Multidimensional interpolation. 1 An abstract description of interpolation in one dimension

Size: px
Start display at page:

Download "Multidimensional interpolation. 1 An abstract description of interpolation in one dimension"

Transcription

1 Paul Klein Department of Economics University of Western Ontario FINNISH DOCTORAL PROGRAM IN ECONOMICS Topics in Contemporary Macroeconomics August 2008 Multidimensional interpolation 1 An abstract description of interpolation in one dimension This discussion is based on that in Miranda and Fackler (2002), but is a little bit more explicit Function approximation in one dimension involves defining an approximating function f of a given function f : A R, where A R The function f is a member of a finite-dimensional set of functions with basis {ψ i } n i=0 This means that, for any x A, we have f(x) = In vector notation, we may write (1) as n θ j ψ j (x) (1) j=0 f(x) = ψ(x)θ (2) where ψ(x) = ψ 0 (x) ψ 1 (x) ψ n (x) 1

2 and θ = θ 0 θ 1 θ n The interpolation problem in one dimension is to find {θ i } n i=0 such that f(x i ) = n θ j ψ j (x i ) (3) j=0 for all i = 0, 1,, n In vector notation, we may write (3) as y = Ψθ (4) where and ψ 0 (x 0 ) ψ 1 (x 0 ) ψ 2 (x 0 ) ψ n (x 0 ) ψ 0 (x 1 ) ψ 1 (x 1 ) ψ n (x 1 ) Ψ = ψ 0 (x 2 ) ψ 0 (x n ) ψ n (x n ) f(x 0 ) f(x y = 1 ) f(x n ) In the case of Chebyshev interpolation, we have an explicit expression for Ψ 1 k that case is particularly simple To state this precisely, define M via Ψ = 1 M so Then, in the case of Chebyshev polynomial interpolation, we have Ψ 1 = 1 1 T n + 1 2M T 2

3 2 Interpolation in d dimensions Now suppose f : A R where A R d Then we have a set of n k + 1 basis functions {ψ k i } n k i=0 for each dimension k = 1, 2,, d We also have a grid {xk i } n k i=0 dimension k = 1, 2,, d for each The set of known function values is naturally organized in a multi-dimensional array as follows Y (i 1, i 2,, i d ) = f(x 1 i 1, x 2 i 2,, x d i d ) We would like (2) and (4) to be valid in the multi-dimensional case as well To achieve that, we begin by defining y = Y (:) This is Matlabese for hyper-columnwise vectorization What does this mean exactly? In two dimensions it is just the usual vec operator In three dimensions, you first take the two-dimensional matrices Y (:, :, i) for i = 0, 1,, n 3, apply the vec operator to each of them, then stack the results on top of each other, with vec(y (:, :, 0)) on top of course 1 In four dimensions, Y (:) begins with vec of Y (:, :, 0, 0), followed by vec of Y (:, :, 1, 0), followed by vec of Y (:, :, 0, 1), followed by vec of Y (:, :, 1, 1) In d dimensions, the order is defined by incrementing the first index until the end is reached, then increment the second index by one step, reset the first index and again increment it until the end, then increment the second index one step etc etc until the end of the first index is reached Then increment the third index by one step, reset the second index etc etc Meanwhile, we define, for k = 1, 2,, d, ψ k 0(x k 0) ψ k 1(x k 0) ψ k 2(x k 0) ψ k n k (x k 0) ψ k 0(x k 1) ψ k 1(x k 1) ψ k n k (x k 1) Ψ k = ψ k 0(x k 2) ψ k 0(x k n k ) ψ k n k (x k n k ) 1 0-based indexing is not actually allowed in Matlab, but it is allowed in Fortran 3

4 and Finally, define Ψ = Ψ d Ψ d 1 Ψ 1 ψ(x) = ψ d (x d ) ψ d 1 (x d 1 ) ψ 1 (x 1 ) where x = (x 1, x 2,, x d ) With these definitions, (2) and (4) remain valid in the multidimensional case as well in the following sense If θ solves (4) then for all 0 i 1 n 1, 0 i 2 n 2,, 0 i d n d we have ψ(x 1 i 1, x 2 i 2,, x d i d )θ = Y (i 1, i 2,, i d ) Notice also that solving (4) in the multi-dimensional case is not as hard as it looks, since Ψ 1 = Ψ 1 d Ψ 1 d 1 Ψ Why it works It is surprisingly hard to show that this works in general But let s show it in the simplest possible non-trivial case Let the basis functions in each of two dimensions be 1 and x and 1 and y, respectively Let the grids be {x 0, x 1 } and {y 0, y 1 } Organize the known function values in a 2 2 matrix Z Notice first that the interpolating function is written as f(x, y) = ψ(x, y)θ where ψ(x, y) = 1 y 1 x = 1 x y xy Now form the matrix Ψ via 1 y 0 Ψ y Ψ x = 1 y 1 1 x 0 1 x 1 = 1 x 0 y 0 x 0 y 0 1 x 1 y 0 x 1 y 0 1 x 0 y 1 x 0 y 1 1 x 1 y 1 x 1 y 1 4

5 Now consider the expression Ψθ Evidently it should equal but this is precisely vec(z) Z 00 Z 10 Z 01 Z 11, 3 The curse of dimensionality The number of basis functions in ψ(x) = ψ d (x d ) ψ d 1 (x d 1 ) ψ 1 (x 1 ) is d k=1 which grows very rapidly in d So the question is whether one can economize a bit One approach is the following, where we will focus on the two-dimensional case to keep things clear Suppose the variables are x and y and the basis functions in the x dimension are 1, x, and x 2 Similarly, in the y dimension they are 1, y, and y 2 Then there are nine elements in ψ y (y) ψ x (x), including x 2 y 2 But perhaps we wanted a quadratic approximation, and x 2 y 2 is not quadratic but quartic So we should just use those products where the sum of the exponents is less than or equal to two, ie the following: 1, x, y, xy, x 2 and y 2 That s only six terms This remark can be generalized, but that would be a bit tedious, wouldn t it? Another approach is to use a sparse grid The pioneering paper here was Smolyak (1963) Most economists who know about this approach learned it from Malin et al (2007) n k 5

6 References Malin, B, D Krueger, and F Kubler (2007, October) Computing Stochastic Dynamic Economic Models with a Large Number of State Variables: A Description and Application of a Smolyak-Collocation Method NBER Technical Working Papers 0345, National Bureau of Economic Research, Inc Miranda, M J and P L Fackler (2002) Applied Computational Economics and Finance MIT Press Smolyak, S A (1963) Quadrature and interpolation formulas for tensor products of certain classes of functions Soviet Math Dokl 4,

Finite element function approximation

Finite element function approximation THE UNIVERSITY OF WESTERN ONTARIO LONDON ONTARIO Paul Klein Office: SSC 4028 Phone: 661-2111 ext. 85227 Email: paul.klein@uwo.ca URL: www.ssc.uwo.ca/economics/faculty/klein/ Economics 613/614 Advanced

More information

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals 1/33 Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals Dr. Abebe Geletu May, 2010 Technische Universität Ilmenau, Institut für Automatisierungs- und Systemtechnik Fachgebiet

More information

5.1 Polynomial Functions

5.1 Polynomial Functions 5.1 Polynomial Functions In this section, we will study the following topics: Identifying polynomial functions and their degree Determining end behavior of polynomial graphs Finding real zeros of polynomial

More information

Bayesian Estimation with Sparse Grids

Bayesian Estimation with Sparse Grids Bayesian Estimation with Sparse Grids Kenneth L. Judd and Thomas M. Mertens Institute on Computational Economics August 7, 27 / 48 Outline Introduction 2 Sparse grids Construction Integration with sparse

More information

Pascal s Triangle on a Budget. Accuracy, Precision and Efficiency in Sparse Grids

Pascal s Triangle on a Budget. Accuracy, Precision and Efficiency in Sparse Grids Covering : Accuracy, Precision and Efficiency in Sparse Grids https://people.sc.fsu.edu/ jburkardt/presentations/auburn 2009.pdf... John Interdisciplinary Center for Applied Mathematics & Information Technology

More information

Note on Chebyshev Regression

Note on Chebyshev Regression 1 Introduction Note on Chebyshev Regression Makoto Nakajima, UIUC January 006 The family of Chebyshev polynomials is by far the most popular choice for the base functions for weighted residuals method.

More information

Introduction to SparseGrid

Introduction to SparseGrid Introduction to SparseGrid Jelmer Ypma July 31, 2013 Abstract This vignette describes how to use SparseGrid, which is an R translation 1 of the Matlab code on http://www.sparse-grids.de (Heiss and Winschel,

More information

Solving the Multi-Country Real Business Cycle Model Using a Monomial Rule Galerkin Method

Solving the Multi-Country Real Business Cycle Model Using a Monomial Rule Galerkin Method Solving the Multi-Country Real Business Cycle Model Using a Monomial Rule Galerkin Method Paul Pichler Department of Economics University of Vienna Hohenstaufengasse 9 A- Vienna Austria Abstract I propose

More information

Key Concepts: Economic Computation, Part III

Key Concepts: Economic Computation, Part III Key Concepts: Economic Computation, Part III Brent Hickman Summer, 8 1 Using Newton s Method to Find Roots of Real- Valued Functions The intuition behind Newton s method is that finding zeros of non-linear

More information

Projection Methods. (Lectures on Solution Methods for Economists IV) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 March 7, 2018

Projection Methods. (Lectures on Solution Methods for Economists IV) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 March 7, 2018 Projection Methods (Lectures on Solution Methods for Economists IV) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 March 7, 2018 1 University of Pennsylvania 2 Boston College Introduction Remember that

More information

Lecture 3: Huggett s 1993 model. 1 Solving the savings problem for an individual consumer

Lecture 3: Huggett s 1993 model. 1 Solving the savings problem for an individual consumer UNIVERSITY OF WESTERN ONTARIO LONDON ONTARIO Paul Klein Office: SSC 4044 Extension: 85484 Email: pklein2@uwo.ca URL: http://paulklein.ca/newsite/teaching/619.php Economics 9619 Computational methods in

More information

Accuracy, Precision and Efficiency in Sparse Grids

Accuracy, Precision and Efficiency in Sparse Grids John, Information Technology Department, Virginia Tech.... http://people.sc.fsu.edu/ jburkardt/presentations/ sandia 2009.pdf... Computer Science Research Institute, Sandia National Laboratory, 23 July

More information

Projection Methods. Quantitative Macroeconomics. Raül Santaeulàlia-Llopis. MOVE-UAB and Barcelona GSE. Fall 2018

Projection Methods. Quantitative Macroeconomics. Raül Santaeulàlia-Llopis. MOVE-UAB and Barcelona GSE. Fall 2018 Projection Methods Quantitative Macroeconomics Raül Santaeulàlia-Llopis MOVE-UAB and Barcelona GSE Fall 2018 Raül Santaeulàlia-Llopis (MOVE-UAB,BGSE) QM: Projection Methods Fall 2018 1 / 12 In macroeconomics

More information

PROJECTION METHODS FOR DYNAMIC MODELS

PROJECTION METHODS FOR DYNAMIC MODELS PROJECTION METHODS FOR DYNAMIC MODELS Kenneth L. Judd Hoover Institution and NBER June 28, 2006 Functional Problems Many problems involve solving for some unknown function Dynamic programming Consumption

More information

CS412: Introduction to Numerical Methods

CS412: Introduction to Numerical Methods CS412: Introduction to Numerical Methods MIDTERM #1 2:30PM - 3:45PM, Tuesday, 03/10/2015 Instructions: This exam is a closed book and closed notes exam, i.e., you are not allowed to consult any textbook,

More information

One Variable Calculus: Foundations and Applications

One Variable Calculus: Foundations and Applications One Variable Calculus: Foundations and Applications Prof. Manuela Pedio 20550 Quantitative Methods for Finance August 2018 About myself I graduated from Bocconi s MSc in Finance in 2013 (yes, I remember

More information

Sparse Grids. Léopold Cambier. February 17, ICME, Stanford University

Sparse Grids. Léopold Cambier. February 17, ICME, Stanford University Sparse Grids & "A Dynamically Adaptive Sparse Grid Method for Quasi-Optimal Interpolation of Multidimensional Analytic Functions" from MK Stoyanov, CG Webster Léopold Cambier ICME, Stanford University

More information

Vector, Matrix, and Tensor Derivatives

Vector, Matrix, and Tensor Derivatives Vector, Matrix, and Tensor Derivatives Erik Learned-Miller The purpose of this document is to help you learn to take derivatives of vectors, matrices, and higher order tensors (arrays with three dimensions

More information

Lecture 1: Introduction to computation

Lecture 1: Introduction to computation UNIVERSITY OF WESTERN ONTARIO LONDON ONTARIO Paul Klein Office: SSC 4044 Extension: 85484 Email: pklein2@uwo.ca URL: http://paulklein.ca/newsite/teaching/619.php Economics 9619 Computational methods in

More information

Data-Driven Global Optimization

Data-Driven Global Optimization Data-Driven Global Optimization Fani Boukouvala & Chris Kieslich Christodoulos A Floudas Memorial Symposium Princeton University May 6 th 2017 A story of global optimization & more September 17 th 2014

More information

Topics Covered in Math 115

Topics Covered in Math 115 Topics Covered in Math 115 Basic Concepts Integer Exponents Use bases and exponents. Evaluate exponential expressions. Apply the product, quotient, and power rules. Polynomial Expressions Perform addition

More information

Quadrature using sparse grids on products of spheres

Quadrature using sparse grids on products of spheres Quadrature using sparse grids on products of spheres Paul Leopardi Mathematical Sciences Institute, Australian National University. For presentation at 3rd Workshop on High-Dimensional Approximation UNSW,

More information

Introduction: Solution Methods for State-Dependent and Time-Dependent Models

Introduction: Solution Methods for State-Dependent and Time-Dependent Models Introduction: Solution Methods for State-Dependent and Time-Dependent Models Lilia Maliar and Serguei Maliar CEF 2017 Workshop Maliar and Maliar (2017) State-Dependent and Time-Dependent Models CEF 2017

More information

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals 1/31 Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals Dr. Abebe Geletu May, 2010 Technische Universität Ilmenau, Institut für Automatisierungs- und Systemtechnik Fachgebiet

More information

Something that can have different values at different times. A variable is usually represented by a letter in algebraic expressions.

Something that can have different values at different times. A variable is usually represented by a letter in algebraic expressions. Lesson Objectives: Students will be able to define, recognize and use the following terms in the context of polynomials: o Constant o Variable o Monomial o Binomial o Trinomial o Polynomial o Numerical

More information

Slow Growth for Gauss Legendre Sparse Grids

Slow Growth for Gauss Legendre Sparse Grids Slow Growth for Gauss Legendre Sparse Grids John Burkardt, Clayton Webster April 4, 2014 Abstract A sparse grid for multidimensional quadrature can be constructed from products of 1D rules. For multidimensional

More information

STOCHASTIC SAMPLING METHODS

STOCHASTIC SAMPLING METHODS STOCHASTIC SAMPLING METHODS APPROXIMATING QUANTITIES OF INTEREST USING SAMPLING METHODS Recall that quantities of interest often require the evaluation of stochastic integrals of functions of the solutions

More information

Review I: Interpolation

Review I: Interpolation Review I: Interpolation Varun Shankar January, 206 Introduction In this document, we review interpolation by polynomials. Unlike many reviews, we will not stop there: we will discuss how to differentiate

More information

Identify polynomial functions

Identify polynomial functions EXAMPLE 1 Identify polynomial functions Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient. a. h (x) = x 4 1 x 2

More information

Function Approximation

Function Approximation 1 Function Approximation This is page i Printer: Opaque this 1.1 Introduction In this chapter we discuss approximating functional forms. Both in econometric and in numerical problems, the need for an approximating

More information

Applied Numerical Analysis Quiz #2

Applied Numerical Analysis Quiz #2 Applied Numerical Analysis Quiz #2 Modules 3 and 4 Name: Student number: DO NOT OPEN UNTIL ASKED Instructions: Make sure you have a machine-readable answer form. Write your name and student number in the

More information

Warm Up. Factor each quadratic. 1. x x + 24 = 0

Warm Up. Factor each quadratic. 1. x x + 24 = 0 Warm Up Factor each quadratic. 1. x 2 + 14x + 24 = 0 2. 3x 2 + 2x - 16 = 0 3. 2x 2-6x = 0 4. x 2-49 = 0 Definition: 5.1 Polynomial Functions A polynomial function in one variable is a monomial or sum of

More information

1 With state-contingent debt

1 With state-contingent debt STOCKHOLM DOCTORAL PROGRAM IN ECONOMICS Helshögskolan i Stockholm Stockholms universitet Paul Klein Email: paul.klein@iies.su.se URL: http://paulklein.se/makro2.html Macroeconomics II Spring 2010 Lecture

More information

Differentiation and Integration

Differentiation and Integration Differentiation and Integration (Lectures on Numerical Analysis for Economists II) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 12, 2018 1 University of Pennsylvania 2 Boston College Motivation

More information

Bishop Kelley High School Summer Math Program Course: Honors Pre-Calculus

Bishop Kelley High School Summer Math Program Course: Honors Pre-Calculus 017 018 Summer Math Program Course: Honors Pre-Calculus NAME: DIRECTIONS: Show all work in the packet. Make sure you are aware of the calculator policy for this course. No matter when you have math, this

More information

Matlab Programming and Quantitative Economic Theory

Matlab Programming and Quantitative Economic Theory Matlab Programming and Quantitative Economic Theory Patrick Bunk and Hong Lan SFB C7 Humboldt University of Berlin June 4, 2010 Patrick Bunk and Hong Lan (SFB C7 Humboldt Matlab University Programming

More information

Lesson 9 Exploring Graphs of Quadratic Functions

Lesson 9 Exploring Graphs of Quadratic Functions Exploring Graphs of Quadratic Functions Graph the following system of linear inequalities: { y > 1 2 x 5 3x + 2y 14 a What are three points that are solutions to the system of inequalities? b Is the point

More information

Summer Work for students entering PreCalculus

Summer Work for students entering PreCalculus Summer Work for students entering PreCalculus Name Directions: The following packet represent a review of topics you learned in Algebra 1, Geometry, and Algebra 2. Complete your summer packet on separate

More information

Least Squares Regression

Least Squares Regression Least Squares Regression Chemical Engineering 2450 - Numerical Methods Given N data points x i, y i, i 1 N, and a function that we wish to fit to these data points, fx, we define S as the sum of the squared

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Numerical Methods I Solving Nonlinear Equations

Numerical Methods I Solving Nonlinear Equations Numerical Methods I Solving Nonlinear Equations Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 16th, 2014 A. Donev (Courant Institute)

More information

Projection Methods. Felix Kubler 1. October 10, DBF, University of Zurich and Swiss Finance Institute

Projection Methods. Felix Kubler 1. October 10, DBF, University of Zurich and Swiss Finance Institute Projection Methods Felix Kubler 1 1 DBF, University of Zurich and Swiss Finance Institute October 10, 2017 Felix Kubler Comp.Econ. Gerzensee, Ch5 October 10, 2017 1 / 55 Motivation In many dynamic economic

More information

Summer Work for students entering PreCalculus

Summer Work for students entering PreCalculus Summer Work for students entering PreCalculus Name Directions: The following packet represent a review of topics you learned in Algebra 1, Geometry, and Algebra 2. Complete your summer packet on separate

More information

ERROR IN LINEAR INTERPOLATION

ERROR IN LINEAR INTERPOLATION ERROR IN LINEAR INTERPOLATION Let P 1 (x) be the linear polynomial interpolating f (x) at x 0 and x 1. Assume f (x) is twice continuously differentiable on an interval [a, b] which contains the points

More information

Introduction, basic but important concepts

Introduction, basic but important concepts Introduction, basic but important concepts Felix Kubler 1 1 DBF, University of Zurich and Swiss Finance Institute October 7, 2017 Felix Kubler Comp.Econ. Gerzensee, Ch1 October 7, 2017 1 / 31 Economics

More information

Quantitative Techniques (Finance) 203. Polynomial Functions

Quantitative Techniques (Finance) 203. Polynomial Functions Quantitative Techniques (Finance) 03 Polynomial Functions Felix Chan October 006 Introduction This topic discusses the properties and the applications of polynomial functions, specifically, linear and

More information

Numerical Solution of Two-Dimensional Volterra Integral Equations by Spectral Galerkin Method

Numerical Solution of Two-Dimensional Volterra Integral Equations by Spectral Galerkin Method Journal of Applied Mathematics & Bioinformatics, vol.1, no.2, 2011, 159-174 ISSN: 1792-6602 (print), 1792-6939 (online) International Scientific Press, 2011 Numerical Solution of Two-Dimensional Volterra

More information

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines Cubic Splines MATH 375 J. Robert Buchanan Department of Mathematics Fall 2006 Introduction Given data {(x 0, f(x 0 )), (x 1, f(x 1 )),...,(x n, f(x n ))} which we wish to interpolate using a polynomial...

More information

Polynomial interpolation on the sphere, reproducing kernels and random matrices

Polynomial interpolation on the sphere, reproducing kernels and random matrices Polynomial interpolation on the sphere, reproducing kernels and random matrices Paul Leopardi Mathematical Sciences Institute, Australian National University. For presentation at MASCOS Workshop on Stochastics

More information

NBER WORKING PAPER SERIES ONE-NODE QUADRATURE BEATS MONTE CARLO: A GENERALIZED STOCHASTIC SIMULATION ALGORITHM

NBER WORKING PAPER SERIES ONE-NODE QUADRATURE BEATS MONTE CARLO: A GENERALIZED STOCHASTIC SIMULATION ALGORITHM NBER WORKING PAPER SERIES ONE-NODE QUADRATURE BEATS MONTE CARLO: A GENERALIZED STOCHASTIC SIMULATION ALGORITHM Kenneth Judd Lilia Maliar Serguei Maliar Working Paper 16708 http://www.nber.org/papers/w16708

More information

STRONGLY NESTED 1D INTERPOLATORY QUADRATURE AND EXTENSION TO ND VIA SMOLYAK METHOD

STRONGLY NESTED 1D INTERPOLATORY QUADRATURE AND EXTENSION TO ND VIA SMOLYAK METHOD 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK STRONGLY NESTED 1D INTERPOLATORY QUADRATURE AND

More information

Math 671: Tensor Train decomposition methods

Math 671: Tensor Train decomposition methods Math 671: Eduardo Corona 1 1 University of Michigan at Ann Arbor December 8, 2016 Table of Contents 1 Preliminaries and goal 2 Unfolding matrices for tensorized arrays The Tensor Train decomposition 3

More information

Math 0320 Final Exam Review

Math 0320 Final Exam Review Math 0320 Final Exam Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Factor out the GCF using the Distributive Property. 1) 6x 3 + 9x 1) Objective:

More information

Solving Linear Rational Expectation Models

Solving Linear Rational Expectation Models Solving Linear Rational Expectation Models Dr. Tai-kuang Ho Associate Professor. Department of Quantitative Finance, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013,

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

Second-order approximation of dynamic models without the use of tensors

Second-order approximation of dynamic models without the use of tensors Second-order approximation of dynamic models without the use of tensors Paul Klein a, a University of Western Ontario First draft: May 17, 2005 This version: January 24, 2006 Abstract Several approaches

More information

MA3457/CS4033: Numerical Methods for Calculus and Differential Equations

MA3457/CS4033: Numerical Methods for Calculus and Differential Equations MA3457/CS4033: Numerical Methods for Calculus and Differential Equations Course Materials P A R T II B 14 2014-2015 1 2. APPROXIMATION CLASS 9 Approximation Key Idea Function approximation is closely related

More information

Curve Fitting. Objectives

Curve Fitting. Objectives Curve Fitting Objectives Understanding the difference between regression and interpolation. Knowing how to fit curve of discrete with least-squares regression. Knowing how to compute and understand the

More information

DOC - HOW TO FIND EXPONENTIAL EQUATION FROM GRAPH

DOC - HOW TO FIND EXPONENTIAL EQUATION FROM GRAPH 14 June, 2018 DOC - HOW TO FIND EXPONENTIAL EQUATION FROM GRAPH Document Filetype: PDF 190.36 KB 0 DOC - HOW TO FIND EXPONENTIAL EQUATION FROM GRAPH Shape: Most exponential graphs will have this same arcing

More information

2-2: Evaluate and Graph Polynomial Functions

2-2: Evaluate and Graph Polynomial Functions 2-2: Evaluate and Graph Polynomial Functions What is a polynomial? -A monomial or sum of monomials with whole number exponents. Degree of a polynomial: - The highest exponent of the polynomial How do we

More information

Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning

Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning Anton Rodomanov Higher School of Economics, Russia Bayesian methods research group (http://bayesgroup.ru) 14 March

More information

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by 1. QUESTION (a) Given a nth degree Taylor polynomial P n (x) of a function f(x), expanded about x = x 0, write down the Lagrange formula for the truncation error, carefully defining all its elements. How

More information

Error formulas for divided difference expansions and numerical differentiation

Error formulas for divided difference expansions and numerical differentiation Error formulas for divided difference expansions and numerical differentiation Michael S. Floater Abstract: We derive an expression for the remainder in divided difference expansions and use it to give

More information

ENVIRONMENTAL DATA ANALYSIS WILLIAM MENKE JOSHUA MENKE WITH MATLAB COPYRIGHT 2011 BY ELSEVIER, INC. ALL RIGHTS RESERVED.

ENVIRONMENTAL DATA ANALYSIS WILLIAM MENKE JOSHUA MENKE WITH MATLAB COPYRIGHT 2011 BY ELSEVIER, INC. ALL RIGHTS RESERVED. ENVIRONMENTAL DATA ANALYSIS WITH MATLAB WILLIAM MENKE PROFESSOR OF EARTH AND ENVIRONMENTAL SCIENCE COLUMBIA UNIVERSITY JOSHUA MENKE SOFTWARE ENGINEER JOM ASSOCIATES COPYRIGHT 2011 BY ELSEVIER, INC. ALL

More information

Lecture 7: Linear-Quadratic Dynamic Programming Real Business Cycle Models

Lecture 7: Linear-Quadratic Dynamic Programming Real Business Cycle Models Lecture 7: Linear-Quadratic Dynamic Programming Real Business Cycle Models Shinichi Nishiyama Graduate School of Economics Kyoto University January 10, 2019 Abstract In this lecture, we solve and simulate

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA5 Numerical Methods Spring 5 Solutions to exercise set 9 Find approximate values of the following integrals using the adaptive

More information

3. Numerical integration

3. Numerical integration 3. Numerical integration... 3. One-dimensional quadratures... 3. Two- and three-dimensional quadratures... 3.3 Exact Integrals for Straight Sided Triangles... 5 3.4 Reduced and Selected Integration...

More information

CS760, S. Qiao Part 3 Page 1. Kernighan and Pike [5] present the following general guidelines for testing software.

CS760, S. Qiao Part 3 Page 1. Kernighan and Pike [5] present the following general guidelines for testing software. CS760, S. Qiao Part 3 Page 1 Testing 1 General Guidelines Kernighan and Pike [5] present the following general guidelines for testing software. Know exactly what you are testing and what results you expect.

More information

After linear functions, the next simplest functions are polynomials. Examples are

After linear functions, the next simplest functions are polynomials. Examples are Mathematics 10 Fall 1999 Polynomials After linear functions, the next simplest functions are polynomials. Examples are 1+x, x +3x +, x 3. Here x is a variable. Recall that we have defined a function to

More information

Perturbation and Projection Methods for Solving DSGE Models

Perturbation and Projection Methods for Solving DSGE Models Perturbation and Projection Methods for Solving DSGE Models Lawrence J. Christiano Discussion of projections taken from Christiano Fisher, Algorithms for Solving Dynamic Models with Occasionally Binding

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

Krzysztof Burdzy University of Washington. = X(Y (t)), t 0}

Krzysztof Burdzy University of Washington. = X(Y (t)), t 0} VARIATION OF ITERATED BROWNIAN MOTION Krzysztof Burdzy University of Washington 1. Introduction and main results. Suppose that X 1, X 2 and Y are independent standard Brownian motions starting from 0 and

More information

Slow Exponential Growth for Clenshaw Curtis Sparse Grids

Slow Exponential Growth for Clenshaw Curtis Sparse Grids Slow Exponential Growth for Clenshaw Curtis Sparse Grids John Burkardt Interdisciplinary Center for Applied Mathematics & Information Technology Department Virginia Tech... http://people.sc.fsu.edu/ burkardt/presentations/sgmga

More information

IB Mathematics HL Year 2 Unit 11: Completion of Algebra (Core Topic 1)

IB Mathematics HL Year 2 Unit 11: Completion of Algebra (Core Topic 1) IB Mathematics HL Year Unit : Completion of Algebra (Core Topic ) Homewor for Unit Ex C:, 3, 4, 7; Ex D: 5, 8, 4; Ex E.: 4, 5, 9, 0, Ex E.3: (a), (b), 3, 7. Now consider these: Lesson 73 Sequences and

More information

Logarithmic and Exponential Equations and Change-of-Base

Logarithmic and Exponential Equations and Change-of-Base Logarithmic and Exponential Equations and Change-of-Base MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to solve exponential equations

More information

The Pass-Through of Sovereign Risk. Luigi Bocola Q K (S)

The Pass-Through of Sovereign Risk. Luigi Bocola Q K (S) Online Appendix The Pass-Through of Sovereign Risk Luigi Bocola A Numerical Solution A.1 Equilibrium conditions The states of the model are S = [ K, B, P, z, g, s, d]. The controls { C(S), R(S), α(s),

More information

u = (u, v) = y The velocity field described by ψ automatically satisfies the incompressibility condition, and it should be noted that

u = (u, v) = y The velocity field described by ψ automatically satisfies the incompressibility condition, and it should be noted that 18.354J Nonlinear Dynamics II: Continuum Systems Lecture 1 9 Spring 2015 19 Stream functions and conformal maps There is a useful device for thinking about two dimensional flows, called the stream function

More information

MATH STUDENT BOOK. 11th Grade Unit 10

MATH STUDENT BOOK. 11th Grade Unit 10 MATH STUDENT BOOK 11th Grade Unit 10 Unit 10 ALGEBRA II REVIEW MATH 1110 ALGEBRA II REVIEW INTRODUCTION 3 1. INTEGERS, OPEN SENTENCES, AND GRAPHS 5 INTEGERS 5 OPEN SENTENCES 10 GRAPHS 18 SELF TEST 1 24

More information

Topics in Algorithms. 1 Generation of Basic Combinatorial Objects. Exercises. 1.1 Generation of Subsets. 1. Consider the sum:

Topics in Algorithms. 1 Generation of Basic Combinatorial Objects. Exercises. 1.1 Generation of Subsets. 1. Consider the sum: Topics in Algorithms Exercises 1 Generation of Basic Combinatorial Objects 1.1 Generation of Subsets 1. Consider the sum: (ε 1,...,ε n) {0,1} n f(ε 1,..., ε n ) (a) Show that it may be calculated in O(n)

More information

Chapter 12. The cross ratio Klein s Erlanger program The projective line. Math 4520, Fall 2017

Chapter 12. The cross ratio Klein s Erlanger program The projective line. Math 4520, Fall 2017 Chapter 12 The cross ratio Math 4520, Fall 2017 We have studied the collineations of a projective plane, the automorphisms of the underlying field, the linear functions of Affine geometry, etc. We have

More information

Quadrature for Uncertainty Analysis Stochastic Collocation. What does quadrature have to do with uncertainty?

Quadrature for Uncertainty Analysis Stochastic Collocation. What does quadrature have to do with uncertainty? Quadrature for Uncertainty Analysis Stochastic Collocation What does quadrature have to do with uncertainty? Quadrature for Uncertainty Analysis Stochastic Collocation What does quadrature have to do with

More information

Review: complex numbers

Review: complex numbers October 5/6, 01.5 extra problems page 1 Review: complex numbers Number system The complex number system consists of a + bi where a and b are real numbers, with various arithmetic operations. The real numbers

More information

Math 231E, Lecture 25. Integral Test and Estimating Sums

Math 231E, Lecture 25. Integral Test and Estimating Sums Math 23E, Lecture 25. Integral Test and Estimating Sums Integral Test The definition of determining whether the sum n= a n converges is:. Compute the partial sums s n = a k, k= 2. Check that s n is a convergent

More information

Math Lecture 18 Notes

Math Lecture 18 Notes Math 1010 - Lecture 18 Notes Dylan Zwick Fall 2009 In our last lecture we talked about how we can add, subtract, and multiply polynomials, and we figured out that, basically, if you can add, subtract,

More information

BSM510 Numerical Analysis

BSM510 Numerical Analysis BSM510 Numerical Analysis Polynomial Interpolation Prof. Manar Mohaisen Department of EEC Engineering Review of Precedent Lecture Polynomial Regression Multiple Linear Regression Nonlinear Regression Lecture

More information

On Multivariate Newton Interpolation at Discrete Leja Points

On Multivariate Newton Interpolation at Discrete Leja Points On Multivariate Newton Interpolation at Discrete Leja Points L. Bos 1, S. De Marchi 2, A. Sommariva 2, M. Vianello 2 September 25, 2011 Abstract The basic LU factorization with row pivoting, applied to

More information

UP AND UP DOWN AND DOWN DOWN AND UP UP AND DOWN

UP AND UP DOWN AND DOWN DOWN AND UP UP AND DOWN 1. IDENTIFY END BEHAVIOR OF A POLYNOMIAL FROM A GRAPH End behavior is the direction of the graph at the left and the right. There are four options for end behavior: up and up, down and down, down and up,

More information

Approximation, Taylor Polynomials, and Derivatives

Approximation, Taylor Polynomials, and Derivatives Approximation, Taylor Polynomials, and Derivatives Derivatives for functions f : R n R will be central to much of Econ 501A, 501B, and 520 and also to most of what you ll do as professional economists.

More information

June Dear prospective Pre-Calculus student,

June Dear prospective Pre-Calculus student, Dear prospective Pre-Calculus student, June 017 We are pleased that you have decided to take Pre-Calculus next year. Pre-Calculus is a challenging class that requires that you have mastered the concepts

More information

POLYNOMIAL EXPRESSIONS PART 1

POLYNOMIAL EXPRESSIONS PART 1 POLYNOMIAL EXPRESSIONS PART 1 A polynomial is an expression that is a sum of one or more terms. Each term consists of one or more variables multiplied by a coefficient. Coefficients can be negative, so

More information

Stochastic optimal control in bio-economic simulations A comparison of solution techniques

Stochastic optimal control in bio-economic simulations A comparison of solution techniques Stochastic optimal control in bio-economic simulations A comparison of solution techniques Stephen Beare, Rosalyn Bell and Scott Harrison Australian Bureau of Agricultural and Resource Economics GPO Box

More information

MATH GRE PREP: WEEK 2. (2) Which of the following is closest to the value of this integral:

MATH GRE PREP: WEEK 2. (2) Which of the following is closest to the value of this integral: MATH GRE PREP: WEEK 2 UCHICAGO REU 218 (1) What is the coefficient of y 3 x 6 in (1 + x + y) 5 (1 + x) 7? (A) 7 (B) 84 (C) 35 (D) 42 (E) 27 (2) Which of the following is closest to the value of this integral:

More information

P.1 Prerequisite skills Basic Algebra Skills

P.1 Prerequisite skills Basic Algebra Skills P.1 Prerequisite skills Basic Algebra Skills Topics: Evaluate an algebraic expression for given values of variables Combine like terms/simplify algebraic expressions Solve equations for a specified variable

More information

Block Coordinate Descent for Regularized Multi-convex Optimization

Block Coordinate Descent for Regularized Multi-convex Optimization Block Coordinate Descent for Regularized Multi-convex Optimization Yangyang Xu and Wotao Yin CAAM Department, Rice University February 15, 2013 Multi-convex optimization Model definition Applications Outline

More information

There are four irrational roots with approximate values of

There are four irrational roots with approximate values of Power of the Quadratic Formula 1 y = (x ) - 8(x ) + 4 a = 1, b = -8, c = 4 Key 1. Consider the equation y = x 4 8x + 4. It may be a surprise, but we can use the quadratic formula to find the x-intercepts

More information

Quadrature using sparse grids on products of spheres

Quadrature using sparse grids on products of spheres Quadrature using sparse grids on products of spheres Paul Leopardi Mathematical Sciences Institute, Australian National University. For presentation at ANZIAM NSW/ACT Annual Meeting, Batemans Bay. Joint

More information

Basic Fraction and Integer Operations (No calculators please!)

Basic Fraction and Integer Operations (No calculators please!) P1 Summer Math Review Packet For Students entering Geometry The problems in this packet are designed to help you review topics from previous mathematics courses that are important to your success in Geometry.

More information

Sparse Grids for Stochastic Integrals

Sparse Grids for Stochastic Integrals John, Information Technology Department, Virginia Tech.... http://people.sc.fsu.edu/ jburkardt/presentations/ fsu 2009.pdf... Department of Scientific Computing, Florida State University, 08 October 2009.

More information

Sparse Quadrature Algorithms for Bayesian Inverse Problems

Sparse Quadrature Algorithms for Bayesian Inverse Problems Sparse Quadrature Algorithms for Bayesian Inverse Problems Claudia Schillings, Christoph Schwab Pro*Doc Retreat Disentis 2013 Numerical Analysis and Scientific Computing Disentis - 15 August, 2013 research

More information

Boundary Layer Problems and Applications of Spectral Methods

Boundary Layer Problems and Applications of Spectral Methods Boundary Layer Problems and Applications of Spectral Methods Sumi Oldman University of Massachusetts Dartmouth CSUMS Summer 2011 August 4, 2011 Abstract Boundary layer problems arise when thin boundary

More information