Finite and Boundary Element Methods in Acoustics

Size: px
Start display at page:

Download "Finite and Boundary Element Methods in Acoustics"

Transcription

1 Finite and Boundary Element Methods in Acoustics W. Kreuzer, Z. Chen, H. Waubke Austrian Academy of Sciences, Acoustics Research Institute ARI meets NuHAG Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 1 / 13

2 Application Finite Elements Vibrations in stoch. layers Boundary Elements Noise Barriers Vibrations in Tunnels FMM-BEM Calc. of HRTFs Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 2 / 13

3 FEM Example: Laplace Equation, weighted residual 2 u = 0, 2 uωdω = 0 Gauss-Green theorem 2 uωdx = Ω Γ Ω u n ωdγ u ωdω Ω Discretize Ω with a grid of simple geometric elements and approximation of u with basis u(x) = u i ψ i (x) Choose weighting function ω, f.e. Galerkin: ψ m (x) Linear system of equations Ku = f Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 3 / 13

4 BEM Lot of possibilities to choose ω Fundamental solution: Solution of 2 ω = δ(ξ x) Second time Gauss-Green theorem 2 u uωdx = Ω Γ n ωdγ u ωdω Ω u = n ωdγ u w n dγ + Ω Γ u 2 ωdω = uδ(ξ x)dω = Ω Γ Ω u 2 ωdω u(ξ) ξ Ω 1 2 u(ξ) ξ Γ 0 ξ / Ω Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 4 / 13

5 Boundary Integral Equation κu(ξ) + u ω Γ n dγ = u Γ n ωdγ 2D: ω = 1 2π log r, r = ξ x 3D: ω = 1 4πr Discretization linear system of equations Only necessary for points on boundary Once values for boundary are calculated, results for ξ / Γ are easy to get Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 5 / 13

6 FEM vs BEM FEM (large) sparse sym. matrix mesh for entire domain simple integrals widely applicable BEM (smaller) nonsym. fully pop. matrix mesh only for boundary singular integrals restricted to some problems What if there is no fundamental solution? What if the system gets too big FMM Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 6 / 13

7 No fundamental solution? No BEM without fundamental solution G(ξ, x) Solution of the problem Lu = 0 with a singularity at ξ Fourier transformation F LG = δ F LĜ = 1 Calculation of approximation for G in the Fourier domain on some grid Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 7 / 13

8 Example Vibrations in tunnels immerged in orthotropic layered soil Propagation of waves in soil without tunnel with pointload (δ functional) at different depths z Deformation and stresses at different depths z After Fourier backtransformation w.r.t. y, results from above are taken for BEM-formulation of the tunnel κu(ξ) + u G Γ n dγ = u Γ n GdΓ Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 8 / 13

9 Example Vibrations in tunnels immerged in orthotropic layered soil Propagation of waves in soil without tunnel with pointload (δ functional) at different depths z Deformation and stresses at different depths z After Fourier backtransformation w.r.t. y, results from above are taken for BEM-formulation of the tunnel κu(ξ) + u G Γ n dγ = u Γ n GdΓ Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 8 / 13

10 Example Vibrations in tunnels immerged in orthotropic layered soil Propagation of waves in soil without tunnel with pointload (δ functional) at different depths z Deformation and stresses at different depths z After Fourier backtransformation w.r.t. y, results from above are taken for BEM-formulation of the tunnel κu(ξ) + u G Γ n dγ = u Γ n GdΓ Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 8 / 13

11 Example Vibrations in tunnels immerged in orthotropic layered soil Propagation of waves in soil without tunnel with pointload (δ functional) at different depths z Deformation and stresses at different depths z After Fourier backtransformation w.r.t. y, results from above are taken for BEM-formulation of the tunnel κu(ξ) + u G Γ n dγ = u Γ n GdΓ Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 8 / 13

12 Example Vibrations in tunnels immerged in orthotropic layered soil Propagation of waves in soil without tunnel with pointload (δ functional) at different depths z Deformation and stresses at different depths z After Fourier backtransformation w.r.t. y, results from above are taken for BEM-formulation of the tunnel κu(ξ) + u G Γ n dγ = u Γ n GdΓ Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 8 / 13

13 Example Vibrations in tunnels immerged in orthotropic layered soil Propagation of waves in soil without tunnel with pointload (δ functional) at different depths z Deformation and stresses at different depths z After Fourier backtransformation w.r.t. y, results from above are taken for BEM-formulation of the tunnel κu(ξ) + u G Γ n dγ = u Γ n GdΓ Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 8 / 13

14 Example Vibrations in tunnels immerged in orthotropic layered soil Propagation of waves in soil without tunnel with pointload (δ functional) at different depths z Deformation and stresses at different depths z After Fourier backtransformation w.r.t. y, results from above are taken for BEM-formulation of the tunnel κu(ξ) + u G Γ n dγ = u Γ n GdΓ Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 8 / 13

15 Orthotropic layers No singularity in the Fourier domain Problems with backtransformation No FFT possible Interpolation with αe β y, αe βy2??? Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 9 / 13

16 Orthotropic layers No singularity in the Fourier domain Problems with backtransformation No FFT possible Interpolation with αe β y, αe βy2??? Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 9 / 13

17 Orthotropic layers No singularity in the Fourier domain Problems with backtransformation No FFT possible Interpolation with αe β y, αe βy2??? Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 9 / 13

18 HRTFs Localization of sound sources dependent on the form of the pinna Calcualtion of acoustic pressure on the head Model has about nodes and over elements Too big for BEM Fast Multipole Method Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 10 / 13

19 HRTFs Localization of sound sources dependent on the form of the pinna Calcualtion of acoustic pressure on the head Model has about nodes and over elements Too big for BEM Fast Multipole Method Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 10 / 13

20 FMM Originally developed for N-body problems Man-in-the-middle principle Near field classical BEM Far field fast mulitipole methode Single or multilevel Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 11 / 13

21 FMM Originally developed for N-body problems Man-in-the-middle principle Near field classical BEM Far field fast mulitipole methode Single or multilevel Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 11 / 13

22 FMM Originally developed for N-body problems Man-in-the-middle principle Near field classical BEM Far field fast mulitipole methode Single or multilevel Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 11 / 13

23 FMM Originally developed for N-body problems Man-in-the-middle principle Near field classical BEM Far field fast mulitipole methode Single or multilevel Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 11 / 13

24 FMM Originally developed for N-body problems Man-in-the-middle principle Near field classical BEM Far field fast mulitipole methode Single or multilevel Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 11 / 13

25 Helmholtz and FMM Helmholtz equation 2 Φ(x) + kφ(x) = 0 Fundamental solution: G(x, y) = eikr 4πr, r = x y expansion of G(x,y) possible e i D+d D + d = ik 4π (2l + 1)i l h l (kd) l S e iskd P l (sˆd)ds with ˆD = D D, h l(x) Hankel functions, P l (x) Legendre polynomials (h l for l ) Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 12 / 13

26 Helmholtz and FMM Helmholtz equation 2 Φ(x) + kφ(x) = 0 Fundamental solution: G(x, y) = eikr 4πr, r = x y expansion of G(x,y) possible Φ(x) = ik 4π S e ik(x z 2)s M L (s, z 2 z 1 ) A e ik(z 1 y a)s q a ds a=1 Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 12 / 13

27 Acknowledgments/Literature Vibrations in orthotropic layers: BMVIT/FFG Pr HRTFs: FWF Pr. P-18401B15 Peter Hunter: FEM/BEM Notes Matthias Fischer: The Fast Multipole Boundary Element Method and its Application to Structured-Acoustic Field Interaction H. Waubke: Boundary Element Method for Isotropic Media with Random Shear Moduli, J. Comput. Acoust., 13(1) Z. Chen et al: A Formulation of the Fast Multipole Boundary Element Method (FMBEM) for Acoustic Radiation and Scattering from Three-Dimensional Structures, to appear Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets NuHAG 13 / 13

Fast Multipole BEM for Structural Acoustics Simulation

Fast Multipole BEM for Structural Acoustics Simulation Fast Boundary Element Methods in Industrial Applications Fast Multipole BEM for Structural Acoustics Simulation Matthias Fischer and Lothar Gaul Institut A für Mechanik, Universität Stuttgart, Germany

More information

An adaptive fast multipole boundary element method for the Helmholtz equation

An adaptive fast multipole boundary element method for the Helmholtz equation An adaptive fast multipole boundary element method for the Helmholtz equation Vincenzo Mallardo 1, Claudio Alessandri 1, Ferri M.H. Aliabadi 2 1 Department of Architecture, University of Ferrara, Italy

More information

FEM/FMBEM coupling for acoustic structure interaction and acoustic design sensitivity analysis with sound-absorbing materials

FEM/FMBEM coupling for acoustic structure interaction and acoustic design sensitivity analysis with sound-absorbing materials Boundary Elements and Other Mesh Reduction Methods XXXVIII 113 FEM/FMBEM coupling for acoustic structure interaction and acoustic design sensitivity analysis with sound-absorbing materials Y. M. Xu, H.

More information

Efficient calculation for evaluating vast amounts of quadrupole sources in BEM using fast multipole method

Efficient calculation for evaluating vast amounts of quadrupole sources in BEM using fast multipole method PROCEEDINGS of the 22 nd International Congress on Acoustics Boundary Element and Meshless Methods on Acoustics and Vibrations: Paper ICA2016-309 Efficient calculation for evaluating vast amounts of quadrupole

More information

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment Alastair J. Radcliffe Andreas Dedner Timo Betcke Warwick University, Coventry University College of London (UCL) U.K. Radcliffe

More information

High Frequency Scattering by Convex Polygons Stephen Langdon

High Frequency Scattering by Convex Polygons Stephen Langdon Bath, October 28th 2005 1 High Frequency Scattering by Convex Polygons Stephen Langdon University of Reading, UK Joint work with: Simon Chandler-Wilde Steve Arden Funded by: Leverhulme Trust University

More information

Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method

Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method Center for Turbulence Research Annual Research Briefs 2006 313 Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method By Y. Khalighi AND D. J. Bodony 1. Motivation

More information

Introduction to the Boundary Element Method

Introduction to the Boundary Element Method Introduction to the Boundary Element Method Salim Meddahi University of Oviedo, Spain University of Trento, Trento April 27 - May 15, 2015 1 Syllabus The Laplace problem Potential theory: the classical

More information

Green s Functions, Boundary Integral Equations and Rotational Symmetry

Green s Functions, Boundary Integral Equations and Rotational Symmetry Green s Functions, Boundary Integral Equations and Rotational Symmetry...or, How to Construct a Fast Solver for Stokes Equation Saibal De Advisor: Shravan Veerapaneni University of Michigan, Ann Arbor

More information

Gypsilab : a MATLAB toolbox for FEM-BEM coupling

Gypsilab : a MATLAB toolbox for FEM-BEM coupling Gypsilab : a MATLAB toolbox for FEM-BEM coupling François Alouges, (joint work with Matthieu Aussal) Workshop on Numerical methods for wave propagation and applications Sept. 1st 2017 Facts New numerical

More information

A Fourier Transform 3D-Model for Wave Propagation in layered orthotropic Media

A Fourier Transform 3D-Model for Wave Propagation in layered orthotropic Media A Fourier Transform 3D-Model for Wave Propagation in layered orthotropic Media F. Kramer*, H. Waubke Abstract In order to assess and prevent noise emmission in the environment of traffic routes, prognosis

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 HIGH FREQUENCY ACOUSTIC SIMULATIONS VIA FMM ACCELERATED BEM

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 HIGH FREQUENCY ACOUSTIC SIMULATIONS VIA FMM ACCELERATED BEM 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 HIGH FREQUENCY ACOUSTIC SIMULATIONS VIA FMM ACCELERATED BEM PACS: 43.20.Fn Gumerov, Nail A.; Duraiswami, Ramani; Fantalgo LLC, 7496

More information

Mathematics in Acoustics

Mathematics in Acoustics Mathematics in Acoustics Peter Balazs Acoustics Research Institute (ARI) Austrian Academy of Sciences Peter Balazs (ARI) Mathematics in Acoustics 1 / 21 Overview: 1 Applied Mathematics Peter Balazs (ARI)

More information

New Developments of Frequency Domain Acoustic Methods in LS-DYNA

New Developments of Frequency Domain Acoustic Methods in LS-DYNA 11 th International LS-DYNA Users Conference Simulation (2) New Developments of Frequency Domain Acoustic Methods in LS-DYNA Yun Huang 1, Mhamed Souli 2, Rongfeng Liu 3 1 Livermore Software Technology

More information

Chapter 5 Fast Multipole Methods

Chapter 5 Fast Multipole Methods Computational Electromagnetics; Chapter 1 1 Chapter 5 Fast Multipole Methods 5.1 Near-field and far-field expansions Like the panel clustering, the Fast Multipole Method (FMM) is a technique for the fast

More information

OPAC102. The Acoustic Wave Equation

OPAC102. The Acoustic Wave Equation OPAC102 The Acoustic Wave Equation Acoustic waves in fluid Acoustic waves constitute one kind of pressure fluctuation that can exist in a compressible fluid. The restoring forces responsible for propagating

More information

Sound Radiation Modes of a Tire on a Reflecting Surface

Sound Radiation Modes of a Tire on a Reflecting Surface Purdue e-pubs Publications of the Ray W. School of Mechanical Engineering 7-2004 Sound Radiation Modes of a Tire on a Reflecting Surface J Stuart Bolton, bolton@purdue.edu Kiho Yum Follow this and additional

More information

A new 9-point sixth-order accurate compact finite difference method for the Helmholtz equation

A new 9-point sixth-order accurate compact finite difference method for the Helmholtz equation A new 9-point sixth-order accurate compact finite difference method for the Helmholtz equation Majid Nabavi, M. H. Kamran Siddiqui, Javad Dargahi Department of Mechanical and Industrial Engineering, Concordia

More information

Fast Multipole Methods for Incompressible Flow Simulation

Fast Multipole Methods for Incompressible Flow Simulation Fast Multipole Methods for Incompressible Flow Simulation Nail A. Gumerov & Ramani Duraiswami Institute for Advanced Computer Studies University of Maryland, College Park Support of NSF awards 0086075

More information

Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates

Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates Kauê Werner and Júlio A. Cordioli. Department of Mechanical Engineering Federal University of Santa Catarina

More information

Kirchhoff, Fresnel, Fraunhofer, Born approximation and more

Kirchhoff, Fresnel, Fraunhofer, Born approximation and more Kirchhoff, Fresnel, Fraunhofer, Born approximation and more Oberseminar, May 2008 Maxwell equations Or: X-ray wave fields X-rays are electromagnetic waves with wave length from 10 nm to 1 pm, i.e., 10

More information

Multipole-Based Preconditioners for Sparse Linear Systems.

Multipole-Based Preconditioners for Sparse Linear Systems. Multipole-Based Preconditioners for Sparse Linear Systems. Ananth Grama Purdue University. Supported by the National Science Foundation. Overview Summary of Contributions Generalized Stokes Problem Solenoidal

More information

BOUNDARY ELEMENT METHOD IN REFRACTIVE MEDIA

BOUNDARY ELEMENT METHOD IN REFRACTIVE MEDIA BOUDARY ELEMET METHOD I REFRACTIVE MEDIA David R. Bergman Exact Solution Scientific Consulting LLC, Morristown J, USA email: davidrbergman@essc-llc.com Boundary Element Method (BEM), an application of

More information

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications)

Chapter 6. Finite Element Method. Literature: (tiny selection from an enormous number of publications) Chapter 6 Finite Element Method Literature: (tiny selection from an enormous number of publications) K.J. Bathe, Finite Element procedures, 2nd edition, Pearson 2014 (1043 pages, comprehensive). Available

More information

Calculation of sound radiation in infinite domain using a meshless method

Calculation of sound radiation in infinite domain using a meshless method PROCEEDINGS of the 22 nd International Congress on Acoustics Structural Acoustics and Vibration: Paper ICA2016-41 Calculation of sound radiation in infinite domain using a meshless method Shaowei Wu (a),

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 3: Finite Elements in 2-D Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods 1 / 18 Outline 1 Boundary

More information

REAL TIME CALCULATION OF THE HEAD RELATED TRANSFER FUNCTION BASED ON THE BOUNDARY ELEMENT METHOD

REAL TIME CALCULATION OF THE HEAD RELATED TRANSFER FUNCTION BASED ON THE BOUNDARY ELEMENT METHOD REAL TIME CALCULATION OF THE HEAD RELATED TRANSFER FUNCTION BASED ON THE BOUNDARY ELEMENT METHOD Shiro Ise Makoto Otani Department of Architecture and Architectural Systems Faculty of Engineering, Kyoto

More information

FastMMLib: a generic Fast Multipole Method library. Eric DARRIGRAND. IRMAR Université de Rennes 1

FastMMLib: a generic Fast Multipole Method library. Eric DARRIGRAND. IRMAR Université de Rennes 1 FastMMLib: a generic Fast Multipole Method library Eric DARRIGRAND joint work with Yvon LAFRANCHE IRMAR Université de Rennes 1 Outline Introduction to FMM Historically SVD principle A first example of

More information

A Fast Regularized Boundary Integral Method for Practical Acoustic Problems

A Fast Regularized Boundary Integral Method for Practical Acoustic Problems Copyright 2013 Tech Science Press CMES, vol.91, no.6, pp.463-484, 2013 A Fast Regularized Boundary Integral Method for Practical Acoustic Problems Z.Y. Qian, Z.D. Han 1, and S.N. Atluri 1,2 Abstract: To

More information

Multilevel Multi-Integration Algorithm for Acoustics

Multilevel Multi-Integration Algorithm for Acoustics Multilevel Multi-Integration Algorithm for Acoustics Isaías Hernández Ramírez TABLE OF CONTENTS 1 Introduction 1 1.1 Sources of sound................................ 2 1.2 Measurement of sound.............................

More information

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials Acoustics and Vibrations Group Université de Sherbrooke, QC CANADA Département génie mécanique Université de Sherbrooke Sherbrooke, QC CANADA Tel.: (819) 821-7157 Fax: (819) 821-7163 A 3 D finite element

More information

Acoustic Radiation Modes of a Tire on a Reflecting Surface

Acoustic Radiation Modes of a Tire on a Reflecting Surface Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 3-2005 Acoustic Radiation Modes of a Tire on a Reflecting Surface Kiho Yum Purdue University

More information

Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method ABSTRACT:

Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method ABSTRACT: Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method Yun Hang, Mhamed Souli, Rogelio Perez Livermore Software Technology Corporation USA & University of Lille Laboratoire

More information

Side branch resonators modelling with Green s function methods

Side branch resonators modelling with Green s function methods Side branch resonators modelling with Green s function methods E. Perrey-Debain, R. Maréchal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe Acoustique, Université de Technologie de Compiègne, France

More information

Explicit kernel-split panel-based Nyström schemes for planar or axisymmetric Helmholtz problems

Explicit kernel-split panel-based Nyström schemes for planar or axisymmetric Helmholtz problems z Explicit kernel-split panel-based Nyström schemes for planar or axisymmetric Helmholtz problems Johan Helsing Lund University Talk at Integral equation methods: fast algorithms and applications, Banff,

More information

Fast Multipole Methods for The Laplace Equation. Outline

Fast Multipole Methods for The Laplace Equation. Outline Fast Multipole Methods for The Laplace Equation Ramani Duraiswami Nail Gumerov Outline 3D Laplace equation and Coulomb potentials Multipole and local expansions Special functions Legendre polynomials Associated

More information

Efficient boundary element analysis of periodic sound scatterers

Efficient boundary element analysis of periodic sound scatterers Boundary Element and Meshless Methods in Acoustics and Vibrations: Paper ICA2016-418 Efficient boundary element analysis of periodic sound scatterers M. Karimi, P. Croaker, N. Kessissoglou 1 School of

More information

Fast Multipole Methods: Fundamentals & Applications. Ramani Duraiswami Nail A. Gumerov

Fast Multipole Methods: Fundamentals & Applications. Ramani Duraiswami Nail A. Gumerov Fast Multipole Methods: Fundamentals & Applications Ramani Duraiswami Nail A. Gumerov Week 1. Introduction. What are multipole methods and what is this course about. Problems from physics, mathematics,

More information

A STUDY OF FAST MULTIPOLE METHOD ON THE ANALYSIS OF 2D BARRIER

A STUDY OF FAST MULTIPOLE METHOD ON THE ANALYSIS OF 2D BARRIER A STUDY OF FAST ULTIPOLE ETHOD ON THE ANALYSIS OF D BARRIER C.-H. Wu * C.-N. Wang ** Department of Engineering Science and Ocean Engineering National Taiwan University Taipei Taiwan 67 R.O.C. T.-D. Wu

More information

Coercivity of high-frequency scattering problems

Coercivity of high-frequency scattering problems Coercivity of high-frequency scattering problems Valery Smyshlyaev Department of Mathematics, University College London Joint work with: Euan Spence (Bath), Ilia Kamotski (UCL); Comm Pure Appl Math 2015.

More information

Fast multipole boundary element method for the analysis of plates with many holes

Fast multipole boundary element method for the analysis of plates with many holes Arch. Mech., 59, 4 5, pp. 385 401, Warszawa 2007 Fast multipole boundary element method for the analysis of plates with many holes J. PTASZNY, P. FEDELIŃSKI Department of Strength of Materials and Computational

More information

A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES

A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES 43.40r Philippe JEAN; Jean-François RONDEAU Centre Scientifique et Technique du Bâtiment, 24 rue Joseph Fourier, 38400 Saint Martin

More information

Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundary Element Method

Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundary Element Method 10 th International LS-DYNA Users Conference Simulation Technolog (2) Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundar Element Method Yun Huang Livermore Software Technolog Corporation

More information

Fast and accurate methods for the discretization of singular integral operators given on surfaces

Fast and accurate methods for the discretization of singular integral operators given on surfaces Fast and accurate methods for the discretization of singular integral operators given on surfaces James Bremer University of California, Davis March 15, 2018 This is joint work with Zydrunas Gimbutas (NIST

More information

APPLICATION OF THE SPARSE CARDINAL SINE DECOMPOSITION TO 3D STOKES FLOWS

APPLICATION OF THE SPARSE CARDINAL SINE DECOMPOSITION TO 3D STOKES FLOWS F. Alouges, et al., Int. J. Comp. Meth. and Ep. Meas., Vol. 5, No. 3 (07) 387 394 APPLICATION OF THE SPARSE CARDINAL SINE DECOMPOSITION TO 3D STOKES FLOWS F. ALOUGES, M. AUSSAL, A. LEFEBVRE-LEPOT, F. PIGEONNEAU

More information

Hybrid Numerical Simulation of Electrostatic Force Microscopes Considering Charge Distribution

Hybrid Numerical Simulation of Electrostatic Force Microscopes Considering Charge Distribution PIERS ONLINE, VOL. 3, NO. 3, 2007 300 Hybrid Numerical Simulation of Electrostatic Force Microscopes Considering Charge Distribution U. B. Bala, M. Greiff, and W. Mathis Institute of Electromagnetic Theory

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN INTROUCTION TO FINITE ELEMENT METHOS ON ELLIPTIC EQUATIONS LONG CHEN CONTENTS 1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite ifference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume

More information

ON THE COUPLING OF BEM AND FEM FOR EXTERIOR PROBLEMS FOR THE HELMHOLTZ EQUATION

ON THE COUPLING OF BEM AND FEM FOR EXTERIOR PROBLEMS FOR THE HELMHOLTZ EQUATION MATHEMATICS OF COMPUTATION Volume 68, Number 227, Pages 945 953 S 0025-5718(99)01064-9 Article electronically published on February 15, 1999 ON THE COUPLING OF BEM AND FEM FOR EXTERIOR PROBLEMS FOR THE

More information

Introduction to Finite Element Method

Introduction to Finite Element Method Introduction to Finite Element Method Dr. Rakesh K Kapania Aerospace and Ocean Engineering Department Virginia Polytechnic Institute and State University, Blacksburg, VA AOE 524, Vehicle Structures Summer,

More information

Grid Generation and Applications

Grid Generation and Applications Grid Generation and Applications Acoustic Scattering from Arbitrary Shape Obstacles.5 Fictitous infinite boundary.5 C.5.5 Ω δ.5.5.5.5 Boundary Value Problem: Acoustic Scattering (p sc ) tt = c p sc, x

More information

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain March 4-5, 2015 Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain M. Bonnasse-Gahot 1,2, H. Calandra 3, J. Diaz 1 and S. Lanteri 2

More information

Course Requirements. Course Mechanics. Projects & Exams. Homework. Week 1. Introduction. Fast Multipole Methods: Fundamentals & Applications

Course Requirements. Course Mechanics. Projects & Exams. Homework. Week 1. Introduction. Fast Multipole Methods: Fundamentals & Applications Week 1. Introduction. Fast Multipole Methods: Fundamentals & Applications Ramani Duraiswami Nail A. Gumerov What are multipole methods and what is this course about. Problems from phsics, mathematics,

More information

Lecture 8: Boundary Integral Equations

Lecture 8: Boundary Integral Equations CBMS Conference on Fast Direct Solvers Dartmouth College June 23 June 27, 2014 Lecture 8: Boundary Integral Equations Gunnar Martinsson The University of Colorado at Boulder Research support by: Consider

More information

Muffler Transmission Loss Simple Expansion Chamber

Muffler Transmission Loss Simple Expansion Chamber Muffler Transmission Loss Simple Expansion Chamber 1 Introduction The main objectives of this Demo Model are Demonstrate the ability of Coustyx to model a muffler using Indirect model and solve the acoustics

More information

ICSV14 Cairns Australia 9-12 July, 2007

ICSV14 Cairns Australia 9-12 July, 2007 ICSV14 Cairns Australia 9-1 July, 7 STUDY ON THE CHARACTERISTICS OF VIBRATION AND ACOUSTIC RADIATION OF DAMAGED STIFFENED PANELS Hong Ming 1, Guo Xin-yi, Liu Lian-hai 3 and Li Gen-tian 4 1 Department of

More information

Computational Modelling of Acoustic Scattering of a Sound Source in the Vicinity of the Ground

Computational Modelling of Acoustic Scattering of a Sound Source in the Vicinity of the Ground Computational Modelling of Acoustic Scattering of a Sound Source in the Vicinity of the Ground Dr. Panagiota Pantazopoulou and Prof. Dimitris Drikakis Members, IAENG Abstract The paper presents a computational

More information

Algorithms for Scientific Computing

Algorithms for Scientific Computing Algorithms for Scientific Computing Finite Element Methods Michael Bader Technical University of Munich Summer 2016 Part I Looking Back: Discrete Models for Heat Transfer and the Poisson Equation Modelling

More information

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere Michael Levy University of Colorado at Boulder Department of Applied Mathematics August 10, 2007 Outline 1 Background

More information

Efficient Evaluation of the Rokhlin Translator in Multilevel Fast Multipole Algorithm

Efficient Evaluation of the Rokhlin Translator in Multilevel Fast Multipole Algorithm Ilari Hänninen and Jukka Sarvas, Efficient evaluation of the Rokhlin translator in multilevel fast multipole algorithm, Helsinki University of Technology, Electromagnetics Laboratory Report Series, Report

More information

BEM Methods for Acoustic and Vibroacoustic Problems in LS-DYNA

BEM Methods for Acoustic and Vibroacoustic Problems in LS-DYNA 12 th International LS-DYNA Users Conference Simulation(2) BEM Methods for Acoustic and Vibroacoustic Problems in LS-DYNA Mhamed Souli, Yun Huang, Rongfeng Liu Livermore Software Technology Corporation

More information

Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances

Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances Ilaria Perugia Dipartimento di Matematica Università di Pavia (Italy) In collaboration with Ralf Hiptmair, Christoph Schwab,

More information

Time-dependent variational forms

Time-dependent variational forms Time-dependent variational forms Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Oct 30, 2015 PRELIMINARY VERSION

More information

Quarkonial frames of wavelet type - Stability, approximation and compression properties

Quarkonial frames of wavelet type - Stability, approximation and compression properties Quarkonial frames of wavelet type - Stability, approximation and compression properties Stephan Dahlke 1 Peter Oswald 2 Thorsten Raasch 3 ESI Workshop Wavelet methods in scientific computing Vienna, November

More information

First-order overdetermined systems. for elliptic problems. John Strain Mathematics Department UC Berkeley July 2012

First-order overdetermined systems. for elliptic problems. John Strain Mathematics Department UC Berkeley July 2012 First-order overdetermined systems for elliptic problems John Strain Mathematics Department UC Berkeley July 2012 1 OVERVIEW Convert elliptic problems to first-order overdetermined form Control error via

More information

Numerical study on scanning radiation acoustic field in formations generated from a borehole

Numerical study on scanning radiation acoustic field in formations generated from a borehole Science in China Ser. G Physics, Mechanics & Astronomy 5 Vol.48 No. 47 56 47 Numerical study on scanning radiation acoustic field in formations generated from a borehole CHE Xiaohua 1, ZHANG Hailan 1,

More information

Spectral methods for fuzzy structural dynamics: modal vs direct approach

Spectral methods for fuzzy structural dynamics: modal vs direct approach Spectral methods for fuzzy structural dynamics: modal vs direct approach S Adhikari Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Wales, UK IUTAM Symposium

More information

Calculation of Sound Fields in Flowing Media Using CAPA and Diffpack

Calculation of Sound Fields in Flowing Media Using CAPA and Diffpack Calculation of Sound Fields in Flowing Media Using CAPA and Diffpack H. Landes 1, M. Kaltenbacher 2, W. Rathmann 3, F. Vogel 3 1 WisSoft, 2 Univ. Erlangen 3 inutech GmbH Outline Introduction Sound in Flowing

More information

Unique continuation for the Helmholtz equation using a stabilized finite element method

Unique continuation for the Helmholtz equation using a stabilized finite element method Unique continuation for the Helmholtz equation using a stabilized finite element method Lauri Oksanen University College London Based on a joint work with Erik Burman and Mihai Nechita Motivation: recovering

More information

Partial Differential Equations. Examples of PDEs

Partial Differential Equations. Examples of PDEs Partial Differential Equations Almost all the elementary and numerous advanced parts of theoretical physics are formulated in terms of differential equations (DE). Newton s Laws Maxwell equations Schrodinger

More information

INFINITE ELEMENT METHODS FOR HELMHOLTZ EQUATION PROBLEMS ON UNBOUNDED DOMAINS

INFINITE ELEMENT METHODS FOR HELMHOLTZ EQUATION PROBLEMS ON UNBOUNDED DOMAINS INFINITE ELEMENT METHODS FOR HELMHOLTZ EQUATION PROBLEMS ON UNBOUNDED DOMAINS Michael Newman Department of Aerospace Engineering Texas A&M University 34 TAMU 744D H.R. Bright Building College Station,

More information

The Helmholtz Equation

The Helmholtz Equation The Helmholtz Equation Seminar BEM on Wave Scattering Rene Rühr ETH Zürich October 28, 2010 Outline Steklov-Poincare Operator Helmholtz Equation: From the Wave equation to Radiation condition Uniqueness

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

BETI for acoustic and electromagnetic scattering

BETI for acoustic and electromagnetic scattering BETI for acoustic and electromagnetic scattering O. Steinbach, M. Windisch Institut für Numerische Mathematik Technische Universität Graz Oberwolfach 18. Februar 2010 FWF-Project: Data-sparse Boundary

More information

A coupled BEM and FEM for the interior transmission problem

A coupled BEM and FEM for the interior transmission problem A coupled BEM and FEM for the interior transmission problem George C. Hsiao, Liwei Xu, Fengshan Liu, Jiguang Sun Abstract The interior transmission problem (ITP) is a boundary value problem arising in

More information

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Arno Solin and Simo Särkkä Aalto University, Finland Workshop on Gaussian Process Approximation Copenhagen, Denmark, May 2015 Solin &

More information

ME equations. Cylindrical symmetry. Bessel functions 1 kind Bessel functions 2 kind Modifies Bessel functions 1 kind Modifies Bessel functions 2 kind

ME equations. Cylindrical symmetry. Bessel functions 1 kind Bessel functions 2 kind Modifies Bessel functions 1 kind Modifies Bessel functions 2 kind Δϕ=0 ME equations ( 2 ) Δ + k E = 0 Quasi static approximation Dynamic approximation Cylindrical symmetry Metallic nano wires Nano holes in metals Bessel functions 1 kind Bessel functions 2 kind Modifies

More information

Low frequency directivity control

Low frequency directivity control Low frequency directivity control Authors: Olivier Le Bot Supervisor: Christian Sejer Pedersen Aalborg University Acoustics Department of Electronic Systems Frederik Bajers Vej 7 9220 Aalborg Ø Telephone

More information

An Error Estimator for the Finite Element Approximation of Plane and Cylindrical Acoustic Waves.

An Error Estimator for the Finite Element Approximation of Plane and Cylindrical Acoustic Waves. Copyright 205 Tech Science Press CMES, vol.06, no.2, pp.27-45, 205 An Error Estimator for the Finite Element Approximation of Plane and Cylindrical Acoustic Waves. J. E. Sebold, L. A. Lacerda 2 and J.

More information

GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS

GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS Methods in Geochemistry and Geophysics, 36 GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS Michael S. ZHDANOV University of Utah Salt Lake City UTAH, U.S.A. 2OO2 ELSEVIER Amsterdam - Boston - London

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

Efficient modeling of sound source radiation in free-space and room environments

Efficient modeling of sound source radiation in free-space and room environments Purdue University Purdue e-pubs Open Access Dissertations Theses and Dissertations 8-216 Efficient modeling of sound source radiation in free-space and room environments Yangfan Liu Purdue University Follow

More information

Contents as of 12/8/2017. Preface. 1. Overview...1

Contents as of 12/8/2017. Preface. 1. Overview...1 Contents as of 12/8/2017 Preface 1. Overview...1 1.1 Introduction...1 1.2 Finite element data...1 1.3 Matrix notation...3 1.4 Matrix partitions...8 1.5 Special finite element matrix notations...9 1.6 Finite

More information

Trefftz-DG solution to the Helmholtz equation involving integral equations

Trefftz-DG solution to the Helmholtz equation involving integral equations Trefftz-DG solution to the Helmholtz equation involving integral equations H. Barucq, A. Bendali, M. Fares, V. Mattesi, S. Tordeux Magique 3D Inria Bordeaux Sud Ouest LMA UMR CNRS 5142 INSA of Toulouse

More information

Exponentially Convergent Sparse Discretizations and Application to Near Surface Geophysics

Exponentially Convergent Sparse Discretizations and Application to Near Surface Geophysics Exponentially Convergent Sparse Discretizations and Application to Near Surface Geophysics Murthy N. Guddati North Carolina State University November 9, 017 Outline Part 1: Impedance Preserving Discretization

More information

Wave Theory II (6) Finite Element Method

Wave Theory II (6) Finite Element Method Wave Theory II (6) Finite Method Jun-ichi Takada (takada@ide.titech.ac.jp) In this lecture, the finite element method (FEM) is described. The Helmholtz equation and the boundary condition are transformed

More information

2 Wave Propagation Theory

2 Wave Propagation Theory 2 Wave Propagation Theory 2.1 The Wave Equation The wave equation in an ideal fluid can be derived from hydrodynamics and the adiabatic relation between pressure and density. The equation for conservation

More information

HIGH-ORDER ACCURATE METHODS FOR NYSTRÖM DISCRETIZATION OF INTEGRAL EQUATIONS ON SMOOTH CURVES IN THE PLANE

HIGH-ORDER ACCURATE METHODS FOR NYSTRÖM DISCRETIZATION OF INTEGRAL EQUATIONS ON SMOOTH CURVES IN THE PLANE HIGH-ORDER ACCURATE METHODS FOR NYSTRÖM DISCRETIZATION OF INTEGRAL EQUATIONS ON SMOOTH CURVES IN THE PLANE S. HAO, A. H. BARNETT, P. G. MARTINSSON, AND P. YOUNG Abstract. Boundary integral equations and

More information

Module I: Electromagnetic waves

Module I: Electromagnetic waves Module I: Electromagnetic waves Lectures 10-11: Multipole radiation Amol Dighe TIFR, Mumbai Outline 1 Multipole expansion 2 Electric dipole radiation 3 Magnetic dipole and electric quadrupole radiation

More information

PART IV Spectral Methods

PART IV Spectral Methods PART IV Spectral Methods Additional References: R. Peyret, Spectral methods for incompressible viscous flow, Springer (2002), B. Mercier, An introduction to the numerical analysis of spectral methods,

More information

Cubic spline Numerov type approach for solution of Helmholtz equation

Cubic spline Numerov type approach for solution of Helmholtz equation Journal of Linear and Topological Algebra Vol. 03, No. 01, 2014, 47-54 Cubic spline Numerov type approach for solution of Helmholtz equation J. Rashidinia a, H. S. Shekarabi a and M. Aghamohamadi a a Department

More information

BACKGROUNDS. Two Models of Deformable Body. Distinct Element Method (DEM)

BACKGROUNDS. Two Models of Deformable Body. Distinct Element Method (DEM) BACKGROUNDS Two Models of Deformable Body continuum rigid-body spring deformation expressed in terms of field variables assembly of rigid-bodies connected by spring Distinct Element Method (DEM) simple

More information

When is the error in the h BEM for solving the Helmholtz equation bounded independently of k?

When is the error in the h BEM for solving the Helmholtz equation bounded independently of k? BIT manuscript No. (will be inserted by the editor) When is the error in the h BEM for solving the Helmholtz equation bounded independently of k? I. G. Graham M. Löhndorf J. M. Melenk E. A. Spence Received:

More information

Solving Poisson s Equations Using Buffered Fourier Spectral Method

Solving Poisson s Equations Using Buffered Fourier Spectral Method Solving Poisson s Equations Using Buffered Fourier Spectral Method Yinlin Dong Hassan Abd Salman Al-Dujaly Chaoqun Liu Technical Report 2015-12 http://www.uta.edu/math/preprint/ Solving Poisson s Equations

More information

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes Dylan Copeland 1, Ulrich Langer 2, and David Pusch 3 1 Institute of Computational Mathematics,

More information

Open Engineering: Strongly Coupled Multiphysics

Open Engineering: Strongly Coupled Multiphysics Open Engineering: Strongly Coupled Multiphysics OOFELIE::Multiphysics Sensors And Actuators Multiphysics FSI Multiphyiscs CAE Consulting Vibro Acoustics, Electro- Technics, FSI-CFD, Opto-Thermo Mechanics,

More information

NEAR FIELD REPRESENTATIONS OF THE ACOUSTIC GREEN S FUNCTION IN A SHALLOW OCEAN WITH FLUID-LIKE SEABED

NEAR FIELD REPRESENTATIONS OF THE ACOUSTIC GREEN S FUNCTION IN A SHALLOW OCEAN WITH FLUID-LIKE SEABED Georgian Mathematical Journal Volume 4 2007, Number, 09 22 NEAR FIELD REPRESENTATIONS OF THE ACOUSTIC GREEN S FUNCTION IN A SHALLOW OCEAN WITH FLUID-LIKE SEAED ROERT GILERT AND MIAO-JUNG OU Abstract. In

More information

Electrodynamics II: Lecture 9

Electrodynamics II: Lecture 9 Electrodynamics II: Lecture 9 Multipole radiation Amol Dighe Sep 14, 2011 Outline 1 Multipole expansion 2 Electric dipole radiation 3 Magnetic dipole and electric quadrupole radiation Outline 1 Multipole

More information

Fast methods for integral equations

Fast methods for integral equations Fast methods for integral equations Matthieu Aussal Research engineer Centre de Mathématiques Appliquées de l École Polytechnique Route de Saclay - 91128 Palaiseau CEDEX France Journée de rentrée du CMAP

More information