Sparse Grids. Léopold Cambier. February 17, ICME, Stanford University

Size: px
Start display at page:

Download "Sparse Grids. Léopold Cambier. February 17, ICME, Stanford University"

Transcription

1 Sparse Grids & "A Dynamically Adaptive Sparse Grid Method for Quasi-Optimal Interpolation of Multidimensional Analytic Functions" from MK Stoyanov, CG Webster Léopold Cambier ICME, Stanford University February 17, 2017

2 Curse of Dimensionality The Problem A Recurring Question How to interpolate where and d is "large" (> 1) f : X R d R d X = [ 1, 1] i=1 2

3 Curse of Dimensionality Naive Solution Simply use repeated one-dimensional rules We have a tensor of rules d Tn d f = In i i f i=1 = I 1 n 1 I 2 n 2 I d n d f In practice (T d n f )(x) = m(n 1) k 1=1 m(n d ) k d =1 f ( x 1,k1,..., x d,kd ) Tk 1 }{{} 1 (x 1 )... Tk d d (x d ) }{{} interpolation nodes Lagrange basis functions 3

4 Curse of Dimensionality The Issue? Curse of Dimensionality m nodes per dimension m d nodes total 4

5 Outline 1 Curse of Dimensionality 2 Sparse Grids 3 How to Choose Θ? Quasi-Optimal Polynomial Space Quasi-Optimal Interpolation Estimating the Parameters Optimal Sparse Grids Interpolant 4 Numerical Results 5 Conclusion

6 Sparse Grids 1 Curse of Dimensionality 2 Sparse Grids 3 How to Choose Θ? Quasi-Optimal Polynomial Space Quasi-Optimal Interpolation Estimating the Parameters Optimal Sparse Grids Interpolant 4 Numerical Results 5 Conclusion

7 Sparse Grids The Main Idea Consider the tensor rule T d n = d i=1 I i n i Define Rewrite T d n i j = I i j I i j 1 = α n d i=1 i α i 5

8 Sparse Grids Sparse Grids Sparse Grids Interpolator d Q d Θ = α Θ with Θ N d and where ideally Θ << n d i α i i=1 If Θ = {α N d : α n} Q d Θ = T d n 6

9 Sparse Grids Back to the Interpolation Formula We want an expression like (If )(x) = k T k (x)f (x k ) We have (if Θ is admissible 1 ) Q d Θ = α Θ = α Θ d i=1 i α i d c α Iα i i i=1 1 α Θ, {β : β α} Θ 7

10 Sparse Grids Back to the Interpolation Formula Since ( d ) Iα i i [f ](x) = i=1 We have m(α 1) k 1=1 = k m(α) m(α d ) k d =1 f ( x α1,k 1,..., x αd,k d )U α1,k 1 (x 1 )... U αd,k d (x d ) f ( x α,k )U α,k (x) Q d Θ = α Θ Q d Θ[f ](x) = α Θ c α c α d i=1 I i α i k m(α) f ( x α,k )U α,k (x) 8

11 Sparse Grids Back to the Interpolation Formula If nodes are nested factor f ( x α,k ) and find K(α) such that QΘ[f d ](x) = f (x k ) c α U α,k (x) k α Θ:k K(α) = k f (x k )U k (x) 9

12 Sparse Grids Univariates Rules It is preferable to have nested interpolation nodes Let m(l) be the number of nodes as a function of the order l Different rules are possible: Clenshaw-Curtis (m(l) = 2 l 1 + 1), R-Leja 2 (m(l) = 2l 1), etc. Clenshaw-Curtis R-Leja 2 10

13 Sparse Grids Example 1 With tensor method (ɛ = ). f (x, y) = x 6 + y 6 11

14 Sparse Grids Example 1 f (x, y) = x 6 + y 6 With sparse grid method (ɛ = ) using R-Leja 2 rule. 12

15 Sparse Grids Example 2 f (x, y) = 1 + x 2 + y 2 With sparse grid method (ɛ = 10 4 ) using R-Leja 2 rule. 13

16 Sparse Grids Example 2: Basis Functions Q d Θ[f ](x) = k f (x k )U k (x) U 2 (x) U 5 (x) 14

17 Sparse Grids Example 3: Sum of Tensor Rules f (x, y) = x 4 + x 2 y 2 + y 4 Q d Θ = α Θ d c α Iα i i i=1 15

18 Sparse Grids 16

19 Sparse Grids A Question Remains How to choose Θ? 17

20 How to Choose Θ? 1 Curse of Dimensionality 2 Sparse Grids 3 How to Choose Θ? Quasi-Optimal Polynomial Space Quasi-Optimal Interpolation Estimating the Parameters Optimal Sparse Grids Interpolant 4 Numerical Results 5 Conclusion

21 How to Choose Θ? How to Choose Θ M. Stoyanov, C. Webster, "A Dynamically Adaptive Sparse Grid Method for Quasi-Optimal Interpolation of Multidimensional Analytic Functions" 18

22 How to Choose Θ? Let s Take a Step Back There are actually 2 questions: How well can we expand a function f in terms of mixed-order polynomials. This is projection How good/bad is the interpolation versus projection. 19

23 How to Choose Θ? Quasi-Optimal Polynomial Space Projection Working on Γ = [ 1, 1] d Λ N d is the degrees space Project in P Λ = span {x x ν : ν Λ} Legendre polynomials is a good basis Project as f f Λ = c ν L ν ν Λ where L ν are Legendre polynomials of degree at most x ν and c ν = f (x)l ν (x)dx. Γ 20

24 How to Choose Θ? Quasi-Optimal Polynomial Space Projection Projection is f f Λ = ν Λ c ν L ν L 2 error is f f Λ 2 L 2 = c ν 2 ν Λ Question How fast does c ν decrease? 21

25 y How to Choose Θ? Quasi-Optimal Polynomial Space Example f (x, y) = 1 (x 2)2 + (y 2) 2 = ν c ν L ν (x, y) 14 Contourf of coefficients x 22

26 How to Choose Θ? Quasi-Optimal Polynomial Space Quasi-Optimal Projection Space Assumption 1 f is holomorphic a in a poly-ellipse E ρ = d θ [0,2π] i=1 {z k C : R(z k ) ρ k + ρ 1 k 2 cos θ, I(z k ) ρ k ρ 1 k 2 a Differentiable in the neighborhood of every point infinitively differentiable } sin θ Result 1 Under this assumption, d c v C exp( α ν) 2νk + 1 with α = log(ρ) i=1 Proof : Taylor Integral Theorem and Formula 23

27 How to Choose Θ? Quasi-Optimal Polynomial Space Quasi-Optimal Projection Space The optimal projection space of level p is then defined as { } Λ α (p) = ν : α ν 1 d log(ν i + 0.5) p 2 i=1 24

28 How to Choose Θ? Quasi-Optimal Interpolation Interpolation Interpolation Projection It depends on the set of nodes Can be arbitrarily bad even for "nice" function (Runge Phenomenon) Quantified by the Lebesgue constant 25

29 How to Choose Θ? Quasi-Optimal Interpolation Lebesgue Constant I is the interpolation operator, I : {f bounded} P Λ p is the projection of f on P Λ Then, f If (1 + C Λ ) f p With I = C Λ = sup g Ig g and g bounded. 26

30 How to Choose Θ? Quasi-Optimal Interpolation Lebesgue Constant Assumption 2 For Λ ν = {α : α ν} (tensor), d C Λν C γ (ν k + 1) γ k i=1 i.e., polynomial growth. True for Chebyshev-like polynomial interpolation False for equispaced interpolation. 27

31 How to Choose Θ? Quasi-Optimal Interpolation Lebesgue Constant for Sparse Grids Lebesgue Constant If then λ l = I i l C γ (l + 1) γ Q d Θ C d γ Θ γ+1 Usually not sharp Polynomial 28

32 How to Choose Θ? Quasi-Optimal Interpolation Lebesgue Constant for Clenshaw-Curtis Roots of Chebyshev Polynomials ( ) πk x k = cos n k = 0,..., n where One can show m(l) = 2 l λ l log(m(l)) l 29

33 How to Choose Θ? Quasi-Optimal Interpolation Lebesgue Constant for Other Rules R-Leja 2 with and m(l) = 2l 1 λ l m(l) l Selecting the nodes by minimizing I l m(l) = l + 1, λ l 4 l

34 How to Choose Θ? Quasi-Optimal Interpolation Quasi-Optimal Interpolation Combine both results to get level sets like d d C ν C exp( α ν) 2νk + 1 C exp( α ν) (ν k + 1) γ k +0.5 i=1 i=1 Optimal Interpolation Space of level L Λ α,β (L) = {ν : α ν + β log(ν + 1) L} for unknown α (projection error) and β (interpolation error). 31

35 How to Choose Θ? Estimating the Parameters Estimating α and β We do not know α and β We can estimate them from the interpolant f Λ 1 Get c ν f (x) f Λ (x) = c νl ν(x) 2 Assume 3 Solve min α,β ν Λ c ν exp( α ν)(ν + 1) β (C + α ν + β log(ν + 1) + log c ν ) 2 ν Λ 32

36 How to Choose Θ? Optimal Sparse Grids Interpolant Let s Summarize Sparse Grids QΘ d = d i α i = α Θ i=1 α Θ d c α Iα d i i=1 with Θ the order (level) space and Il i a sequence of 1-d rules of order l with m(l) nodes and polynomial Lebesgue constant λ l. Optimal level-p interpolant has a degree space as Λ(p) = {ν : α ν + β log(ν + 1) p} where α and β can be approximated based on a current interpolant Minimal Polynomial Interpolant For given p, the smallest Θ that covers Λ(p) (unique) is optimal. 33

37 How to Choose Θ? Optimal Sparse Grids Interpolant Algorithm Given univariate rules, Select initial Λ 0 and Θ 0 optimal Repeat for n = 0, 1,... Compute f Λ n = Q d Θ nf Compute c ν Estimate α and β Update Λ n+1 and Θ n+1 34

38 Numerical Results 1 Curse of Dimensionality 2 Sparse Grids 3 How to Choose Θ? Quasi-Optimal Polynomial Space Quasi-Optimal Interpolation Estimating the Parameters Optimal Sparse Grids Interpolant 4 Numerical Results 5 Conclusion

39 Numerical Results Estimating Lebesgue s Constant 3 l + 1 and 4 l (l + 1) and 2 π log(2l + 1) 35

40 Numerical Results Experiment 1 : Parametrized Elliptic PDE Solve in x D Evaluate for y Γ R 7 x (a(x, y) x u(x, y)) = b(x) Goal : interpolate f f (y) = u(x, y) L2 36

41 Numerical Results Experiment 1 : Parametrized Elliptic PDE Clenshaw-Curtis R-Leja 37

42 Numerical Results Experiment 1 : Parametrized Elliptic PDE 38

43 Numerical Results Experiment 2 : Steady-State Burger s Equation Solve in x D R 2 x (a(y) x u(x, y)) + (v(y) x u(x, y))u(x, y) = 0 Evaluate for y [ 1, 1] 3 f (y) = D u(x, y)dx Goal : interpolate f 39

44 Numerical Results Experiment 2 : Steady-State Burger s Equation Clenshaw-Curtis R-Leja 40

45 Conclusion Conclusion Adaptive sparse grids algorithm Source of error : projection (α - "best M terms") and (β - Lebesgue s constant) Coefficients can be estimated from previous interpolator Several new univariate rules based on minimization of Lebesgue s constant 41

46 Conclusion References All results are from [1]. [2, 3, 4] are interesting references. Stoyanov, Miroslav K., and Clayton G. Webster. "A dynamically adaptive sparse grid method for quasi-optimal interpolation of multidimensional analytic functions." arxiv preprint arxiv: (2015). Kaarnioja, Vesa. "Smolyak quadrature." (2013). Beck, Joakim, et al. "Convergence of quasi-optimal stochastic Galerkin methods for a class of PDEs with random coefficients." Computers & Mathematics with Applications 67.4 (2014): Nobile, Fabio, Lorenzo Tamellini, and Raúl Tempone. "Convergence of quasi-optimal sparse grid approximation of Hilbert-valued functions: application to random elliptic PDEs." Mathicse report 12 (2014). 42

47 1 Curse of Dimensionality 2 Sparse Grids 3 How to Choose Θ? Quasi-Optimal Polynomial Space Quasi-Optimal Interpolation Estimating the Parameters Optimal Sparse Grids Interpolant 4 Numerical Results 5 Conclusion

Comparison of Clenshaw-Curtis and Leja quasi-optimal sparse grids for the approximation of random PDEs

Comparison of Clenshaw-Curtis and Leja quasi-optimal sparse grids for the approximation of random PDEs MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics MATHICSE Technical Report Nr. 41.2014 September 2014 Comparison of Clenshaw-Curtis

More information

Sparse Quadrature Algorithms for Bayesian Inverse Problems

Sparse Quadrature Algorithms for Bayesian Inverse Problems Sparse Quadrature Algorithms for Bayesian Inverse Problems Claudia Schillings, Christoph Schwab Pro*Doc Retreat Disentis 2013 Numerical Analysis and Scientific Computing Disentis - 15 August, 2013 research

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

Quasi-optimal and adaptive sparse grids with control variates for PDEs with random diffusion coefficient

Quasi-optimal and adaptive sparse grids with control variates for PDEs with random diffusion coefficient Quasi-optimal and adaptive sparse grids with control variates for PDEs with random diffusion coefficient F. Nobile, L. Tamellini, R. Tempone, F. Tesei CSQI - MATHICSE, EPFL, Switzerland Dipartimento di

More information

Giovanni Migliorati. MATHICSE-CSQI, École Polytechnique Fédérale de Lausanne

Giovanni Migliorati. MATHICSE-CSQI, École Polytechnique Fédérale de Lausanne Analysis of the stability and accuracy of multivariate polynomial approximation by discrete least squares with evaluations in random or low-discrepancy point sets Giovanni Migliorati MATHICSE-CSQI, École

More information

STOCHASTIC SAMPLING METHODS

STOCHASTIC SAMPLING METHODS STOCHASTIC SAMPLING METHODS APPROXIMATING QUANTITIES OF INTEREST USING SAMPLING METHODS Recall that quantities of interest often require the evaluation of stochastic integrals of functions of the solutions

More information

arxiv: v2 [math.na] 21 Jul 2016

arxiv: v2 [math.na] 21 Jul 2016 Multi-Index Stochastic Collocation for random PDEs Abdul-Lateef Haji-Ali a,, Fabio Nobile b, Lorenzo Tamellini b,c, Raúl Tempone a a CEMSE, King Abdullah University of Science and Technology, Thuwal 23955-6900,

More information

Collocation methods for uncertainty quantification in PDE models with random data

Collocation methods for uncertainty quantification in PDE models with random data Collocation methods for uncertainty quantification in PDE models with random data Fabio Nobile CSQI-MATHICSE, EPFL, Switzerland Acknowlegments: L. Tamellini, G. Migliorati (EPFL), R. Tempone, (KAUST),

More information

Introduction to Uncertainty Quantification in Computational Science Handout #3

Introduction to Uncertainty Quantification in Computational Science Handout #3 Introduction to Uncertainty Quantification in Computational Science Handout #3 Gianluca Iaccarino Department of Mechanical Engineering Stanford University June 29 - July 1, 2009 Scuola di Dottorato di

More information

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes).

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes). CE 025 - Lecture 6 LECTURE 6 GAUSS QUADRATURE In general for ewton-cotes (equispaced interpolation points/ data points/ integration points/ nodes). x E x S fx dx hw' o f o + w' f + + w' f + E 84 f 0 f

More information

Stochastic methods for solving partial differential equations in high dimension

Stochastic methods for solving partial differential equations in high dimension Stochastic methods for solving partial differential equations in high dimension Marie Billaud-Friess Joint work with : A. Macherey, A. Nouy & C. Prieur marie.billaud-friess@ec-nantes.fr Centrale Nantes,

More information

Research Article A Pseudospectral Approach for Kirchhoff Plate Bending Problems with Uncertainties

Research Article A Pseudospectral Approach for Kirchhoff Plate Bending Problems with Uncertainties Mathematical Problems in Engineering Volume 22, Article ID 7565, 4 pages doi:.55/22/7565 Research Article A Pseudospectral Approach for Kirchhoff Plate Bending Problems with Uncertainties Ling Guo, 2 and

More information

Projection Methods. (Lectures on Solution Methods for Economists IV) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 March 7, 2018

Projection Methods. (Lectures on Solution Methods for Economists IV) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 March 7, 2018 Projection Methods (Lectures on Solution Methods for Economists IV) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 March 7, 2018 1 University of Pennsylvania 2 Boston College Introduction Remember that

More information

Slow Exponential Growth for Clenshaw Curtis Sparse Grids jburkardt/presentations/... slow growth paper.

Slow Exponential Growth for Clenshaw Curtis Sparse Grids   jburkardt/presentations/... slow growth paper. Slow Exponential Growth for Clenshaw Curtis Sparse Grids http://people.sc.fsu.edu/ jburkardt/presentations/...... slow growth paper.pdf John Burkardt, Clayton Webster April 30, 2014 Abstract A widely used

More information

Slow Growth for Sparse Grids

Slow Growth for Sparse Grids Slow Growth for Sparse Grids John Burkardt, Clayton Webster, Guannan Zhang... http://people.sc.fsu.edu/ jburkardt/presentations/... slow growth 2014 savannah.pdf... SIAM UQ Conference 31 March - 03 April

More information

Optimal polynomial approximation of PDEs with stochastic coefficients by Galerkin and collocation methods

Optimal polynomial approximation of PDEs with stochastic coefficients by Galerkin and collocation methods Optimal polynomial approximation of PDEs with stochastic coefficients by Galerkin and collocation methods Fabio Nobile MOX, Department of Mathematics, Politecnico di Milano Seminaire du Laboratoire Jacques-Louis

More information

Accuracy, Precision and Efficiency in Sparse Grids

Accuracy, Precision and Efficiency in Sparse Grids John, Information Technology Department, Virginia Tech.... http://people.sc.fsu.edu/ jburkardt/presentations/ sandia 2009.pdf... Computer Science Research Institute, Sandia National Laboratory, 23 July

More information

STRONGLY NESTED 1D INTERPOLATORY QUADRATURE AND EXTENSION TO ND VIA SMOLYAK METHOD

STRONGLY NESTED 1D INTERPOLATORY QUADRATURE AND EXTENSION TO ND VIA SMOLYAK METHOD 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK STRONGLY NESTED 1D INTERPOLATORY QUADRATURE AND

More information

Multi-Element Probabilistic Collocation Method in High Dimensions

Multi-Element Probabilistic Collocation Method in High Dimensions Multi-Element Probabilistic Collocation Method in High Dimensions Jasmine Foo and George Em Karniadakis Division of Applied Mathematics, Brown University, Providence, RI 02912 USA Abstract We combine multi-element

More information

Efficient Methods for Multidimensional Global Polynomial Approximation with Applications to Random PDEs

Efficient Methods for Multidimensional Global Polynomial Approximation with Applications to Random PDEs University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2017 Efficient Methods for Multidimensional Global Polynomial Approximation with

More information

Interpolation via weighted l 1 -minimization

Interpolation via weighted l 1 -minimization Interpolation via weighted l 1 -minimization Holger Rauhut RWTH Aachen University Lehrstuhl C für Mathematik (Analysis) Matheon Workshop Compressive Sensing and Its Applications TU Berlin, December 11,

More information

arxiv: v2 [math.na] 6 Aug 2018

arxiv: v2 [math.na] 6 Aug 2018 Bayesian model calibration with interpolating polynomials based on adaptively weighted Leja nodes L.M.M. van den Bos,2, B. Sanderse, W.A.A.M. Bierbooms 2, and G.J.W. van Bussel 2 arxiv:82.235v2 [math.na]

More information

Slow Growth for Gauss Legendre Sparse Grids

Slow Growth for Gauss Legendre Sparse Grids Slow Growth for Gauss Legendre Sparse Grids John Burkardt, Clayton Webster April 4, 2014 Abstract A sparse grid for multidimensional quadrature can be constructed from products of 1D rules. For multidimensional

More information

arxiv: v1 [math.na] 14 Dec 2018

arxiv: v1 [math.na] 14 Dec 2018 A MIXED l 1 REGULARIZATION APPROACH FOR SPARSE SIMULTANEOUS APPROXIMATION OF PARAMETERIZED PDES NICK DEXTER, HOANG TRAN, AND CLAYTON WEBSTER arxiv:1812.06174v1 [math.na] 14 Dec 2018 Abstract. We present

More information

Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic PDEs with lognormal inputs

Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic PDEs with lognormal inputs Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic PDEs with lognormal inputs Dinh Dũng Information Technology Institute, Vietnam National University

More information

A MULTILEVEL STOCHASTIC COLLOCATION METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUT DATA

A MULTILEVEL STOCHASTIC COLLOCATION METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUT DATA A MULTILEVEL STOCHASTIC COLLOCATION METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUT DATA A. L. TECKENTRUP, P. JANTSCH, C. G. WEBSTER, AND M. GUNZBURGER Abstract. Stochastic collocation methods

More information

Chebfun and equispaced data

Chebfun and equispaced data Chebfun and equispaced data Georges Klein University of Oxford SIAM Annual Meeting, San Diego, July 12, 2013 Outline 1 1D Interpolation, Chebfun and equispaced data 2 3 (joint work with R. Platte) G. Klein

More information

Stochastic Regularity of a Quadratic Observable of High Frequency Waves

Stochastic Regularity of a Quadratic Observable of High Frequency Waves Research in the Mathematical Sciences manuscript No. (will be inserted by the editor) Stochastic Regularity of a Quadratic Observable of High Frequency Waves G. Malenová M. Motamed O. Runborg Received:

More information

Analysis and Computation of Hyperbolic PDEs with Random Data

Analysis and Computation of Hyperbolic PDEs with Random Data Analysis and Computation of Hyperbolic PDEs with Random Data Mohammad Motamed 1, Fabio Nobile 2,3 and Raúl Tempone 1 1 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia 2 EPFL Lausanne,

More information

On the Stability of Polynomial Interpolation Using Hierarchical Sampling

On the Stability of Polynomial Interpolation Using Hierarchical Sampling On the Stability of Polynomial Interpolation Using Hierarchical Sampling Albert Cohen, Abdellah Chkifa To cite this version: Albert Cohen, Abdellah Chkifa. On the Stability of Polynomial Interpolation

More information

MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics

MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics MATHICSE Technical Report Nr. 23.2012 July 2012 NEW 10.2013 Stochastic optimal

More information

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim.

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim. 56 Summary High order FD Finite-order finite differences: Points per Wavelength: Number of passes: D n f(x j ) = f j+n f j n n x df xj = m α m dx n D n f j j n= α m n = ( ) n (m!) (m n)!(m + n)!. PPW =

More information

TENSOR APPROXIMATION TOOLS FREE OF THE CURSE OF DIMENSIONALITY

TENSOR APPROXIMATION TOOLS FREE OF THE CURSE OF DIMENSIONALITY TENSOR APPROXIMATION TOOLS FREE OF THE CURSE OF DIMENSIONALITY Eugene Tyrtyshnikov Institute of Numerical Mathematics Russian Academy of Sciences (joint work with Ivan Oseledets) WHAT ARE TENSORS? Tensors

More information

A sparse grid stochastic collocation method for elliptic partial differential equations with random input data

A sparse grid stochastic collocation method for elliptic partial differential equations with random input data A sparse grid stochastic collocation method for elliptic partial differential equations with random input data F. Nobile R. Tempone C. G. Webster June 22, 2006 Abstract This work proposes and analyzes

More information

Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients

Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients Università degli Studi del Sannio Dipartimento e Facoltà di Ingegneria, Benevento, Italia Random fields

More information

Pascal s Triangle on a Budget. Accuracy, Precision and Efficiency in Sparse Grids

Pascal s Triangle on a Budget. Accuracy, Precision and Efficiency in Sparse Grids Covering : Accuracy, Precision and Efficiency in Sparse Grids https://people.sc.fsu.edu/ jburkardt/presentations/auburn 2009.pdf... John Interdisciplinary Center for Applied Mathematics & Information Technology

More information

Fast Sparse Spectral Methods for Higher Dimensional PDEs

Fast Sparse Spectral Methods for Higher Dimensional PDEs Fast Sparse Spectral Methods for Higher Dimensional PDEs Jie Shen Purdue University Collaborators: Li-Lian Wang, Haijun Yu and Alexander Alekseenko Research supported by AFOSR and NSF ICERM workshop, June

More information

Differentiation and Integration

Differentiation and Integration Differentiation and Integration (Lectures on Numerical Analysis for Economists II) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 12, 2018 1 University of Pennsylvania 2 Boston College Motivation

More information

Perturbation and Projection Methods for Solving DSGE Models

Perturbation and Projection Methods for Solving DSGE Models Perturbation and Projection Methods for Solving DSGE Models Lawrence J. Christiano Discussion of projections taken from Christiano Fisher, Algorithms for Solving Dynamic Models with Occasionally Binding

More information

A sparse grid stochastic collocation method for partial differential equations with random input data

A sparse grid stochastic collocation method for partial differential equations with random input data A sparse grid stochastic collocation method for partial differential equations with random input data F. Nobile R. Tempone C. G. Webster May 24, 2007 Abstract This work proposes and analyzes a Smolyak-type

More information

arxiv: v1 [cs.na] 17 Apr 2018

arxiv: v1 [cs.na] 17 Apr 2018 NUMERICAL INTEGRATION IN MULTIPLE DIMENSIONS WITH DESIGNED QUADRATURE VAHID KESHAVARZZADEH, ROBERT M. KIRBY,, AND AKIL NARAYAN, arxiv:184.651v1 [cs.na] 17 Apr 218 Abstract. We present a systematic computational

More information

arxiv: v1 [math.na] 3 Apr 2019

arxiv: v1 [math.na] 3 Apr 2019 arxiv:1904.02017v1 [math.na] 3 Apr 2019 Poly-Sinc Solution of Stochastic Elliptic Differential Equations Maha Youssef and Roland Pulch Institute of Mathematics and Computer Science, University of Greifswald,

More information

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere Michael Levy University of Colorado at Boulder Department of Applied Mathematics August 10, 2007 Outline 1 Background

More information

Quadrature for Uncertainty Analysis Stochastic Collocation. What does quadrature have to do with uncertainty?

Quadrature for Uncertainty Analysis Stochastic Collocation. What does quadrature have to do with uncertainty? Quadrature for Uncertainty Analysis Stochastic Collocation What does quadrature have to do with uncertainty? Quadrature for Uncertainty Analysis Stochastic Collocation What does quadrature have to do with

More information

Matrix assembly by low rank tensor approximation

Matrix assembly by low rank tensor approximation Matrix assembly by low rank tensor approximation Felix Scholz 13.02.2017 References Angelos Mantzaflaris, Bert Juettler, Boris Khoromskij, and Ulrich Langer. Matrix generation in isogeometric analysis

More information

Elastic Fields of Dislocations in Anisotropic Media

Elastic Fields of Dislocations in Anisotropic Media Elastic Fields of Dislocations in Anisotropic Media a talk given at the group meeting Jie Yin, David M. Barnett and Wei Cai November 13, 2008 1 Why I want to give this talk Show interesting features on

More information

One dimension and tensor products. 2.1 Legendre and Jacobi polynomials

One dimension and tensor products. 2.1 Legendre and Jacobi polynomials Part I, Chapter 2 One dimension and tensor products This chapter presents important examples of finite elements, first in one space dimension, then in multiple space dimensions using tensor product techniques.

More information

J. Beck 1, F. Nobile 2, L. Tamellini 2 and R. Tempone 1

J. Beck 1, F. Nobile 2, L. Tamellini 2 and R. Tempone 1 ESAIM: PROCEEDINGS, October 2011, Vol. 33, p. 10-21 C. Dobrzynski, T. Colin & R. Abgrall, Editors IMPLEMENTATION OF OPTIMAL GALERKIN AND COLLOCATION APPROXIMATIONS OF PDES WITH RANDOM COEFFICIENTS, J.

More information

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically Finite difference and finite element methods Lecture 1 Scope of the course Analysis and implementation of numerical methods for pricing options. Models: Black-Scholes, stochastic volatility, exponential

More information

Interpolation via weighted l 1 -minimization

Interpolation via weighted l 1 -minimization Interpolation via weighted l 1 -minimization Holger Rauhut RWTH Aachen University Lehrstuhl C für Mathematik (Analysis) Mathematical Analysis and Applications Workshop in honor of Rupert Lasser Helmholtz

More information

Multilevel accelerated quadrature for elliptic PDEs with random diffusion. Helmut Harbrecht Mathematisches Institut Universität Basel Switzerland

Multilevel accelerated quadrature for elliptic PDEs with random diffusion. Helmut Harbrecht Mathematisches Institut Universität Basel Switzerland Multilevel accelerated quadrature for elliptic PDEs with random diffusion Mathematisches Institut Universität Basel Switzerland Overview Computation of the Karhunen-Loéve expansion Elliptic PDE with uniformly

More information

Multidimensional interpolation. 1 An abstract description of interpolation in one dimension

Multidimensional interpolation. 1 An abstract description of interpolation in one dimension Paul Klein Department of Economics University of Western Ontario FINNISH DOCTORAL PROGRAM IN ECONOMICS Topics in Contemporary Macroeconomics August 2008 Multidimensional interpolation 1 An abstract description

More information

ASSESSMENT OF COLLOCATION AND GALERKIN APPROACHES TO LINEAR DIFFUSION EQUATIONS WITH RANDOM DATA

ASSESSMENT OF COLLOCATION AND GALERKIN APPROACHES TO LINEAR DIFFUSION EQUATIONS WITH RANDOM DATA International Journal for Uncertainty Quantification, 11):19 33, 2011 ASSESSMENT OF COLLOCATION AND GALERKIN APPROACHES TO LINEAR DIFFUSION EQUATIONS WITH RANDOM DATA Howard C. Elman, 1, Christopher W.

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

Adaptive Collocation with Kernel Density Estimation

Adaptive Collocation with Kernel Density Estimation Examples of with Kernel Density Estimation Howard C. Elman Department of Computer Science University of Maryland at College Park Christopher W. Miller Applied Mathematics and Scientific Computing Program

More information

Simulating with uncertainty : the rough surface scattering problem

Simulating with uncertainty : the rough surface scattering problem Simulating with uncertainty : the rough surface scattering problem Uday Khankhoje Assistant Professor, Electrical Engineering Indian Institute of Technology Madras Uday Khankhoje (EE, IITM) Simulating

More information

Polynomial approximation of PDEs with stochastic coefficients

Polynomial approximation of PDEs with stochastic coefficients POLITECNICO DI MILANO Ph.D. School in Mathematical Models and Methods in Engineering XXIV ciclo Polynomial approximation of PDEs with stochastic coefficients Presented to Dipartimento di Matematica F.

More information

MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics

MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics MATHICSE Technical Report Nr. 46.2012 November 2012 A quasi-optimal sparse grids

More information

Downloaded 06/07/18 to Redistribution subject to SIAM license or copyright; see

Downloaded 06/07/18 to Redistribution subject to SIAM license or copyright; see SIAM J. SCI. COMPUT. Vol. 40, No. 1, pp. A366 A387 c 2018 Society for Industrial and Applied Mathematics WEIGHTED APPROXIMATE FEKETE POINTS: SAMPLING FOR LEAST-SQUARES POLYNOMIAL APPROXIMATION LING GUO,

More information

Optimal Polynomial Admissible Meshes on the Closure of C 1,1 Bounded Domains

Optimal Polynomial Admissible Meshes on the Closure of C 1,1 Bounded Domains Optimal Polynomial Admissible Meshes on the Closure of C 1,1 Bounded Domains Constructive Theory of Functions Sozopol, June 9-15, 2013 F. Piazzon, joint work with M. Vianello Department of Mathematics.

More information

APPROXIMATING CONTINUOUS FUNCTIONS: WEIERSTRASS, BERNSTEIN, AND RUNGE

APPROXIMATING CONTINUOUS FUNCTIONS: WEIERSTRASS, BERNSTEIN, AND RUNGE APPROXIMATING CONTINUOUS FUNCTIONS: WEIERSTRASS, BERNSTEIN, AND RUNGE WILLIE WAI-YEUNG WONG. Introduction This set of notes is meant to describe some aspects of polynomial approximations to continuous

More information

Dimension-adaptive sparse grid for industrial applications using Sobol variances

Dimension-adaptive sparse grid for industrial applications using Sobol variances Master of Science Thesis Dimension-adaptive sparse grid for industrial applications using Sobol variances Heavy gas flow over a barrier March 11, 2015 Ad Dimension-adaptive sparse grid for industrial

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

4. Numerical Quadrature. Where analytical abilities end... continued

4. Numerical Quadrature. Where analytical abilities end... continued 4. Numerical Quadrature Where analytical abilities end... continued Where analytical abilities end... continued, November 30, 22 1 4.3. Extrapolation Increasing the Order Using Linear Combinations Once

More information

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form Qualifying exam for numerical analysis (Spring 2017) Show your work for full credit. If you are unable to solve some part, attempt the subsequent parts. 1. Consider the following finite difference: f (0)

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA5 Numerical Methods Spring 5 Solutions to exercise set 9 Find approximate values of the following integrals using the adaptive

More information

Scientific Computing: Numerical Integration

Scientific Computing: Numerical Integration Scientific Computing: Numerical Integration Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Fall 2015 Nov 5th, 2015 A. Donev (Courant Institute) Lecture

More information

arxiv: v1 [math.na] 14 Sep 2017

arxiv: v1 [math.na] 14 Sep 2017 Stochastic collocation approach with adaptive mesh refinement for parametric uncertainty analysis arxiv:1709.04584v1 [math.na] 14 Sep 2017 Anindya Bhaduri a, Yanyan He 1b, Michael D. Shields a, Lori Graham-Brady

More information

Max-Planck-Institut fur Mathematik in den Naturwissenschaften Leipzig H 2 -matrix approximation of integral operators by interpolation by Wolfgang Hackbusch and Steen Borm Preprint no.: 04 200 H 2 -Matrix

More information

The Spectral-Element Method: Introduction

The Spectral-Element Method: Introduction The Spectral-Element Method: Introduction Heiner Igel Department of Earth and Environmental Sciences Ludwig-Maximilians-University Munich Computational Seismology 1 / 59 Outline 1 Introduction 2 Lagrange

More information

EXPLORING THE LOCALLY LOW DIMENSIONAL STRUCTURE IN SOLVING RANDOM ELLIPTIC PDES

EXPLORING THE LOCALLY LOW DIMENSIONAL STRUCTURE IN SOLVING RANDOM ELLIPTIC PDES MULTISCALE MODEL. SIMUL. Vol. 5, No. 2, pp. 66 695 c 27 Society for Industrial and Applied Mathematics EXPLORING THE LOCALLY LOW DIMENSIONAL STRUCTURE IN SOLVING RANDOM ELLIPTIC PDES THOMAS Y. HOU, QIN

More information

Contents. I Basic Methods 13

Contents. I Basic Methods 13 Preface xiii 1 Introduction 1 I Basic Methods 13 2 Convergent and Divergent Series 15 2.1 Introduction... 15 2.1.1 Power series: First steps... 15 2.1.2 Further practical aspects... 17 2.2 Differential

More information

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals 1/33 Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals Dr. Abebe Geletu May, 2010 Technische Universität Ilmenau, Institut für Automatisierungs- und Systemtechnik Fachgebiet

More information

Integration, differentiation, and root finding. Phys 420/580 Lecture 7

Integration, differentiation, and root finding. Phys 420/580 Lecture 7 Integration, differentiation, and root finding Phys 420/580 Lecture 7 Numerical integration Compute an approximation to the definite integral I = b Find area under the curve in the interval Trapezoid Rule:

More information

The answer in each case is the error in evaluating the taylor series for ln(1 x) for x = which is 6.9.

The answer in each case is the error in evaluating the taylor series for ln(1 x) for x = which is 6.9. Brad Nelson Math 26 Homework #2 /23/2. a MATLAB outputs: >> a=(+3.4e-6)-.e-6;a- ans = 4.449e-6 >> a=+(3.4e-6-.e-6);a- ans = 2.224e-6 And the exact answer for both operations is 2.3e-6. The reason why way

More information

PART IV Spectral Methods

PART IV Spectral Methods PART IV Spectral Methods Additional References: R. Peyret, Spectral methods for incompressible viscous flow, Springer (2002), B. Mercier, An introduction to the numerical analysis of spectral methods,

More information

12.0 Properties of orthogonal polynomials

12.0 Properties of orthogonal polynomials 12.0 Properties of orthogonal polynomials In this section we study orthogonal polynomials to use them for the construction of quadrature formulas investigate projections on polynomial spaces and their

More information

J~ J.~ Dennis D. Cox Professor of Statistics

J~ J.~ Dennis D. Cox Professor of Statistics An Approach for the Adaptive Solution of Optimization MAY, 2012 HOUSTON, TEXAS Beatrice M. Riviere Associate Professor of Computational and Applied Mathematics J~ J.~ Dennis D. Cox Professor of Statistics

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 14: The Power Function and Native Space Error Estimates Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

Juan Vicente Gutiérrez Santacreu Rafael Rodríguez Galván. Departamento de Matemática Aplicada I Universidad de Sevilla

Juan Vicente Gutiérrez Santacreu Rafael Rodríguez Galván. Departamento de Matemática Aplicada I Universidad de Sevilla Doc-Course: Partial Differential Equations: Analysis, Numerics and Control Research Unit 3: Numerical Methods for PDEs Part I: Finite Element Method: Elliptic and Parabolic Equations Juan Vicente Gutiérrez

More information

On an Eigenvalue Problem Involving Legendre Functions by Nicholas J. Rose North Carolina State University

On an Eigenvalue Problem Involving Legendre Functions by Nicholas J. Rose North Carolina State University On an Eigenvalue Problem Involving Legendre Functions by Nicholas J. Rose North Carolina State University njrose@math.ncsu.edu 1. INTRODUCTION. The classical eigenvalue problem for the Legendre Polynomials

More information

Slow Exponential Growth for Clenshaw Curtis Sparse Grids

Slow Exponential Growth for Clenshaw Curtis Sparse Grids Slow Exponential Growth for Clenshaw Curtis Sparse Grids John Burkardt Interdisciplinary Center for Applied Mathematics & Information Technology Department Virginia Tech... http://people.sc.fsu.edu/ burkardt/presentations/sgmga

More information

Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos

Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 6t 7 - April 28, Schaumburg, IL AIAA 28-892 Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized

More information

AN ADAPTIVE REDUCED BASIS COLLOCATION METHOD BASED ON PCM ANOVA DECOMPOSITION FOR ANISOTROPIC STOCHASTIC PDES

AN ADAPTIVE REDUCED BASIS COLLOCATION METHOD BASED ON PCM ANOVA DECOMPOSITION FOR ANISOTROPIC STOCHASTIC PDES AN ADAPTIVE REDUCED BASIS COLLOCATION METHOD BASED ON PCM ANOVA DECOMPOSITION FOR ANISOTROPIC STOCHASTIC PDES Heyrim Cho & Howard Elman 2 Department of Mathematics, University of Maryland, College Park,

More information

Sparse Grid Collocation for Uncertainty Quantification

Sparse Grid Collocation for Uncertainty Quantification Sparse Grid Collocation for Uncertainty Quantification John Burkardt Department of Scientific Computing Florida State University Ajou University 14 August 2013 http://people.sc.fsu.edu/ jburkardt/presentations/......

More information

ERROR ESTIMATES FOR THE ANOVA METHOD WITH POLYNOMIAL CHAOS INTERPOLATION: TENSOR PRODUCT FUNCTIONS

ERROR ESTIMATES FOR THE ANOVA METHOD WITH POLYNOMIAL CHAOS INTERPOLATION: TENSOR PRODUCT FUNCTIONS ERROR ESTIMATES FOR THE ANOVA METHOD WITH POLYNOMIAL CHAOS INTERPOLATION: TENSOR PRODUCT FUNCTIONS ZHONGQIANG ZHANG, MINSEOK CHOI AND GEORGE EM KARNIADAKIS Abstract. We focus on the analysis of variance

More information

Interpolation and function representation with grids in stochastic control

Interpolation and function representation with grids in stochastic control with in classical Sparse for Sparse for with in FIME EDF R&D & FiME, Laboratoire de Finance des Marchés de l Energie (www.fime-lab.org) September 2015 Schedule with in classical Sparse for Sparse for 1

More information

Iterative methods for positive definite linear systems with a complex shift

Iterative methods for positive definite linear systems with a complex shift Iterative methods for positive definite linear systems with a complex shift William McLean, University of New South Wales Vidar Thomée, Chalmers University November 4, 2011 Outline 1. Numerical solution

More information

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion:

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion: tifica Lecture 1: Computation of Karhunen-Loeve Expansion: Alexander Litvinenko http://sri-uq.kaust.edu.sa/ Stochastic PDEs We consider div(κ(x, ω) u) = f (x, ω) in G, u = 0 on G, with stochastic coefficients

More information

Progress in high-dimensional numerical integration and its application to stochastic optimization

Progress in high-dimensional numerical integration and its application to stochastic optimization Progress in high-dimensional numerical integration and its application to stochastic optimization W. Römisch Humboldt-University Berlin Department of Mathematics www.math.hu-berlin.de/~romisch Short course,

More information

3. Numerical Quadrature. Where analytical abilities end...

3. Numerical Quadrature. Where analytical abilities end... 3. Numerical Quadrature Where analytical abilities end... Numerisches Programmieren, Hans-Joachim Bungartz page 1 of 32 3.1. Preliminary Remarks The Integration Problem Numerical quadrature denotes numerical

More information

Nonlinear stochastic Galerkin and collocation methods: application to a ferromagnetic cylinder rotating at high speed

Nonlinear stochastic Galerkin and collocation methods: application to a ferromagnetic cylinder rotating at high speed Nonlinear stochastic Galerkin and collocation methods: application to a ferromagnetic cylinder rotating at high speed Eveline Rosseel Herbert De Gersem Stefan Vandewalle Report TW 541, July 29 Katholieke

More information

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme

Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Hp-Adaptivity on Anisotropic Meshes for Hybridized Discontinuous Galerkin Scheme Aravind Balan, Michael Woopen and Georg May AICES Graduate School, RWTH Aachen University, Germany 22nd AIAA Computational

More information

Recent Results for Moving Least Squares Approximation

Recent Results for Moving Least Squares Approximation Recent Results for Moving Least Squares Approximation Gregory E. Fasshauer and Jack G. Zhang Abstract. We describe two experiments recently conducted with the approximate moving least squares (MLS) approximation

More information

Chebyshev finite difference method for a Two Point Boundary Value Problems with Applications to Chemical Reactor Theory

Chebyshev finite difference method for a Two Point Boundary Value Problems with Applications to Chemical Reactor Theory Iranian Journal of Mathematical Chemistry, Vol. 3, o., February 22, pp. 7 IJMC Chebyshev finite difference method for a Two Point Boundary Value Problems with Applications to Chemical Reactor Theory ABBAS

More information

Numerical Integration in Meshfree Methods

Numerical Integration in Meshfree Methods Numerical Integration in Meshfree Methods Pravin Madhavan New College University of Oxford A thesis submitted for the degree of Master of Science in Mathematical Modelling and Scientific Computing Trinity

More information

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004 Department of Applied Mathematics and Theoretical Physics AMA 204 Numerical analysis Exam Winter 2004 The best six answers will be credited All questions carry equal marks Answer all parts of each question

More information

Numerical Methods I Orthogonal Polynomials

Numerical Methods I Orthogonal Polynomials Numerical Methods I Orthogonal Polynomials Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 Nov. 4th and 11th, 2010 A. Donev (Courant Institute)

More information

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 3: Interpolation and Polynomial Approximation. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 3: Interpolation and Polynomial Approximation Xiaoqun Zhang Shanghai Jiao Tong University Last updated: October 10, 2015 2 Contents 1.1 Introduction................................ 3 1.1.1

More information

Numerical Approximation of Stochastic Elliptic Partial Differential Equations

Numerical Approximation of Stochastic Elliptic Partial Differential Equations Numerical Approximation of Stochastic Elliptic Partial Differential Equations Hermann G. Matthies, Andreas Keese Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig wire@tu-bs.de

More information