1 1.1 Introduction...1 1.2 Finite element data...1 1.3 Matrix notation...3 1.4 Matrix partitions...8 1.5 Special finite element matrix notations...9 1.6 Finite

More information

ORTHOGONAL POLYNOMIAL EXPANSIONS FOR SOLVING RANDOM EIGENVALUE PROBLEMS

ORTHOGONAL POLYNOMIAL EXPANSIONS FOR SOLVING RANDOM EIGENVALUE PROBLEMS International Journal for Uncertainty Quantification, 1 (2: 163 187 (2011 ORTHOGONAL POLYNOMIAL EXPANSIONS FOR SOLVING RANDOM EIGENVALUE PROBLEMS Sharif Rahman & Vaibhav Yadav College of Engineering and

More information