Foundations of the stochastic Galerkin method

Size: px
Start display at page:

Download "Foundations of the stochastic Galerkin method"

Transcription

1 Foundations of the stochastic Galerkin method Claude Jeffrey Gittelson ETH Zurich, Seminar for Applied Mathematics Pro*oc Workshop 2009 in isentis

2 Stochastic diffusion equation R d Lipschitz, for ω Ω, (a(ω,x) u(ω,x)) = f(x) x, u(ω,x) = 0 x. Probability space (Ω,A,P). Parametric weak formulation: For ω Ω, find u(ω) H0 1 () s.t. a(ω,x) u(ω,x) v(x)dx = f(x)v(x)dx for all v H 1 0 (). C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 1

3 Outline stochastic problem on transform parameter domain weak formulation stochastic basis finite element approximation Ω H0 1() R N H0 1() L 2 ρ (RN ;H0 1()) l 2 (Λ;H0 1()) V j C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 2

4 Transformation to a deterministic problem Random variable Y = (Y m ) m N : Ω R N, a(ω,x) = a Y (Y (ω),x) ω Ω. Assume (Y m ) m N independent. ρ := Y (P) = ρ m, m=1 ρ m := Y m (P) Then u(ω) = u Y (Y (ω)) for all ω Ω, where u Y (y) H0 1() solves a Y (y,x) u Y (y,x) v(x)dx = f(x)v(x)dx for all v H 1 0 () and all y RN. C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 3

5 Example: Karhunen-Loève expansion efine a(ω,x) = a 0 (x) + λm ϕ m (x)y m (ω). m=1 (ϕ m ) m N are eigenfunctions of the covariance operator of a(, ) with eigenvalues λ m. (Y m ) m N are uncorrelated random variables. a Y (y,x) := a 0 (x) + Then a(ω,x) = a Y (Y (ω),x). λm ϕ m (x)y m. m=1 C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 4

6 Example: Karhunen-Loève expansion Alternative: Karhunen-Loève expansion of log(a(ω, x)), ( ) a(ω,x) = a 0 (x)exp λm ϕ m (x)y m (ω) m=1 m=1 ) = a 0 (x) exp( λm ϕ m (x)y m (ω). efine ( ) a Y (y,x) := a 0 (x)exp λm ϕ m (x)y m m=1. Then a(ω,x) = a Y (Y (ω),x). C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 5

7 Weak formulation For all y R N,Find u Y L 2 ρ(r N ;H0 1 ()) such that a Y (y) u Y (y) v(y)dxdρ(y) = f v(y)dxdρ(y) R N for v H 1 0 ().for all v L2 ρ (RN ;H 1 0 ()). Product structure: L 2 ρ(r N ;H 1 0 ()) = L 2 ρ(r N ) H 1 0 (). deterministic space H 1 0 (), stochastic space L 2 ρ(r N ). R N C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 6

8 Weak formulation Assume f H 1 () and a Y (, ) is uniformly bounded, 0 < a a Y (y,x) a < x, y R N. Theorem u Y is the unique element of L 2 ρ (RN ;H0 1 ()) such that a Y u Y v dxdρ = fv dxdρ R N for all v L 2 ρ(r N ;H0 1 ()). Furthermore, R N u Y L ρ (R N ;H 1 0 ()) 1 a f H 1 (). C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 7

9 Stochastic semi-discretization Let (ϕ µ ) µ Λ be an orthonormal basis of L 2 ρ(r N ) and u Y (y,x) = u µ (x)ϕ µ (y), (u µ ) µ Λ l 2( Λ;H0() 1 ). µ Λ efine a νµ (x) := a Y (y,x)ϕ µ (y)ϕ ν (y)dρ(y), µ,ν Λ, R N and f ν (x) := f(x) ϕ ν (y)dρ(y), ν Λ. R N Then using the test function v(x)ϕ ν (y) for v H0 1 (), ν Λ, a νµ (x) u µ (x) v(x)dx = f ν (x)v(x)dx. µ Λ System of deterministic equations for the coefficients of u Y. C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 8

10 Stochastic semi-discretization By Parseval s identity, u Y L 2 ρ (R N ;H 1 0 ()) = (u µ) µ Λ l 2 (Λ;H 1 0 ()). Theorem u Y L 2 ρ (RN ;H0 1 ()) satisfies a Y u Y vdxdρ = R N R N fvdxdρ v L 2 ρ (R N ;H 1 0 () ) if and only if (u µ ) µ Λ l 2 (Λ;H0 1 ()) satisfies a νµ u µ v dx = f ν v dx v H0 1 (), ν Λ. µ Λ C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 9

11 Tensor-product stochastic basis Construct orthonormal basis (ϕ µ ) µ Λ of L 2 ρ(r N ) with elements of the form ϕ µ (y) = ϕ m 1 ν 1 (y m1 )... ϕ m k ν k (y mk ). (ϕ m ν ) ν Λ m is an orthonormal basis of L 2 ρ m (R), such as polynomials piecewise polynomials wavelets C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 10

12 Example: orthonormal polynomials (P m n ) n N0 orthonormal polynomial basis of L 2 ρ m (R), P m 0 = 1, deg P m n = n Λ := l 1 (N; N 0 ) P µ := Pµ m m, m=1 ( P µ (y) = m supp m=1 µ µ Λ ) Pµ m m (y m ) 3 C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 11

13 Example: Haar wavelets C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 12

14 General tensor-product construction Let (ϕ m ν ) ν Λm be an orthonormal basis of L 2 ρ m (R) with ϕ m 0 = 1. Then (ϕ m ν ) ν m, m := Λ m \{0} is an orthonormal basis of L 2 ρ m (R)/R. For I F(N) a finite subset of N, ϕ µ := m I ϕ m µ m, µ I := m I m. efine W I := span{ϕ µ ; µ I } L 2 ρ (RN ). Then m I L 2 ρ m (R) = J I W J = #I k=0 J I #J=k W J. C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 13

15 General tensor-product construction Theorem (ϕ µ ) µ Λ, Λ := I F(N) I, is an orthonormal basis of L 2 ρ (RN ). Proof. (ϕ µ ) µ I is an orthonormal basis of W I for all I F(N) and L 2 ρ (R N) = I F(N) W I = k=0 I N #I=k W I. C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 14

16 Finite element approximation efine nested finite element spaces {0} = V 0 V 1... V j V j+1... H 1 0 (). For a sequence j = (j(µ)) µ Λ l 1 (Λ; N 0 ), define V j := v = ( v µ ϕ µ v = (v µ ) µ Λ ; v µ V j(µ) µ Λ L2 ρ R N ;H µ Λ The Galerkin projection ũ V j is determined by a νµ (x) ũ µ (x) ṽ(x)dx = f ν (x)ṽ(x)dx µ Λ for all ṽ V j(ν), ν Λ. C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 15

17 Finite element approximation Theorem There is a unique ũ V j such that a νµ ũ µ ṽ dx = f ν ṽ dx ṽ V j(ν), ν Λ. µ Λ It satisfies the bound and is quasi-optimal, ũ L 2 ρ (R N ;H 1 0 ()) 1 a f H 1 () a ũ u Y L 2 ρ (R N ;H0 1()) a inf w u Y L 2 ew V ρ (R N ;H0 1()). j C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 16

18 Summary We constructed tensor-product orthonormal bases of L 2 ρ(r N ), and used these to recast a stochastic boundary value problem as an infinite system of deterministic equations, which can be solved by Galerkin approximation using standard finite element spaces. Thank you for your attention! C.J. Gittelson Pro*oc Workshop 2009 in isentis p. 17

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Roman Andreev ETH ZÜRICH / 29 JAN 29 TOC of the Talk Motivation & Set-Up Model Problem Stochastic Galerkin FEM Conclusions & Outlook Motivation

More information

STOCHASTIC SAMPLING METHODS

STOCHASTIC SAMPLING METHODS STOCHASTIC SAMPLING METHODS APPROXIMATING QUANTITIES OF INTEREST USING SAMPLING METHODS Recall that quantities of interest often require the evaluation of stochastic integrals of functions of the solutions

More information

Solving the steady state diffusion equation with uncertainty Final Presentation

Solving the steady state diffusion equation with uncertainty Final Presentation Solving the steady state diffusion equation with uncertainty Final Presentation Virginia Forstall vhfors@gmail.com Advisor: Howard Elman elman@cs.umd.edu Department of Computer Science May 6, 2012 Problem

More information

Hierarchical Parallel Solution of Stochastic Systems

Hierarchical Parallel Solution of Stochastic Systems Hierarchical Parallel Solution of Stochastic Systems Second M.I.T. Conference on Computational Fluid and Solid Mechanics Contents: Simple Model of Stochastic Flow Stochastic Galerkin Scheme Resulting Equations

More information

Multilevel accelerated quadrature for elliptic PDEs with random diffusion. Helmut Harbrecht Mathematisches Institut Universität Basel Switzerland

Multilevel accelerated quadrature for elliptic PDEs with random diffusion. Helmut Harbrecht Mathematisches Institut Universität Basel Switzerland Multilevel accelerated quadrature for elliptic PDEs with random diffusion Mathematisches Institut Universität Basel Switzerland Overview Computation of the Karhunen-Loéve expansion Elliptic PDE with uniformly

More information

New Developments in LS-OPT - Robustness Studies

New Developments in LS-OPT - Robustness Studies 5. LS-DYNA - Anwenderforum, Ulm 2006 Robustheit / Optimierung I New Developments in LS-OPT - Robustness Studies Ken Craig, Willem Roux 2, Nielen Stander 2 Multidisciplinary Design Optimization Group University

More information

Sparse Tensor Methods for PDEs with Stochastic Data II: Convergence Rates of gpcfem

Sparse Tensor Methods for PDEs with Stochastic Data II: Convergence Rates of gpcfem Sparse Tensor Methods for PDEs with Stochastic Data II: Convergence Rates of gpcfem Christoph Schwab Seminar for Applied Mathematics ETH Zürich Albert Cohen (Paris, France) & Ron DeVore (Texas A& M) R.

More information

Research Article Multiresolution Analysis for Stochastic Finite Element Problems with Wavelet-Based Karhunen-Loève Expansion

Research Article Multiresolution Analysis for Stochastic Finite Element Problems with Wavelet-Based Karhunen-Loève Expansion Mathematical Problems in Engineering Volume 2012, Article ID 215109, 15 pages doi:10.1155/2012/215109 Research Article Multiresolution Analysis for Stochastic Finite Element Problems with Wavelet-Based

More information

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion:

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion: tifica Lecture 1: Computation of Karhunen-Loeve Expansion: Alexander Litvinenko http://sri-uq.kaust.edu.sa/ Stochastic PDEs We consider div(κ(x, ω) u) = f (x, ω) in G, u = 0 on G, with stochastic coefficients

More information

Solving the stochastic steady-state diffusion problem using multigrid

Solving the stochastic steady-state diffusion problem using multigrid IMA Journal of Numerical Analysis (2007) 27, 675 688 doi:10.1093/imanum/drm006 Advance Access publication on April 9, 2007 Solving the stochastic steady-state diffusion problem using multigrid HOWARD ELMAN

More information

Multi-Element Probabilistic Collocation Method in High Dimensions

Multi-Element Probabilistic Collocation Method in High Dimensions Multi-Element Probabilistic Collocation Method in High Dimensions Jasmine Foo and George Em Karniadakis Division of Applied Mathematics, Brown University, Providence, RI 02912 USA Abstract We combine multi-element

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

Karhunen-Loève Approximation of Random Fields by Generalized Fast Multipole Methods

Karhunen-Loève Approximation of Random Fields by Generalized Fast Multipole Methods Karhunen-Loève Approximation of Random Fields by Generalized Fast Multipole Methods C. Schwab and R.A. Todor Research Report No. 26- January 26 Seminar für Angewandte Mathematik Eidgenössische Technische

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

Collocation based high dimensional model representation for stochastic partial differential equations

Collocation based high dimensional model representation for stochastic partial differential equations Collocation based high dimensional model representation for stochastic partial differential equations S Adhikari 1 1 Swansea University, UK ECCM 2010: IV European Conference on Computational Mechanics,

More information

Space-time sparse discretization of linear parabolic equations

Space-time sparse discretization of linear parabolic equations Space-time sparse discretization of linear parabolic equations Roman Andreev August 2, 200 Seminar for Applied Mathematics, ETH Zürich, Switzerland Support by SNF Grant No. PDFMP2-27034/ Part of PhD thesis

More information

A Vector-Space Approach for Stochastic Finite Element Analysis

A Vector-Space Approach for Stochastic Finite Element Analysis A Vector-Space Approach for Stochastic Finite Element Analysis S Adhikari 1 1 Swansea University, UK CST2010: Valencia, Spain Adhikari (Swansea) Vector-Space Approach for SFEM 14-17 September, 2010 1 /

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems Efficient Solvers for Stochastic Finite Element Saddle Point Problems Catherine E. Powell c.powell@manchester.ac.uk School of Mathematics University of Manchester, UK Efficient Solvers for Stochastic Finite

More information

Fast Numerical Methods for Stochastic Computations: A Review

Fast Numerical Methods for Stochastic Computations: A Review COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol. 5, No. 2-4, pp. 242-272 Commun. Comput. Phys. February 2009 REVIEW ARTICLE Fast Numerical Methods for Stochastic Computations: A Review Dongbin Xiu Department

More information

Sobolev spaces, Trace theorems and Green s functions.

Sobolev spaces, Trace theorems and Green s functions. Sobolev spaces, Trace theorems and Green s functions. Boundary Element Methods for Waves Scattering Numerical Analysis Seminar. Orane Jecker October 21, 2010 Plan Introduction 1 Useful definitions 2 Distributions

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Arno Solin and Simo Särkkä Aalto University, Finland Workshop on Gaussian Process Approximation Copenhagen, Denmark, May 2015 Solin &

More information

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen PARAMetric UNCertainties, Budapest STOCHASTIC PROCESSES AND FIELDS Noémi Friedman Institut für Wissenschaftliches Rechnen, wire@tu-bs.de

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Numerical Functional Analysis

Numerical Functional Analysis Numerical Functional Analysis T. Betcke December 17, 28 These notes are in development and only for internal use at the University of Mancheser. For questions, comments or typos please e-mail timo.betcke@manchester.ac.uk.

More information

Numerical Solution for Random Forced SPDE via Galerkin Finite Element Method

Numerical Solution for Random Forced SPDE via Galerkin Finite Element Method Journal of mathematics and computer science 9 (014), 71-8 umerical Solution for Random Forced SE via Galerkin Finite Element ethod Rasoul aseri, A. alek 1 epartment of Applied athematics, Faculty of athematical

More information

Numerical Approximation of Stochastic Elliptic Partial Differential Equations

Numerical Approximation of Stochastic Elliptic Partial Differential Equations Numerical Approximation of Stochastic Elliptic Partial Differential Equations Hermann G. Matthies, Andreas Keese Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig wire@tu-bs.de

More information

The KPP minimal speed within large drift in two dimensions

The KPP minimal speed within large drift in two dimensions The KPP minimal speed within large drift in two dimensions Mohammad El Smaily Joint work with Stéphane Kirsch University of British Columbia & Pacific Institute for the Mathematical Sciences Banff, March-2010

More information

Stochastic methods for solving partial differential equations in high dimension

Stochastic methods for solving partial differential equations in high dimension Stochastic methods for solving partial differential equations in high dimension Marie Billaud-Friess Joint work with : A. Macherey, A. Nouy & C. Prieur marie.billaud-friess@ec-nantes.fr Centrale Nantes,

More information

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor RANDOM FIELDS AND GEOMETRY from the book of the same name by Robert Adler and Jonathan Taylor IE&M, Technion, Israel, Statistics, Stanford, US. ie.technion.ac.il/adler.phtml www-stat.stanford.edu/ jtaylor

More information

Lecture 1: Introduction to low-rank tensor representation/approximation. Center for Uncertainty Quantification. Alexander Litvinenko

Lecture 1: Introduction to low-rank tensor representation/approximation. Center for Uncertainty Quantification. Alexander Litvinenko tifica Lecture 1: Introduction to low-rank tensor representation/approximation Alexander Litvinenko http://sri-uq.kaust.edu.sa/ KAUST Figure : KAUST campus, 5 years old, approx. 7000 people (include 1400

More information

Multilevel stochastic collocations with dimensionality reduction

Multilevel stochastic collocations with dimensionality reduction Multilevel stochastic collocations with dimensionality reduction Ionut Farcas TUM, Chair of Scientific Computing in Computer Science (I5) 27.01.2017 Outline 1 Motivation 2 Theoretical background Uncertainty

More information

MGA Tutorial, September 08, 2004 Construction of Wavelets. Jan-Olov Strömberg

MGA Tutorial, September 08, 2004 Construction of Wavelets. Jan-Olov Strömberg MGA Tutorial, September 08, 2004 Construction of Wavelets Jan-Olov Strömberg Department of Mathematics Royal Institute of Technology (KTH) Stockholm, Sweden Department of Numerical Analysis and Computer

More information

Lévy Processes and Infinitely Divisible Measures in the Dual of afebruary Nuclear2017 Space 1 / 32

Lévy Processes and Infinitely Divisible Measures in the Dual of afebruary Nuclear2017 Space 1 / 32 Lévy Processes and Infinitely Divisible Measures in the Dual of a Nuclear Space David Applebaum School of Mathematics and Statistics, University of Sheffield, UK Talk at "Workshop on Infinite Dimensional

More information

CBS Constants and Their Role in Error Estimation for Stochastic Galerkin Finite Element Methods. Crowder, Adam J and Powell, Catherine E

CBS Constants and Their Role in Error Estimation for Stochastic Galerkin Finite Element Methods. Crowder, Adam J and Powell, Catherine E CBS Constants and Their Role in Error Estimation for Stochastic Galerkin Finite Element Methods Crowder, Adam J and Powell, Catherine E 2017 MIMS EPrint: 2017.18 Manchester Institute for Mathematical Sciences

More information

Notes Regarding the Karhunen Loève Expansion

Notes Regarding the Karhunen Loève Expansion Notes Regarding the Karhunen Loève Expansion 1 Properties of the Karhunen Loève Expansion As noted in Section 5.3 of [3], the Karhunen Loève expansion for a correlated second-order random field α(x, ω),

More information

H 2 -matrices with adaptive bases

H 2 -matrices with adaptive bases 1 H 2 -matrices with adaptive bases Steffen Börm MPI für Mathematik in den Naturwissenschaften Inselstraße 22 26, 04103 Leipzig http://www.mis.mpg.de/ Problem 2 Goal: Treat certain large dense matrices

More information

EFFICIENT STOCHASTIC GALERKIN METHODS FOR RANDOM DIFFUSION EQUATIONS

EFFICIENT STOCHASTIC GALERKIN METHODS FOR RANDOM DIFFUSION EQUATIONS EFFICIENT STOCHASTIC GALERKIN METHODS FOR RANDOM DIFFUSION EQUATIONS DONGBIN XIU AND JIE SHEN Abstract. We discuss in this paper efficient solvers for stochastic diffusion equations in random media. We

More information

Electrodynamics Qualifier Examination

Electrodynamics Qualifier Examination Electrodynamics Qualifier Examination August 15, 2007 General Instructions: In all cases, be sure to state your system of units. Show all your work, write only on one side of the designated paper, and

More information

Intro to harmonic analysis on groups Risi Kondor

Intro to harmonic analysis on groups Risi Kondor Risi Kondor Any (sufficiently smooth) function f on the unit circle (equivalently, any 2π periodic f ) can be decomposed into a sum of sinusoidal waves f(x) = k= c n e ikx c n = 1 2π f(x) e ikx dx 2π 0

More information

Sparse polynomial chaos expansions in engineering applications

Sparse polynomial chaos expansions in engineering applications DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Sparse polynomial chaos expansions in engineering applications B. Sudret G. Blatman (EDF R&D,

More information

Quarkonial frames of wavelet type - Stability, approximation and compression properties

Quarkonial frames of wavelet type - Stability, approximation and compression properties Quarkonial frames of wavelet type - Stability, approximation and compression properties Stephan Dahlke 1 Peter Oswald 2 Thorsten Raasch 3 ESI Workshop Wavelet methods in scientific computing Vienna, November

More information

Quantifying Uncertainty: Modern Computational Representation of Probability and Applications

Quantifying Uncertainty: Modern Computational Representation of Probability and Applications Quantifying Uncertainty: Modern Computational Representation of Probability and Applications Hermann G. Matthies with Andreas Keese Technische Universität Braunschweig wire@tu-bs.de http://www.wire.tu-bs.de

More information

Function spaces on the Koch curve

Function spaces on the Koch curve Function spaces on the Koch curve Maryia Kabanava Mathematical Institute Friedrich Schiller University Jena D-07737 Jena, Germany Abstract We consider two types of Besov spaces on the Koch curve, defined

More information

Krylov subspace methods for linear systems with tensor product structure

Krylov subspace methods for linear systems with tensor product structure Krylov subspace methods for linear systems with tensor product structure Christine Tobler Seminar for Applied Mathematics, ETH Zürich 19. August 2009 Outline 1 Introduction 2 Basic Algorithm 3 Convergence

More information

Function spaces and stochastic processes on fractals I. Takashi Kumagai. (RIMS, Kyoto University, Japan)

Function spaces and stochastic processes on fractals I. Takashi Kumagai. (RIMS, Kyoto University, Japan) Function spaces and stochastic processes on fractals I Takashi Kumagai (RIMS, Kyoto University, Japan) http://www.kurims.kyoto-u.ac.jp/~kumagai/ International workshop on Fractal Analysis September 11-17,

More information

Sampling and Low-Rank Tensor Approximations

Sampling and Low-Rank Tensor Approximations Sampling and Low-Rank Tensor Approximations Hermann G. Matthies Alexander Litvinenko, Tarek A. El-Moshely +, Brunswick, Germany + MIT, Cambridge, MA, USA wire@tu-bs.de http://www.wire.tu-bs.de $Id: 2_Sydney-MCQMC.tex,v.3

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination University of Illinois at Chicago Department of Physics Electricity & Magnetism Qualifying Examination January 7, 28 9. am 12: pm Full credit can be achieved from completely correct answers to 4 questions.

More information

TD 1: Hilbert Spaces and Applications

TD 1: Hilbert Spaces and Applications Université Paris-Dauphine Functional Analysis and PDEs Master MMD-MA 2017/2018 Generalities TD 1: Hilbert Spaces and Applications Exercise 1 (Generalized Parallelogram law). Let (H,, ) be a Hilbert space.

More information

Analysis and finite element approximations of stochastic optimal control problems constrained by stochastic elliptic partial differential equations

Analysis and finite element approximations of stochastic optimal control problems constrained by stochastic elliptic partial differential equations Retrospective Theses and issertations Iowa State University Capstones, Theses and issertations 2008 Analysis and finite element approximations of stochastic optimal control problems constrained by stochastic

More information

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes TTU, October 26, 2012 p. 1/3 Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes Hao Zhang Department of Statistics Department of Forestry and Natural Resources Purdue University

More information

9 Brownian Motion: Construction

9 Brownian Motion: Construction 9 Brownian Motion: Construction 9.1 Definition and Heuristics The central limit theorem states that the standard Gaussian distribution arises as the weak limit of the rescaled partial sums S n / p n of

More information

Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients

Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients Università degli Studi del Sannio Dipartimento e Facoltà di Ingegneria, Benevento, Italia Random fields

More information

COMPRESSIVE SENSING PETROV-GALERKIN APPROXIMATION OF HIGH-DIMENSIONAL PARAMETRIC OPERATOR EQUATIONS

COMPRESSIVE SENSING PETROV-GALERKIN APPROXIMATION OF HIGH-DIMENSIONAL PARAMETRIC OPERATOR EQUATIONS COMPRESSIVE SENSING PETROV-GALERKIN APPROXIMATION OF HIGH-DIMENSIONAL PARAMETRIC OPERATOR EQUATIONS HOLGER RAUHUT AND CHRISTOPH SCHWAB Abstract. We analyze the convergence of compressive sensing based

More information

Chapter 2 Spectral Expansions

Chapter 2 Spectral Expansions Chapter 2 Spectral Expansions In this chapter, we discuss fundamental and practical aspects of spectral expansions of random model data and of model solutions. We focus on a specific class of random process

More information

recent developments of approximation theory and greedy algorithms

recent developments of approximation theory and greedy algorithms recent developments of approximation theory and greedy algorithms Peter Binev Department of Mathematics and Interdisciplinary Mathematics Institute University of South Carolina Reduced Order Modeling in

More information

Schwarz Preconditioner for the Stochastic Finite Element Method

Schwarz Preconditioner for the Stochastic Finite Element Method Schwarz Preconditioner for the Stochastic Finite Element Method Waad Subber 1 and Sébastien Loisel 2 Preprint submitted to DD22 conference 1 Introduction The intrusive polynomial chaos approach for uncertainty

More information

arxiv: v1 [math.na] 3 Apr 2019

arxiv: v1 [math.na] 3 Apr 2019 arxiv:1904.02017v1 [math.na] 3 Apr 2019 Poly-Sinc Solution of Stochastic Elliptic Differential Equations Maha Youssef and Roland Pulch Institute of Mathematics and Computer Science, University of Greifswald,

More information

Research Collection. Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs. Report. ETH Library

Research Collection. Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs. Report. ETH Library Research Collection Report Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs Author(s): Abdulle, Assyr; Barth, Andrea; Schwab, Christoph Publication Date: 2012 Permanent Link: https://doi.org/10.3929/ethz-a-010394923

More information

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically Finite difference and finite element methods Lecture 1 Scope of the course Analysis and implementation of numerical methods for pricing options. Models: Black-Scholes, stochastic volatility, exponential

More information

Analysis Preliminary Exam Workshop: Hilbert Spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces Analysis Preliminary Exam Workshop: Hilbert Spaces 1. Hilbert spaces A Hilbert space H is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If (, ) : H H

More information

How much should we rely on Besov spaces as a framework for the mathematical study of images?

How much should we rely on Besov spaces as a framework for the mathematical study of images? How much should we rely on Besov spaces as a framework for the mathematical study of images? C. Sinan Güntürk Princeton University, Program in Applied and Computational Mathematics Abstract Relations between

More information

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets 9.520 Class 22, 2004 Tomaso Poggio and Sayan Mukherjee About this class Goal To introduce an alternate perspective of RKHS via integral operators

More information

Bath Institute For Complex Systems

Bath Institute For Complex Systems BICS Bath Institute for Complex Systems Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and its Application to Multilevel Monte Carlo Methods Julia Charrier, Robert Scheichl and

More information

Model Reduction, Centering, and the Karhunen-Loeve Expansion

Model Reduction, Centering, and the Karhunen-Loeve Expansion Model Reduction, Centering, and the Karhunen-Loeve Expansion Sonja Glavaški, Jerrold E. Marsden, and Richard M. Murray 1 Control and Dynamical Systems, 17-81 California Institute of Technology Pasadena,

More information

Lecture 12: Detailed balance and Eigenfunction methods

Lecture 12: Detailed balance and Eigenfunction methods Lecture 12: Detailed balance and Eigenfunction methods Readings Recommended: Pavliotis [2014] 4.5-4.7 (eigenfunction methods and reversibility), 4.2-4.4 (explicit examples of eigenfunction methods) Gardiner

More information

arxiv: v1 [math.na] 25 Apr 2017

arxiv: v1 [math.na] 25 Apr 2017 Wiener-Hermite Polynomial Expansion for Multivariate Gaussian Probability Measures Sharif Rahman 1 Applied Mathematical and Computational Sciences, The University of Iowa, Iowa City, Iowa 2242, U.S.A.

More information

Variational Formulations

Variational Formulations Chapter 2 Variational Formulations In this chapter we will derive a variational (or weak) formulation of the elliptic boundary value problem (1.4). We will discuss all fundamental theoretical results that

More information

. Frobenius-Perron Operator ACC Workshop on Uncertainty Analysis & Estimation. Raktim Bhattacharya

. Frobenius-Perron Operator ACC Workshop on Uncertainty Analysis & Estimation. Raktim Bhattacharya .. Frobenius-Perron Operator 2014 ACC Workshop on Uncertainty Analysis & Estimation Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. uq.tamu.edu

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

Introduction to Computational Stochastic Differential Equations

Introduction to Computational Stochastic Differential Equations Introduction to Computational Stochastic Differential Equations Gabriel J. Lord Catherine E. Powell Tony Shardlow Preface Techniques for solving many of the differential equations traditionally used by

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Variational Problems of the Dirichlet BVP of the Poisson Equation 1 For the homogeneous

More information

Solution Sheet 3. Solution Consider. with the metric. We also define a subset. and thus for any x, y X 0

Solution Sheet 3. Solution Consider. with the metric. We also define a subset. and thus for any x, y X 0 Solution Sheet Throughout this sheet denotes a domain of R n with sufficiently smooth boundary. 1. Let 1 p

More information

Multi-Level Monte-Carlo Finite Element Methods for stochastic elliptic variational inequalities

Multi-Level Monte-Carlo Finite Element Methods for stochastic elliptic variational inequalities Multi-Level Monte-Carlo Finite Element Methods for stochastic elliptic variational inequalities R. Kornhuber and C. Schwab and M. Wolf Research Report No. 2013-12 April 2013 Seminar für Angewandte Mathematik

More information

Simulation of random fields in structural design. Lectures. Sebastian Wolff

Simulation of random fields in structural design. Lectures. Sebastian Wolff Lectures Simulation of random fields in structural design Sebastian Wolff presented at the 11th International Probabilistic Workshop, Brno 2013 Source: www.dynardo.de/en/library Novák and Vořechovský:

More information

Dynamic response of structures with uncertain properties

Dynamic response of structures with uncertain properties Dynamic response of structures with uncertain properties S. Adhikari 1 1 Chair of Aerospace Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK International

More information

Low-rank techniques applied to moment equations for the stochastic Darcy problem with lognormal permeability

Low-rank techniques applied to moment equations for the stochastic Darcy problem with lognormal permeability Low-rank techniques applied to moment equations for the stochastic arcy problem with lognormal permeability Francesca Bonizzoni 1,2 and Fabio Nobile 1 1 CSQI-MATHICSE, EPFL, Switzerland 2 MOX, Politecnico

More information

The Lévy-Itô decomposition and the Lévy-Khintchine formula in31 themarch dual of 2014 a nuclear 1 space. / 20

The Lévy-Itô decomposition and the Lévy-Khintchine formula in31 themarch dual of 2014 a nuclear 1 space. / 20 The Lévy-Itô decomposition and the Lévy-Khintchine formula in the dual of a nuclear space. Christian Fonseca-Mora School of Mathematics and Statistics, University of Sheffield, UK Talk at "Stochastic Processes

More information

arxiv: v3 [math.na] 10 Sep 2015

arxiv: v3 [math.na] 10 Sep 2015 ON EFFICIENT CONSTRUCTION OF STOCHASTIC MOMENT MATRICES arxiv:1502.07562v3 math.na] 10 Sep 2015 HARRI HAKULA AND MATTI LEINONEN Abstract. We consider the construction of the stochastic moment matrices

More information

November 7, 2002 GALERKIN FINITE ELEMENT APPROXIMATIONS OF STOCHASTIC ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

November 7, 2002 GALERKIN FINITE ELEMENT APPROXIMATIONS OF STOCHASTIC ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS November 7, 00 GALERKIN FINITE ELEMENT APPROXIMATIONS OF STOCHASTIC ELLIPTIC PARTIAL IFFERENTIAL EQUATIONS IVO BABUŠKA, RAÚL TEMPONE AN GEORGIOS E. ZOURARIS Abstract. We describe and analyze two numerical

More information

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Scuola di Dottorato THE WAVE EQUATION Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Lucio Demeio - DIISM wave equation 1 / 44 1 The Vibrating String Equation 2 Second

More information

Math 660-Lecture 15: Finite element spaces (I)

Math 660-Lecture 15: Finite element spaces (I) Math 660-Lecture 15: Finite element spaces (I) (Chapter 3, 4.2, 4.3) Before we introduce the concrete spaces, let s first of all introduce the following important lemma. Theorem 1. Let V h consists of

More information

Concentration Ellipsoids

Concentration Ellipsoids Concentration Ellipsoids ECE275A Lecture Supplement Fall 2008 Kenneth Kreutz Delgado Electrical and Computer Engineering Jacobs School of Engineering University of California, San Diego VERSION LSECE275CE

More information

Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances

Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances Ilaria Perugia Dipartimento di Matematica Università di Pavia (Italy) In collaboration with Ralf Hiptmair, Christoph Schwab,

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Approximation of fluid-structure interaction problems with Lagrange multiplier

Approximation of fluid-structure interaction problems with Lagrange multiplier Approximation of fluid-structure interaction problems with Lagrange multiplier Daniele Boffi Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/boffi May 30, 2016 Outline

More information

Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method

Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method Jiachuan He University of Texas at Austin April 15, 2016 Jiachuan

More information

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt.

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt. SINGAPORE SHANGHAI Vol TAIPEI - Interdisciplinary Mathematical Sciences 19 Kernel-based Approximation Methods using MATLAB Gregory Fasshauer Illinois Institute of Technology, USA Michael McCourt University

More information

Bayesian inverse problems with Laplacian noise

Bayesian inverse problems with Laplacian noise Bayesian inverse problems with Laplacian noise Remo Kretschmann Faculty of Mathematics, University of Duisburg-Essen Applied Inverse Problems 2017, M27 Hangzhou, 1 June 2017 1 / 33 Outline 1 Inverse heat

More information

A Data-Driven Stochastic Method

A Data-Driven Stochastic Method A ata-riven Stochastic Method Mulin Cheng, Thomas Y. Hou, Pengchong Yan Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 96 Abstract Stochastic partial differential

More information

A sparse grid stochastic collocation method for elliptic partial differential equations with random input data

A sparse grid stochastic collocation method for elliptic partial differential equations with random input data A sparse grid stochastic collocation method for elliptic partial differential equations with random input data F. Nobile R. Tempone C. G. Webster June 22, 2006 Abstract This work proposes and analyzes

More information

TENSOR TRAIN APPROXIMATION OF MOMENT EQUATIONS FOR THE LOG-NORMAL DARCY PROBLEM

TENSOR TRAIN APPROXIMATION OF MOMENT EQUATIONS FOR THE LOG-NORMAL DARCY PROBLEM TENSOR TRAIN APPROXIMATION OF MOMENT EQUATIONS FOR THE LOG-NORMAL DARCY PROBLEM FRANCESCA BONIZZONI, FABIO NOBILE, AND DANIEL KRESSNER Abstract. We study the Darcy problem with log-normal permeability,

More information

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function.

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Taylor Series (Sect. 10.8) Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Review: Power series define functions Remarks:

More information

DFG-Schwerpunktprogramm 1324

DFG-Schwerpunktprogramm 1324 DFG-Schwerpunktprogramm 1324 Extraktion quantifizierbarer Information aus komplexen Systemen Adaptive Wavelet Methods for Elliptic Stochastic Partial Differential Equations P. A. Cioica, S. Dahlke, N.

More information

UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA

UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

UDC Anderson-Darling and New Weighted Cramér-von Mises Statistics. G. V. Martynov

UDC Anderson-Darling and New Weighted Cramér-von Mises Statistics. G. V. Martynov UDC 519.2 Anderson-Darling and New Weighted Cramér-von Mises Statistics G. V. Martynov Institute for Information Transmission Problems of the RAS, Bolshoy Karetny per., 19, build.1, Moscow, 12751, Russia

More information

Karhunen-Loève decomposition of Gaussian measures on Banach spaces

Karhunen-Loève decomposition of Gaussian measures on Banach spaces Karhunen-Loève decomposition of Gaussian measures on Banach spaces Jean-Charles Croix jean-charles.croix@emse.fr Génie Mathématique et Industriel (GMI) First workshop on Gaussian processes at Saint-Etienne

More information