Adaptive Boundary Element Methods Part 2: ABEM. Dirk Praetorius

Size: px
Start display at page:

Download "Adaptive Boundary Element Methods Part 2: ABEM. Dirk Praetorius"

Transcription

1 CENTRAL School on Analysis and Numerics for PDEs November 09-12, 2015 Adaptive Boundary Element Methods Part 2: ABEM Dirk Praetorius TU Wien Institute for Analysis and Scientific Computing

2 Outline 1 Boundary Element Method 2 2D Example 3 Stability (A1) & Reduction (A2) 4 Discrete Reliability (A3) 5 Linear Convergence 6 Optimality 7 3D Examples praetorius/central02 praetorius.pdf Dirk Praetorius (TU Wien) 1 / 75

3 Boundary Element Method Dirk Praetorius (TU Wien)

4 Boundary Element Method Newton kernel G(z) := Fundamental solution 1 2π + 1 4π log z for d = 2 1 z for d = 3 note S 2 2 = 2π and S3 2 = 4π for unit sphere Sd 2 Rd j G(z) = 1 S d 2 z j z d jk G(z) = 1 δ jk z 2 d z j z k S2 d z d+2 = G(z) = 0 for z 0 polar coordinates = G L 2 loc (Rd ), j G L 1 loc (Rd ) Dirk Praetorius (TU Wien) 2 / 75

5 Boundary Element Method Representation formula Proposition (Representation formula) Ω R d bounded u C 2 (Ω) define f := u define φ := n u ˆ ˆ = u(x) = G(x y)f(y) dy + G(x y) φ(y) ds y Ωˆ Γ n(y) G(x y) u(y) ds y for all x Ω Γ proof by integration by parts for Ω ε := Ω\B ε (x) and then ε 0 v(y) := G(x y) C (Ω) = u ; v L 2 (Ω ε) + n u ; v L 2 (Γ ε) = v ; u L 2 (Ω ε) + n v ; u L 2 (Γ ε) if trace u Γ and normal derivative n u known on Γ = solution of u = f can be computed in Ω Dirk Praetorius (TU Wien) 3 / 75

6 Boundary Element Method ˆ Ṽ φ(x) := Γ Potential operators G(x y) φ(y) ds y G(z) = 0 = Ṽ φ(x) = 0 in Ω ˆ Ku(x) := Γ n(y) G(x y) u(y) ds y G(z) = 0 = Ku(x) = 0 in Ω ˆ Ñf(x) := Ω G(x y)f(y) dy single-layer potential double-layer potential Newton potential representation formula = u = Ñ( u) + Ṽ ( nu) K(u Γ ) in Ω Dirk Praetorius (TU Wien) 4 / 75

7 Boundary Element Method Double-layer potential representation formula u = Ñ( u) + Ṽ ( nu) K(u Γ ) for u = 1 = K1 = 1 in Ω, since u = 0 = n u same argument applied for Ω ε := Ω B ε (x) = K1 = 0 in R d \Ω Ku has a jump ˆ across Γ Ku(x) := n(y) G(x y) u(y) dy for x R d \Ω Γ note critical singularity order (d 1) of the integral kernel! ˆ Consider Ku(x) := C = K1 = 1/2 a.e. on Γ Γ n(y) G(x y) u(y) dy for x Γ can show (K 1/2)u = ( Ku) Γ a.e. on Γ Dirk Praetorius (TU Wien) 5 / 75

8 Boundary Element Method Newton potential ˆ Ñf(x) := Ω G(x y)f(y) dy = G f is convolution f Cc (Ω) = Ñ C (R d ) with f = Ñ( f) = (Ñf) f = Ñ( f) follows from representation formula Ñ( f) = (Ñf) follows from convolution + integration by parts therefore: G is called fundamental solution of Dirk Praetorius (TU Wien) 6 / 75

9 Boundary Element Method Sobolev spaces 1/3 each f L 2 (Ω) defines linear continuous function on H 1 (Ω) f(v) f ; v L 2 (Ω) are these all linear continuous functionals on H 1 (Ω)? essentially yes! Lemma (idea of Gelfand triple) X, Y real Hilbert spaces with continuous inclusion X Y Riesz mapping J Y : Y Y, J Y y := y ; Y = J Y L(Y, X ) with J Y (Y ) X dense X = H 1 (Ω), Y = L 2 (Ω) extended L 2 scalar product becomes duality bracket Dirk Praetorius (TU Wien) 7 / 75

10 Boundary Element Method Sobolev spaces 2/3 Lemma (idea of Gelfand triple) X, Y real Hilbert spaces with continuous inclusion X Y Riesz mapping J Y : Y Y, J Y y := y ; Y = J Y L(Y, X ) with J Y (Y ) X dense Proof. x X, y Y = y ; x Y y Y x Y y Y x X = y ; Y X y Y = J Y L(Y, X ) J Y (Y ) X dense V := J 1 X J Y (Y ) X dense X = V V = goal: V = {0} x V = 0 = x ; J 1 X J Y x X = (J Y x)(x) = x ; x Y = x 2 Y Dirk Praetorius (TU Wien) 8 / 75

11 Boundary Element Method Sobolev spaces 3/3 H 1/2 (Γ) := { v L 2 (Γ) : v 2 H 1/2 (Γ) = v 2 L 2 (Γ) + v 2 H 1/2 (Γ) < } v 2 H 1/2 (Γ) :=ˆ Γ ˆ Γ v(x) v(y) 2 x y d ds y ds y Sobolev-Slobodeckij seminorm fact: H 1/2 (Γ) = { u Γ : u H 1 (Ω) } is trace space of H 1 (Ω) H 1/2 (Γ) is dual space of H 1/2 (Γ) w.r.t. L 2 (Γ)-scalar product since H 1/2 (Γ) L 2 (Γ) continuous Dirk Praetorius (TU Wien) 9 / 75

12 Boundary Element Method Single-layer potential & double-layer potential Theorem (single-layer potential) Ṽ L(H 1/2 (Γ), H 1 (Ω)) s.t. Ṽ φ = 0 for all φ H 1/2 (Γ) V φ := (Ṽ φ) Γ = V L(H 1/2 (Γ), H 1/2 (Γ)) (K + 1/2)φ := n (Ṽ φ) = K L(H 1/2 (Γ), H 1/2 (Γ)) Theorem (double-layer potential) K L(H 1/2 (Γ), H 1 (Ω)) s.t. Kv = 0 for all v H 1/2 (Γ) (K 1/2)v := ( Kv) Γ = K L(H 1/2 (Γ), H 1/2 (Γ)) W := n ( Kv) = W L(H 1/2 (Γ), H 1/2 (Γ)) Dirk Praetorius (TU Wien) 10 / 75

13 Boundary Element Method Single-layer integral operator Theorem (single-layer integral operator) V L(H 1/2 (Γ), H 1/2 (Γ)) is symmetric ˆ ˆ φ ; V ψ L 2 (Γ) = φ(x)g(x y)ψ(y) ds y ds x = ψ ; V φ L 2 (Γ) and elliptic (for diam(ω) < 1 in 2D) Γ Γ φ ; V φ L 2 (Γ) φ 2 H 1/2 (Γ) in particular, isomorphism Idea for ellipticity. u := Ṽ φ satisfies [ nu] := n u n extu = φ n u 2 H 1/2 (Γ) u 2 L 2 (Ω) = nu ; u Γ ext n u 2 H 1/2 (Γ) u 2 = L 2 (R d \Ω) extu ; u Γ = φ 2 H 1/2 (Γ) [ nu] ; u L 2 (Γ) = φ ; V φ L 2 (Γ) n Dirk Praetorius (TU Wien) 11 / 75

14 Boundary Element Method Weakly-singular integral equation solve u = 0 in Ω with u = g on Γ representation formula u = Ṽ ( nu) Kg in Ω trace g = V ( n u) (K 1/2)g on Γ = weakly-singular integral equation V φ = (K + 1/2)g on Γ has unique solution φ = n u discretization of weakly-singular IE = approximation φ Φ l = approximation u U l := Ṽ Φ l Kg Dirk Praetorius (TU Wien) 12 / 75

15 Boundary Element Method Comments BEM requires fundamental solution essentially requires homogeneous forces, e.g., u = 0 BEM leads to dense matrices BEM allows for higher convergence rates BEM only requires surface discretization BEM can treat unbounded domains Steinbach: Teubner, 2003 (German), 2008 (English) Sauter, Schwab: Teubner, 2004 (German), Springer 2011 (English) Dirk Praetorius (TU Wien) 13 / 75

16 Boundary Element Method What is HILBERT? Hilbert Is a Lovely Boundary Element Research Tool Matlab library for h-adaptive Galerkin BEM lowest-order elements for 2D Laplacian P 0 for normal derivatives S 1 for traces research code for FWF project P21732 overview on current state of the art starting point for further investigations Dirk Praetorius (TU Wien) 14 / 75

17 Boundary Element Method Example: Point Errors N 2/3 estimators and point error in Ω η D,l (unif., nodal) err Ω,l (unif., nodal) η D,l (unif., L 2 -projection) err Ω,l (unif., L 2 -projection) η D,l (adap., nodal) err Ω,l (adap., nodal) η D,l (adap., L 2 -projection) err Ω,l (adap., L 2 -projection) N 3 N 2 N 3/2 N 4/ number N = #E l of boundary elements Dirk Praetorius (TU Wien) 15 / 75

18 Boundary Element Method Features of HILBERT C implementation of integral operators via MEX interface V (P 0 Γ P0 Γ ) K(S 1 Γ P0 Γ ) W (S 1 Γ S1 Γ ) N(P 0 Ω P0 Γ ) remaining codes in Matlab fully vectorized different error estimators (h-h/2, 2-Level, residual, Faermann) different marking strategies local mesh-refinement (1D bisection, 2D NVB) demo files and adaptive algorithms for weakly-singular integral equation hypersingular integral equation symmetric integral formulation of mixed BVP with/without volume force Dirk Praetorius (TU Wien) 16 / 75

19 2D Example Dirk Praetorius (TU Wien)

20 2D Example 2D model problem weakly-singular integral equation V u(x) := 1 ˆ log x y u(y) dy = f(x) 2π Γ Ω with Ω R 2 bounded and Lipschitz Variational formulation Find solution u H := H 1/2 (Γ) of Γ for x Γ u, v := V u ; v L 2 (Γ) = f ; v L 2 (Γ) for all v H, is scalar product induced norm v := v, v 1/2 v H 1/2 (Γ) Dirk Praetorius (TU Wien) 17 / 75

21 2D Example Galerkin BEM T l partition of Γ into affine line segments local mesh-width h l L (Γ), h l T := diam(t ) for T T l X l := P p (T l ) discrete subspace of H = H 1/2 (Γ) Galerkin formulation Find solution U l X l of U l, V l = f ; V l L 2 (Γ) for all V l X l Dirk Praetorius (TU Wien) 18 / 75

22 2D Example Weighted-residual error estimator Poincaré inequality w H 1 (Γ) with w P 0 (T l ) = w L 2 (Γ) h l w L 2 (Γ) w := f V U l P p (T l ) P 0 (T l ) Reliability (Carstensen, Stephan 95, 96, & Maischak 01) u U l f V U l H 1/2 (Γ) h1/2 l (f V U l ) L 2 (Γ) =: η l proof (later!) requires regularity of T l for localization 2D: uniformly bounded local mesh-ratio 3D: uniform γ-shape regularity Dirk Praetorius (TU Wien) 19 / 75

23 2D Example Adaptive algorithm initial mesh T 0 adaptivity parameter 0 < θ 1 For all l = 0, 1, 2,..., iterate 1 compute discrete solution U l for mesh T l 2 compute refinement indicators η l (T ) for all T T l 3 find (essentially minimal) set M l T l s.t. θ η l (T ) 2 η l (T ) 2 T T l T M l 4 refine (at least) marked elements T M l to obtain T l+1 Dirk Praetorius (TU Wien) 20 / 75

24 2D Example 1D example 1D boundary piece Γ = ( 1, 1) {0} u(x, y) = 2x/ 1 x 2 solution to f(x, y) = x singularities at ±(1, 0) Dirk Praetorius (TU Wien) 21 / 75

25 2D Example Solve on coarse mesh T 0 Dirk Praetorius (TU Wien) 22 / 75

26 2D Example Compute residual on T 0 η 0 (T ) = diam(t ) 1/2 (f V U 0 ) L 2 (T ) 1 η 0 (T ) 2 η 0 (T ) 2 4 T T 0 T M 0 Dirk Praetorius (TU Wien) 23 / 75

27 2D Example Mark elements M 0 T 0 for refinement η 0 (T ) = diam(t ) 1/2 (f V U 0 ) L 2 (T ) 1 η 0 (T ) 2 η 0 (T ) 2 4 T T 0 T M 0 Dirk Praetorius (TU Wien) 24 / 75

28 2D Example Solve on mesh T 1 Dirk Praetorius (TU Wien) 25 / 75

29 2D Example Compute residual on T 1 η 1 (T ) = diam(t ) 1/2 (f V U 1 ) L 2 (T ) 1 η 1 (T ) 2 η 1 (T ) 2 4 T T 1 T M 1 Dirk Praetorius (TU Wien) 26 / 75

30 2D Example Mark elements M 1 T 1 for refinement η 1 (T ) = diam(t ) 1/2 (f V U 1 ) L 2 (T ) 1 η 1 (T ) 2 η 1 (T ) 2 4 T T 1 T M 1 Dirk Praetorius (TU Wien) 27 / 75

31 2D Example Solve on mesh T 2 etc. Dirk Praetorius (TU Wien) 28 / 75

32 2D Example ABEM results in O(N 1/2 ) uniform adaptive 10 1 error estimator O(N 3/2 ) number of elements Dirk Praetorius (TU Wien) 29 / 75

33 2D Example Questions? can we prove convergence for adaptive mesh-refinement? can we prove linear convergence η 2 l+n C qn η 2 l? constant C > 0 reflects pre-asymptotic convergence rates can we prove optimal convergence rates? at least asymptotically does the problem fit into the axioms framework? Dirk Praetorius (TU Wien) 30 / 75

34 2D Example Optimal rates in adaptive BEM Tsogtorel: Numer. Math. (2013) general integral kernels smooth boundaries lowest-order BEM Feischl, Karkulik, Melenk, Praetorius: SINUM (2013) weakly-singular integral equation for 2D / 3D Laplace polygonal boundaries lowest-order BEM Feischl, Führer, Karkulik, Melenk, Praetorius: Calcolo (2014) Feischl, Führer, Karkulik, Melenk, Praetorius: ETNA (2015) weakly-singular / hyper-singular IE for 2D / 3D Laplace polygonal boundaries fixed-order BEM with approximation of RHS Dirk Praetorius (TU Wien) 31 / 75

35 2D Example Main results on rate optimality 1 linear convergence η l+n C q n η l for 0 < θ 1 arbitrary with 0 < q = q(θ) < 1, C = C(θ) > 0 2 optimal convergence η l (#T l #T 0 ) s for 0 < θ 1 sufficiently small for each possible s > 0 3 optimality constrained by estimator and isotropic refinement! ok for 2D suboptimal in 3D w.r.t. error! Dirk Praetorius (TU Wien) 32 / 75

36 2D Example Road map Reduction (A2) Estimator reduction Discrete reliability (A3) Stability (A1) Reliability Optimality of Dörfler marking Linear convergence of η l Quasi-orthogonality (A4) Discrete reliability (A3) Optimal convergence of η l Closure Overlay Efficiency Optimal convergence of U l Dirk Praetorius (TU Wien) 33 / 75

37 Stability (A1) & Reduction (A2) Dirk Praetorius (TU Wien)

38 Stability (A1) & Reduction (A2) Model problem weakly-singular integral equation V u = f in 2D/3D u H := H 1/2 (Γ) u, v := V u ; v L 2 = f ; v L 2 for all v H =, 1/2 H 1/2 (Γ) T regular and γ-shape regular triangulation 2D: partition into affine line segments, local mesh ratio γ 3D: partition into affine surface triangles, no hanging nodes max T T U P p (T ) =: X unique solution of diam(t ) 2 γ T U, V = f ; V L 2 for all V P p (T ) Dirk Praetorius (TU Wien) 34 / 75

39 Stability (A1) & Reduction (A2) Residual error estimator for model problem Reliability and efficiency u U OK η??? u U + osc ( η = η (T ) 2 T T ) 1/2 η (T ) 2 = T 1/(d 1) (f V U ) 2 L 2 (T ) h T := T 1/(d 1) diam(t ) reliability 2D: [Carstensen, Stephan 95, 96] reliability 3D: [Carstensen, Maischak, Stephan 01] efficiency 2D: [Carstensen 96], [Aurada, Feischl, et al. 13] only direct BEM & closed boundaries & smooth data Dirk Praetorius (TU Wien) 35 / 75

40 Stability (A1) & Reduction (A2) Local inverse estimate for non-local operators Theorem (Feischl, Karkulik, Melenk, P. 13; Tsogtorel 13) h 1/2 V W L 2 (Γ) C inv W H 1/2 (Γ) for all W P p (T ) C inv = C inv (Γ, p, γ) sketch of proof later (lecture 3) is classical inv.est. for non-classical space V P p (T ) Ψ LHS = h 1/2 Ψ L 2 weighted H 1 -seminorm (stronger) RHS Ψ H 1/2 (Γ) (weaker norm) lowest-order case W P 0 (T l ) Feischl, Karkulik, Melenk, P. 13 Tsogtorel 13 for smooth boundary, but general kernels Dirk Praetorius (TU Wien) 36 / 75

41 Stability (A1) & Reduction (A2) Local inverse estimate: uniform meshes aim to prove: h 1/2 V W L 2 (Γ) W for all W P 0 (T ) stability V : L 2 (Γ) H 1 (Γ) provides h 1/2 V w L 2 (Γ) h 1/2 V w H 1 (Γ) h 1/2 w L 2 (Γ) = h 1/2 w L 2 (Γ) local inverse estimate of Graham, Hackbusch, Sauter 05 h 1/2 W L 2 (Γ) W H 1/2 (Γ) W Dirk Praetorius (TU Wien) 37 / 75

42 Stability (A1) & Reduction (A2) Axiom (A1): Stability on non-refined elements (A1) Stability on non-refined elements, T nvb(t l ) ( ) 1/2 ( η (T ) 2 ) 1/2 η l (T ) 2 U U l T T l T T T l T Verification for BEM model problem: η (T ) 2 = T 1/(d 1) (f V U ) 2 L 2 (T ) η (T ) 2 = h 1/2 (f V U ) 2 L 2 ( (T l T )) T T l T inverse triangle inequality + novel inverse estimate LHS h 1/2 (f V U ) h 1/2 (f V U ) L 2 ( (T l T )) h 1/2 V (U l U ) L 2 (Γ) U l U H 1/2 (Γ) l Dirk Praetorius (TU Wien) 38 / 75

43 Stability (A1) & Reduction (A2) Axiom (A2): Reduction on refined elements (A2) Reduction on refined elements, T nvb(t l ) η (T ) 2 q red η l (T ) 2 + C red U U l 2 T T \T l T T l \T Verification for BEM model problem: η (T ) 2 = T 1/(d 1) (f V U ) 2 L 2 (T ) (T \T l ) = (T l \T ) T 1 2 T for T T T T l triangle inequality + Young ineq. + novel inverse estimate q red 2 1/(d 1) Dirk Praetorius (TU Wien) 39 / 75

44 Stability (A1) & Reduction (A2) Estimator reduction Stability (A1) + reduction (A2) = estimator reduction 0 < θ 1 0 < q est < 1 C est > 0 l N 0 : η 2 l+1 q est η 2 l + C est U l+1 U l 2 sketch: Young inequality + (A1) + (A2) variable parameter δ > 0 sufficiently small q est = (1 + δ) θ(1 + δ q red ) 1 θ(1 q red ) C est = C 2 stab (1 + δ 1 ) + C red Dirk Praetorius (TU Wien) 40 / 75

45 Stability (A1) & Reduction (A2) Road map Reduction (A2) Estimator reduction Discrete reliability (A3) Stability (A1) Reliability Optimality of Dörfler marking Linear convergence of η l Quasi-orthogonality (A4) Discrete reliability (A3) Optimal convergence of η l Closure Overlay Efficiency Optimal convergence of U l Dirk Praetorius (TU Wien) 41 / 75

46 Discrete Reliability (A3) Dirk Praetorius (TU Wien)

47 Discrete Reliability (A3) Necessity of discrete reliability Suppose BEM model problem Let T nvb(t l+1 ) = U U l 2 u U l 2 Suppose knowledge that η l is reliable + Dörfler marking = u U l 2 η 2 l θ 1 T M l η l (T ) 2 marked elements are refined, i.e., M l T l \T l+1 T l \T = obtain discrete reliability U U l 2 η l (T ) 2 T T l \T Dirk Praetorius (TU Wien) 42 / 75

48 Discrete Reliability (A3) Axiom (A3): Discrete reliability (A3) Discrete reliability, T nvb(t l ) exists R l T l with T l \T R l #R l #(T l \T ) U U l 2 Crel 2 η l (T ) 2 T R l introduced by Stevenson 07 proof refines usual reliability proof by choice of clever test fct R l = T l \T for FEM R l = patch(t l \T ) for BEM Dirk Praetorius (TU Wien) 43 / 75

49 Discrete Reliability (A3) Patch S T l set of elements patch(s) γ-shape regularity = #S #patch(s) Dirk Praetorius (TU Wien) 44 / 75

50 Discrete Reliability (A3) Discrete reliability = reliability 1/2 Uniform refinement yields convergence T l nvb(t 0 ) ε > 0 T nvb(t l ) : u U ε Verification for BEM model problem: Céa lemma + L 2 -projection + density of smooth fcts u U u U H 1/2 (Γ) u Π v H 1/2 (Γ) u v H 1/2 (Γ) + v Π v H 1/2 (Γ) ε + h 1/2 v L 2 (Γ) ε Dirk Praetorius (TU Wien) 45 / 75

51 Discrete Reliability (A3) Discrete reliability = reliability 2/2 triangle inequality for T nvb(t l ) u U l u U + U U l u U + C rel η l approximation property ε > 0 T nvb(t l ) : u U ε = u U l C rel η l Dirk Praetorius (TU Wien) 46 / 75

52 Discrete Reliability (A3) Proof of discrete reliability 1/5 W = U U l { P l W P 0 W on T T l T (T l ), P l W = 0 on T T l \T R l := { z N l : z (T l \T ) } 1 use Galerkin orthogonality W 2 = V U V U l ; W = ϕ z (f V U l ) ; (1 P l )W z R l (1 P l )W = 0 on T T l T z R l ϕ z = 1 on T T l \T Dirk Praetorius (TU Wien) 47 / 75

53 Discrete Reliability (A3) Proof of discrete reliability 2/5 W = U U l { P l W P 0 W on T T l T (T l ), P l W = 0 on T T l \T R l := { z N l : z (T l \T ) } 1 W 2 = ϕ z (f V U l ) ; W P l W z R l sum ; W sum H 1/2 (Γ) W H 1/2 (Γ) sum H 1/2 (Γ) W sum ; P l W h 1/2 l sum L 2 (Γ) h 1/2 l P l W L 2 (Γ) h 1/2 l P l W L2 (Γ) = h 1/2 P l W L2 (Γ) h 1/2 W L2 (Γ) W 2 Obtain W 2 sum 2 H 1/2 (Γ) + h 1/2 l sum 2 L 2 (Γ) Dirk Praetorius (TU Wien) 48 / 75

54 Discrete Reliability (A3) Proof of discrete reliability 3/5 R l := { z N l : z (T l \T ) } sum = z R l ϕ z (f V U l ) 2 U U l 2 sum 2 H 1/2 (Γ) + h 1/2 l sum 2 L 2 (Γ) 3 elementwise Poincaré inequality, since f V U l P 0 (T l ) h 1/2 l sum 2 L 2 (Γ) diam(t ) 1 sum 2 L 2 (T ) T T l diam(t ) 1 f V U l 2 L 2 (T ) T R l T R l T R l diam(t ) (f V U l ) 2 L 2 (T ) η l (T ) 2 Dirk Praetorius (TU Wien) 49 / 75

55 Discrete Reliability (A3) Proof of discrete reliability 4/5 R l := { z N l : z (T l \T ) } sum = z R l ϕ z (f V U l ) 2 U U l 2 sum 2 H 1/2 (Γ) + h 1/2 l sum 2 L 2 (Γ) 3 h 1/2 l sum 2 L 2 (Γ) η l (T ) 2 T R l 4 coloring argument as in Carstensen, Maischak, Stephan 01 sum 2 H 1/2 (Γ) z R l ϕ z (f V U l ) 2 H 1/2 (Γ) 5 interpolation + Poincaré estimate + scaling arguments ϕ z (f V U l ) 2 H 1/2 (Γ) ϕ z(f V U l ) L 2 (Γ) ϕ z (f V U l ) H 1 (Γ) h 1/2 l (f V U l ) 2 L 2 (supp(ϕ z)) Dirk Praetorius (TU Wien) 50 / 75

56 Discrete Reliability (A3) Proof of discrete reliability 5/5 R l := { z N l : z (T l \T ) } sum = z R l ϕ z (f V U l ) 2 U U l 2 sum 2 H 1/2 (Γ) + h 1/2 l sum 2 L 2 (Γ) 3 h 1/2 l sum 2 L 2 (Γ) η l (T ) 2 T R l 4 sum 2 H 1/2 (Γ) z R l ϕ z (f V U l ) 2 H 1/2 (Γ) 5 ϕ z (f V U l ) 2 H 1/2 (Γ) h1/2 l (f V U l ) L 2 2 (supp(ϕ z)) = U U l 2 sum 2 H 1/2 (Γ) + h 1/2 l sum 2 L 2 (Γ) η l (T ) 2 T R l Dirk Praetorius (TU Wien) 51 / 75

57 Discrete Reliability (A3) Road map Reduction (A2) Estimator reduction Discrete reliability (A3) Stability (A1) Reliability Optimality of Dörfler marking Linear convergence of η l Quasi-orthogonality (A4) Discrete reliability (A3) Optimal convergence of η l Closure Overlay Efficiency Optimal convergence of U l Dirk Praetorius (TU Wien) 52 / 75

58 Linear Convergence Dirk Praetorius (TU Wien)

59 Linear Convergence Slow convergence? Current state 1 (A1) + (A2) = η 2 l+1 q estη 2 l + C est U l+1 U l 2 2 Céa lemma U l U as l 3 estimator reduction principle = η l 0 4 reliability = u U l η l 0 in particular, u = U question: Can convergence of η l 0 be slow? U l+1 U l 2 0 could be slow? goal: η 2 l+n qn η 2 l Dirk Praetorius (TU Wien) 53 / 75

60 Linear Convergence Slow convergence? No! O(N 1/2 ) uniform adaptive 10 1 error estimator O(N 3/2 ) number of elements Dirk Praetorius (TU Wien) 54 / 75

61 Linear Convergence Axiom (A4): Quasi-orthogonality (A4) Quasi-orthogonality, for some small ε > 0 and all l, N N ( Uk+1 U k 2 εηk 2 ) Corth (ε) ηl 2 k=l Verification for model problem Galerkin orthogonality + symmetry = Pythagoras theorem u U k U k+1 U k 2 = u U k 2 telescoping series = quasi-orth. with C orth (ε) = Crel 2, ε = 0 N N U k+1 U k 2 ( = u Uk 2 u U k+1 2) u U l 2 k=l k=l Dirk Praetorius (TU Wien) 55 / 75

62 Linear Convergence Linear convergence = Quasi-Orthogonality Proposition (Carstensen, Feischl, Page, P. 14) reliability u U l η l linear convergence η l+n C lin qlin n η l = quasi-orthogonality (A4) with ε = 0, C orth (ε) = C orth (0) > 0 N i.e.: U k+1 U k 2 ηl 2 for all l, N k=l sketch: triangle inequality + reliability + linear convergence N N+1 = U k+1 U k 2 u U k 2 ηk 2 ηl 2 k=l k=l k=l Dirk Praetorius (TU Wien) 56 / 75

63 Linear Convergence Linear convergence = General Quasi-Orthogonality Proposition (Carstensen, Feischl, Page, P. 14) reliability u U l η l estimator reduction for 0 < θ 1, e.g., stab. (A1) + red. (A2) quasi-orthogonality (A4) = linear convergence η l+n C lin q n lin η l sketch: est. reduction + reliability + quasi-orth. (A4) = ηk 2 η2 l k=l+1 is equivalent to linear convergence Dirk Praetorius (TU Wien) 57 / 75

64 Linear Convergence Contraction axioms (A1) (A4) = linear convergence η 2 l+n qn η 2 l for symmetric problems, slightly stronger result available Theorem (Feischl, Karkulik, Melenk, P. 13) l = φ Φ l 2 + γη 2 l η2 l with 0 < γ < 1 sufficiently small = Exists 0 < κ = κ(θ) < 1 s.t. l+1 κ l hence lim l η l = 0 = lim l φ Φ l Cascon, Kreuzer, Nochetto, Siebert: SINUM (2008) (concept of proof) Dirk Praetorius (TU Wien) 58 / 75

65 Linear Convergence Proof of contraction theorem 1 Pythagoras φ Φ l+1 2 = φ Φ l 2 Φ l+1 Φ l 2 2 estimator reduction η 2 l+1 q η2 l + C Φ l+1 Φ l 2 3 reliability φ Φ l 2 C 2 rel η2 l use small parameters 0 < γ, ε < 1 to see φ Φ l γη 2 l+1 φ Φ l 2 + γq η 2 l obtain: l+1 κ l 0 < κ < 1 l = φ Φ l 2 + γηl 2 (1 εγ) φ Φ l 2 + γ(q + εc 2 rel )η2 l κ ( φ Φ l 2 + γη 2 l ) Dirk Praetorius (TU Wien) 59 / 75

66 Linear Convergence Road map Reduction (A2) Estimator reduction Discrete reliability (A3) Stability (A1) Reliability Optimality of Dörfler marking Linear convergence of η l Quasi-orthogonality (A4) Discrete reliability (A3) Optimal convergence of η l Closure Overlay Efficiency Optimal convergence of U l Dirk Praetorius (TU Wien) 60 / 75

67 Optimality Dirk Praetorius (TU Wien)

68 Optimality Dörfler marking θ η l (T) 2 η l (T) 2 T T l T M l goal: determine M l T l with minimal cardinality = requires sorting η l (T 1 ) η l (T N ) O(N log N) sufficient: M l T l has essentially minimal cardinality i.e., #M l C # M l if M l has minimal cardinality idea: sorting with binning [Stevenson 07] O(N) 1 exclude all T T l with η l (T ) 2 < θ η 2 l /N with N := #T l the remaining elements will satisfy the Dörfler marking 2 determine M := max T Tl η l (T ) 2 3 determine minimal K N 0 with 2 (K+1) M < θ η 2 l /N 4 fill k = 0,..., K bins with all 2 (k+1) M < η l (T ) 2 2 k M 5 successively take elts from (unsorted) bins until M l is OK = #M l 2 # M l Dirk Praetorius (TU Wien) 61 / 75

69 Optimality Dörfler marking = (linear) convergence shown: stability (A1) + reduction (A2) + Dörfler marking = estimator reduction estimator reduction + reliability (A3) + quasi-orth. (A4) = linear convergence ηl+n 2 qn lin η2 l i.e.: Dörfler marking sufficient for (linear) convergence question: Dörfler marking also necessary? Dirk Praetorius (TU Wien) 62 / 75

70 Optimality Dörfler marking = convergence so far: Dörfler = linear convergence η 2 l+n qn lin η2 l Stab. (A1) + Rel. (A3) = Optimality of Dörfler Marking Exists 0 < θ < 1 and 0 < q < 1 s.t. for all T = nvb(t l ) with η 2 q η 2 l and all 0 < θ < θ and R l from discrete reliability (A3) holds Dörfler marking θ η l (T ) 2 η l (T ) 2 T T l T R l linear convergence = Dörfler marking holds every fixed number n of steps independently of how elements are actually marked! Dirk Praetorius (TU Wien) 63 / 75

71 Optimality Optimal convergence rates A s = { (u, f) : u, f As = sup ((N + 1) s min η ) < } N N 0 T T N Theorem (Carstensen, Feischl, Page, P. 14) optimal mesh-refinement M l T l has (essentially) minimal cardinality 0 < θ < θ sufficiently small = (u, f) A s η l (#T l #T 0 ) s Carstensen, Feischl, Page, Praetorius: CAMWA (2014) Dirk Praetorius (TU Wien) 64 / 75

72 Optimality Sketch of proof 1/2 1 exists T nvb(t l ) s.t. #T #T l η 1/s l η 2 q η 2 l 2 optimality of Dörfler marking = R l T l \T satisfies Dörfler marking 3 M l has (essentially) minimal cardinality = #M l #R l #(T l \T ) #T #T l η 1/s l l N 0 4 overlay estimate l 1 l 1 = #T l #T 0 #M j j=0 j=0 η 1/s j Dirk Praetorius (TU Wien) 65 / 75

73 Optimality Sketch of proof 2/2 l 1 4 obtained: #T l #T 0 j=0 η 1/s j 5 linear convergence η j+n q n η j & geometric series = η l q l j η j = l 1 j=0 η 1/s j ( l 1 j=0 q (l j)/s) η 1/s l η 1/s l 6 combining this, we obtain = #T l #T 0 η 1/s l = η l (#T l #T 0 ) s for all s > 0 with u, f As < Dirk Praetorius (TU Wien) 66 / 75

74 Optimality Road map Reduction (A2) Estimator reduction Discrete reliability (A3) Stability (A1) Reliability Optimality of Dörfler marking Linear convergence of η l Quasi-orthogonality (A4) Discrete reliability (A3) Optimal convergence of η l Closure Overlay Efficiency Optimal convergence of U l Dirk Praetorius (TU Wien) 67 / 75

75 3D Examples Dirk Praetorius (TU Wien)

76 3D Examples L-shaped screen solve V u = 1 on Γ with lowest-order BEM p = 0 Dirk Praetorius (TU Wien) 68 / 75

77 3D Examples L-shaped screen: errors and estimators /1 1/ η 2 l unif. u U l 2 unif. η 2 l adap. u U l 2 adap number of elements Dirk Praetorius (TU Wien) 69 / /1

78 Adaptive Boundary Element Methods 3D Examples L-shaped screen: adaptive meshes Dirk Praetorius (TU Wien) 70 / 75

79 3D Examples L-shaped screen: estimator competition η 2 l adap. u U l 2 η l -adap µ 2 l adap. u U l 2 µ l -adap number of elements Dirk Praetorius (TU Wien) 71 / 75

80 3D Examples L-shaped screen: estimator competition µ 2 l adap. u U l 2 µ l -adap η 2 l adap. u U l 2 η l -adap computational time Dirk Praetorius (TU Wien) 72 / 75

81 3D Examples Fichera s cube solve V u = 1 on Γ with lowest-order BEM p = 0 Dirk Praetorius (TU Wien) 73 / 75

82 3D Examples Fichera s cube: errors and estimators / / η 2 l unif. u U l 2 unif. η 2 l adap. u U l 2 adap. 1/ number of elements Dirk Praetorius (TU Wien) 74 / 75

83 Adaptive Boundary Element Methods 3D Examples Fichera s cube: adaptive meshes Dirk Praetorius (TU Wien) 75 / 75

84 Thanks for listening! Dirk Praetorius TU Wien Institute for Analysis and Scientific Computing praetorius Dirk Praetorius (TU Wien)

Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, Part II: Hyper-singular integral equation

Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, Part II: Hyper-singular integral equation ASC Report No. 30/2013 Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, Part II: Hyper-singular integral equation M. Feischl, T. Führer, M. Karkulik, J.M.

More information

Adaptive Boundary Element Methods Part 1: Newest Vertex Bisection. Dirk Praetorius

Adaptive Boundary Element Methods Part 1: Newest Vertex Bisection. Dirk Praetorius CENTRAL School on Analysis and Numerics for PDEs November 09-12, 2015 Part 1: Newest Vertex Bisection Dirk Praetorius TU Wien Institute for Analysis and Scientific Computing Outline 1 Regular Triangulations

More information

Axioms of Adaptivity (AoA) in Lecture 1 (sufficient for optimal convergence rates)

Axioms of Adaptivity (AoA) in Lecture 1 (sufficient for optimal convergence rates) Axioms of Adaptivity (AoA) in Lecture 1 (sufficient for optimal convergence rates) Carsten Carstensen Humboldt-Universität zu Berlin 2018 International Graduate Summer School on Frontiers of Applied and

More information

Rate optimal adaptive FEM with inexact solver for strongly monotone operators

Rate optimal adaptive FEM with inexact solver for strongly monotone operators ASC Report No. 19/2016 Rate optimal adaptive FEM with inexact solver for strongly monotone operators G. Gantner, A. Haberl, D. Praetorius, B. Stiftner Institute for Analysis and Scientific Computing Vienna

More information

Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates)

Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates) Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates) Carsten Carstensen Humboldt-Universität zu Berlin 2018 International Graduate Summer School on Frontiers of Applied and

More information

Axioms of adaptivity. ASC Report No. 38/2013. C. Carstensen, M. Feischl, M. Page, D. Praetorius

Axioms of adaptivity. ASC Report No. 38/2013. C. Carstensen, M. Feischl, M. Page, D. Praetorius ASC Report No. 38/2013 Axioms of adaptivity C. Carstensen, M. Feischl, M. Page, D. Praetorius Institute for Analysis and Scientific Computing Vienna University of Technology TU Wien www.asc.tuwien.ac.at

More information

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation Department of Mathematics and Institute for Physical Science and Technology University of Maryland, USA www.math.umd.edu/ rhn 7th

More information

Convergence and optimality of an adaptive FEM for controlling L 2 errors

Convergence and optimality of an adaptive FEM for controlling L 2 errors Convergence and optimality of an adaptive FEM for controlling L 2 errors Alan Demlow (University of Kentucky) joint work with Rob Stevenson (University of Amsterdam) Partially supported by NSF DMS-0713770.

More information

Axioms of Adaptivity

Axioms of Adaptivity Axioms of Adaptivity Carsten Carstensen Humboldt-Universität zu Berlin Open-Access Reference: C-Feischl-Page-Praetorius: Axioms of Adaptivity. Computer & Mathematics with Applications 67 (2014) 1195 1253

More information

Preconditioned space-time boundary element methods for the heat equation

Preconditioned space-time boundary element methods for the heat equation W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

Axioms of Adaptivity (AoA) in Lecture 2 (sufficient for optimal convergence rates)

Axioms of Adaptivity (AoA) in Lecture 2 (sufficient for optimal convergence rates) Axioms of Adaptivity (AoA) in Lecture 2 (sufficient for optimal convergence rates) Carsten Carstensen Humboldt-Universität zu Berlin 2018 International Graduate Summer School on Frontiers of Applied and

More information

Integral Representation Formula, Boundary Integral Operators and Calderón projection

Integral Representation Formula, Boundary Integral Operators and Calderón projection Integral Representation Formula, Boundary Integral Operators and Calderón projection Seminar BEM on Wave Scattering Franziska Weber ETH Zürich October 22, 2010 Outline Integral Representation Formula Newton

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

Fact Sheet Functional Analysis

Fact Sheet Functional Analysis Fact Sheet Functional Analysis Literature: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

More information

HILBERT? What is HILBERT? Matlab Implementation of Adaptive 2D BEM. Dirk Praetorius. Features of HILBERT

HILBERT? What is HILBERT? Matlab Implementation of Adaptive 2D BEM. Dirk Praetorius. Features of HILBERT Söerhaus-Workshop 2009 October 16, 2009 What is HILBERT? HILBERT Matab Impementation of Adaptive 2D BEM joint work with M. Aurada, M. Ebner, S. Ferraz-Leite, P. Godenits, M. Karkuik, M. Mayr Hibert Is

More information

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions Ernst P. Stephan 1, Matthias Maischak 2, and Thanh Tran 3 1 Institut für Angewandte Mathematik, Leibniz

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

Sobolev Spaces. Chapter 10

Sobolev Spaces. Chapter 10 Chapter 1 Sobolev Spaces We now define spaces H 1,p (R n ), known as Sobolev spaces. For u to belong to H 1,p (R n ), we require that u L p (R n ) and that u have weak derivatives of first order in L p

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Residual and Error of Finite Element Solutions Mixed BVP of Poisson Equation

More information

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes Dylan Copeland 1, Ulrich Langer 2, and David Pusch 3 1 Institute of Computational Mathematics,

More information

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T 2 R.H. NOCHETTO 2. Lecture 2. Adaptivity I: Design and Convergence of AFEM tarting with a conforming mesh T H, the adaptive procedure AFEM consists of loops of the form OLVE ETIMATE MARK REFINE to produce

More information

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Stability of the Laplace single layer boundary integral operator in Sobolev spaces O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2016/2 Technische

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz A note on the stable coupling of finite and boundary elements O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2009/4 Technische Universität Graz A

More information

Variational Formulations

Variational Formulations Chapter 2 Variational Formulations In this chapter we will derive a variational (or weak) formulation of the elliptic boundary value problem (1.4). We will discuss all fundamental theoretical results that

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Nonconformity and the Consistency Error First Strang Lemma Abstract Error Estimate

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem

Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem Journal manuscript No. (will be inserted by the editor Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem Constantin Christof Christof Haubner Received:

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

Sobolev spaces, Trace theorems and Green s functions.

Sobolev spaces, Trace theorems and Green s functions. Sobolev spaces, Trace theorems and Green s functions. Boundary Element Methods for Waves Scattering Numerical Analysis Seminar. Orane Jecker October 21, 2010 Plan Introduction 1 Useful definitions 2 Distributions

More information

Space time finite and boundary element methods

Space time finite and boundary element methods Space time finite and boundary element methods Olaf Steinbach Institut für Numerische Mathematik, TU Graz http://www.numerik.math.tu-graz.ac.at based on joint work with M. Neumüller, H. Yang, M. Fleischhacker,

More information

A Posteriori Existence in Adaptive Computations

A Posteriori Existence in Adaptive Computations Report no. 06/11 A Posteriori Existence in Adaptive Computations Christoph Ortner This short note demonstrates that it is not necessary to assume the existence of exact solutions in an a posteriori error

More information

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov,

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov, LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES Sergey Korotov, Institute of Mathematics Helsinki University of Technology, Finland Academy of Finland 1 Main Problem in Mathematical

More information

Applied/Numerical Analysis Qualifying Exam

Applied/Numerical Analysis Qualifying Exam Applied/Numerical Analysis Qualifying Exam August 9, 212 Cover Sheet Applied Analysis Part Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless,

More information

A non-standard Finite Element Method based on boundary integral operators

A non-standard Finite Element Method based on boundary integral operators A non-standard Finite Element Method based on boundary integral operators Clemens Hofreither Ulrich Langer Clemens Pechstein June 30, 2010 supported by Outline 1 Method description Motivation Variational

More information

The Mortar Boundary Element Method

The Mortar Boundary Element Method The Mortar Boundary Element Method A Thesis submitted for the degree of Doctor of Philosophy by Martin Healey School of Information Systems, Computing and Mathematics Brunel University March 2010 Abstract

More information

1. Introduction. This paper is devoted to the numerical treatment of the hypersingular

1. Introduction. This paper is devoted to the numerical treatment of the hypersingular SIAM J. SCI. COMPUT. Vol. 29, No. 2, pp. 782 80 c 2007 Society for Industrial and Applied Mathematics AVERAGING TECNIQUES FOR TE A POSTERIORI BEM ERROR CONTROL FOR A YPERSINGULAR INTEGRAL EQUATION IN TWO

More information

Regularity for Poisson Equation

Regularity for Poisson Equation Regularity for Poisson Equation OcMountain Daylight Time. 4, 20 Intuitively, the solution u to the Poisson equation u= f () should have better regularity than the right hand side f. In particular one expects

More information

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1.

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1. Sep. 1 9 Intuitively, the solution u to the Poisson equation S chauder Theory u = f 1 should have better regularity than the right hand side f. In particular one expects u to be twice more differentiable

More information

Outline of Fourier Series: Math 201B

Outline of Fourier Series: Math 201B Outline of Fourier Series: Math 201B February 24, 2011 1 Functions and convolutions 1.1 Periodic functions Periodic functions. Let = R/(2πZ) denote the circle, or onedimensional torus. A function f : C

More information

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Contents Chapter I. Introduction 7 I.1. Motivation 7 I.2. Sobolev and finite

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

Space-time sparse discretization of linear parabolic equations

Space-time sparse discretization of linear parabolic equations Space-time sparse discretization of linear parabolic equations Roman Andreev August 2, 200 Seminar for Applied Mathematics, ETH Zürich, Switzerland Support by SNF Grant No. PDFMP2-27034/ Part of PhD thesis

More information

Sobolev Spaces. Chapter Hölder spaces

Sobolev Spaces. Chapter Hölder spaces Chapter 2 Sobolev Spaces Sobolev spaces turn out often to be the proper setting in which to apply ideas of functional analysis to get information concerning partial differential equations. Here, we collect

More information

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian BULLETIN OF THE GREE MATHEMATICAL SOCIETY Volume 57, 010 (1 7) On an Approximation Result for Piecewise Polynomial Functions O. arakashian Abstract We provide a new approach for proving approximation results

More information

Maximum-norm a posteriori estimates for discontinuous Galerkin methods

Maximum-norm a posteriori estimates for discontinuous Galerkin methods Maximum-norm a posteriori estimates for discontinuous Galerkin methods Emmanuil Georgoulis Department of Mathematics, University of Leicester, UK Based on joint work with Alan Demlow (Kentucky, USA) DG

More information

Friedrich symmetric systems

Friedrich symmetric systems viii CHAPTER 8 Friedrich symmetric systems In this chapter, we describe a theory due to Friedrich [13] for positive symmetric systems, which gives the existence and uniqueness of weak solutions of boundary

More information

c 2006 Society for Industrial and Applied Mathematics

c 2006 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 27, No. 4, pp. 226 260 c 2006 Society for Industrial and Applied Mathematics AVERAGING TECNIQUES FOR TE EFFECTIVE NUMERICAL SOLUTION OF SYMM S INTEGRAL EQUATION OF TE FIRST KIND

More information

Institut für Mathematik

Institut für Mathematik U n i v e r s i t ä t A u g s b u r g Institut für Mathematik Dietrich Braess, Carsten Carstensen, and Ronald H.W. Hoppe Convergence Analysis of a Conforming Adaptive Finite Element Method for an Obstacle

More information

Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains

Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains Sergey E. Mikhailov Brunel University West London, Department of Mathematics, Uxbridge, UB8 3PH, UK J. Math. Analysis

More information

Institut de Recherche MAthématique de Rennes

Institut de Recherche MAthématique de Rennes LMS Durham Symposium: Computational methods for wave propagation in direct scattering. - July, Durham, UK The hp version of the Weighted Regularization Method for Maxwell Equations Martin COSTABEL & Monique

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2017) 136:1097 1115 DOI 10.1007/s00211-017-0866-x Numerische Mathematik Convergence of natural adaptive least squares finite element methods Carsten Carstensen 1 Eun-Jae Park 2 Philipp Bringmann

More information

When is the error in the h BEM for solving the Helmholtz equation bounded independently of k?

When is the error in the h BEM for solving the Helmholtz equation bounded independently of k? BIT manuscript No. (will be inserted by the editor) When is the error in the h BEM for solving the Helmholtz equation bounded independently of k? I. G. Graham M. Löhndorf J. M. Melenk E. A. Spence Received:

More information

Isogeometric Analysis:

Isogeometric Analysis: Isogeometric Analysis: some approximation estimates for NURBS L. Beirao da Veiga, A. Buffa, Judith Rivas, G. Sangalli Euskadi-Kyushu 2011 Workshop on Applied Mathematics BCAM, March t0th, 2011 Outline

More information

Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems

Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems ASC Report No. 14/2016 Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems A. Bespalov, A. Haberl, and D. Praetorius Institute for Analysis

More information

Controllability of the linear 1D wave equation with inner moving for

Controllability of the linear 1D wave equation with inner moving for Controllability of the linear D wave equation with inner moving forces ARNAUD MÜNCH Université Blaise Pascal - Clermont-Ferrand - France Toulouse, May 7, 4 joint work with CARLOS CASTRO (Madrid) and NICOLAE

More information

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: Oct. 1 The Dirichlet s P rinciple In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: 1. Dirichlet s Principle. u = in, u = g on. ( 1 ) If we multiply

More information

Some lecture notes for Math 6050E: PDEs, Fall 2016

Some lecture notes for Math 6050E: PDEs, Fall 2016 Some lecture notes for Math 65E: PDEs, Fall 216 Tianling Jin December 1, 216 1 Variational methods We discuss an example of the use of variational methods in obtaining existence of solutions. Theorem 1.1.

More information

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs Lecture Notes: African Institute of Mathematics Senegal, January 26 opic itle: A short introduction to numerical methods for elliptic PDEs Authors and Lecturers: Gerard Awanou (University of Illinois-Chicago)

More information

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM Finite Elements February 22, 2019 In the previous sections, we introduced the concept of finite element spaces, which contain certain functions defined on a domain. Finite element spaces are examples of

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

Introduction to finite element exterior calculus

Introduction to finite element exterior calculus Introduction to finite element exterior calculus Ragnar Winther CMA, University of Oslo Norway Why finite element exterior calculus? Recall the de Rham complex on the form: R H 1 (Ω) grad H(curl, Ω) curl

More information

LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI

LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI Georgian Technical University Tbilisi, GEORGIA 0-0 1. Formulation of the corresponding

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017 ACM/CMS 17 Linear Analysis & Applications Fall 217 Assignment 2: PDEs and Finite Element Methods Due: 7th November 217 For this assignment the following MATLAB code will be required: Introduction http://wwwmdunloporg/cms17/assignment2zip

More information

An optimal adaptive finite element method. Rob Stevenson Korteweg-de Vries Institute for Mathematics Faculty of Science University of Amsterdam

An optimal adaptive finite element method. Rob Stevenson Korteweg-de Vries Institute for Mathematics Faculty of Science University of Amsterdam An optimal adaptive finite element method Rob Stevenson Korteweg-de Vries Institute for Mathematics Faculty of Science University of Amsterdam Contents model problem + (A)FEM newest vertex bisection convergence

More information

Green s Functions and Distributions

Green s Functions and Distributions CHAPTER 9 Green s Functions and Distributions 9.1. Boundary Value Problems We would like to study, and solve if possible, boundary value problems such as the following: (1.1) u = f in U u = g on U, where

More information

Math The Laplacian. 1 Green s Identities, Fundamental Solution

Math The Laplacian. 1 Green s Identities, Fundamental Solution Math. 209 The Laplacian Green s Identities, Fundamental Solution Let be a bounded open set in R n, n 2, with smooth boundary. The fact that the boundary is smooth means that at each point x the external

More information

BIHARMONIC WAVE MAPS INTO SPHERES

BIHARMONIC WAVE MAPS INTO SPHERES BIHARMONIC WAVE MAPS INTO SPHERES SEBASTIAN HERR, TOBIAS LAMM, AND ROLAND SCHNAUBELT Abstract. A global weak solution of the biharmonic wave map equation in the energy space for spherical targets is constructed.

More information

A Multigrid Method for Two Dimensional Maxwell Interface Problems

A Multigrid Method for Two Dimensional Maxwell Interface Problems A Multigrid Method for Two Dimensional Maxwell Interface Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University USA JSA 2013 Outline A

More information

Adaptive approximation of eigenproblems: multiple eigenvalues and clusters

Adaptive approximation of eigenproblems: multiple eigenvalues and clusters Adaptive approximation of eigenproblems: multiple eigenvalues and clusters Francesca Gardini Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/gardini Banff, July 1-6,

More information

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence 1 CONVERGENCE THEOR G. ALLAIRE CMAP, Ecole Polytechnique 1. Maximum principle 2. Oscillating test function 3. Two-scale convergence 4. Application to homogenization 5. General theory H-convergence) 6.

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

Projected Surface Finite Elements for Elliptic Equations

Projected Surface Finite Elements for Elliptic Equations Available at http://pvamu.edu/aam Appl. Appl. Math. IN: 1932-9466 Vol. 8, Issue 1 (June 2013), pp. 16 33 Applications and Applied Mathematics: An International Journal (AAM) Projected urface Finite Elements

More information

Recovery-Based A Posteriori Error Estimation

Recovery-Based A Posteriori Error Estimation Recovery-Based A Posteriori Error Estimation Zhiqiang Cai Purdue University Department of Mathematics, Purdue University Slide 1, March 2, 2011 Outline Introduction Diffusion Problems Higher Order Elements

More information

Sobolev spaces. May 18

Sobolev spaces. May 18 Sobolev spaces May 18 2015 1 Weak derivatives The purpose of these notes is to give a very basic introduction to Sobolev spaces. More extensive treatments can e.g. be found in the classical references

More information

Lecture on: Numerical sparse linear algebra and interpolation spaces. June 3, 2014

Lecture on: Numerical sparse linear algebra and interpolation spaces. June 3, 2014 Lecture on: Numerical sparse linear algebra and interpolation spaces June 3, 2014 Finite dimensional Hilbert spaces and IR N 2 / 38 (, ) : H H IR scalar product and u H = (u, u) u H norm. Finite dimensional

More information

Finite Elements on Degenerate Meshes: Inverse-type Inequalities and Applications

Finite Elements on Degenerate Meshes: Inverse-type Inequalities and Applications Finite Elements on Degenerate Meshes: Inverse-type Inequalities and Applications I.G. Graham Dept. of Mathematical Sciences, University of Bath, Bath, BA2 7AY, U.K. W. Hackbusch Max-Planck-Institut Mathematik

More information

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT HUOYUAN DUAN, SHA LI, ROGER C. E. TAN, AND WEIYING ZHENG Abstract. To deal with the divergence-free

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Weak Formulation of Elliptic BVP s

Weak Formulation of Elliptic BVP s Weak Formulation of Elliptic BVP s There are a large number of problems of physical interest that can be formulated in the abstract setting in which the Lax-Milgram lemma is applied to an equation expressed

More information

HARMONIC ANALYSIS. Date:

HARMONIC ANALYSIS. Date: HARMONIC ANALYSIS Contents. Introduction 2. Hardy-Littlewood maximal function 3. Approximation by convolution 4. Muckenhaupt weights 4.. Calderón-Zygmund decomposition 5. Fourier transform 6. BMO (bounded

More information

Partial Differential Equations and Sobolev Spaces MAT-INF4300 autumn Snorre H. Christiansen November 10, 2016

Partial Differential Equations and Sobolev Spaces MAT-INF4300 autumn Snorre H. Christiansen November 10, 2016 Partial Differential Equations and Sobolev Spaces MAT-INF4300 autumn 2016 Snorre H. Christiansen November 10, 2016 1 2 Contents 1 Introduction 5 2 Notations for differential operators 7 3 Generalities

More information

L. Levaggi A. Tabacco WAVELETS ON THE INTERVAL AND RELATED TOPICS

L. Levaggi A. Tabacco WAVELETS ON THE INTERVAL AND RELATED TOPICS Rend. Sem. Mat. Univ. Pol. Torino Vol. 57, 1999) L. Levaggi A. Tabacco WAVELETS ON THE INTERVAL AND RELATED TOPICS Abstract. We use an abstract framework to obtain a multilevel decomposition of a variety

More information

Sobolevology. 1. Definitions and Notation. When α = 1 this seminorm is the same as the Lipschitz constant of the function f. 2.

Sobolevology. 1. Definitions and Notation. When α = 1 this seminorm is the same as the Lipschitz constant of the function f. 2. Sobolevology 1. Definitions and Notation 1.1. The domain. is an open subset of R n. 1.2. Hölder seminorm. For α (, 1] the Hölder seminorm of exponent α of a function is given by f(x) f(y) [f] α = sup x

More information

Lecture 8: Boundary Integral Equations

Lecture 8: Boundary Integral Equations CBMS Conference on Fast Direct Solvers Dartmouth College June 23 June 27, 2014 Lecture 8: Boundary Integral Equations Gunnar Martinsson The University of Colorado at Boulder Research support by: Consider

More information

arxiv: v1 [math.na] 19 Nov 2018

arxiv: v1 [math.na] 19 Nov 2018 QUASINORMS IN SEMILINEAR ELLIPTIC PROBLEMS JAMES JACKAMAN AND TRISTAN PRYER arxiv:1811.07816v1 [math.na] 19 Nov 2018 (1.1) Abstract. In this note we examine the a priori and a posteriori analysis of discontinuous

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

Solution of Non-Homogeneous Dirichlet Problems with FEM

Solution of Non-Homogeneous Dirichlet Problems with FEM Master Thesis Solution of Non-Homogeneous Dirichlet Problems with FEM Francesco Züger Institut für Mathematik Written under the supervision of Prof. Dr. Stefan Sauter and Dr. Alexander Veit August 27,

More information

i=1 α i. Given an m-times continuously

i=1 α i. Given an m-times continuously 1 Fundamentals 1.1 Classification and characteristics Let Ω R d, d N, d 2, be an open set and α = (α 1,, α d ) T N d 0, N 0 := N {0}, a multiindex with α := d i=1 α i. Given an m-times continuously differentiable

More information

THE STOKES SYSTEM R.E. SHOWALTER

THE STOKES SYSTEM R.E. SHOWALTER THE STOKES SYSTEM R.E. SHOWALTER Contents 1. Stokes System 1 Stokes System 2 2. The Weak Solution of the Stokes System 3 3. The Strong Solution 4 4. The Normal Trace 6 5. The Mixed Problem 7 6. The Navier-Stokes

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

Local pointwise a posteriori gradient error bounds for the Stokes equations. Stig Larsson. Heraklion, September 19, 2011 Joint work with A.

Local pointwise a posteriori gradient error bounds for the Stokes equations. Stig Larsson. Heraklion, September 19, 2011 Joint work with A. Local pointwise a posteriori gradient error bounds for the Stokes equations Stig Larsson Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Heraklion, September

More information

Error analysis and fast solvers for high-frequency scattering problems

Error analysis and fast solvers for high-frequency scattering problems Error analysis and fast solvers for high-frequency scattering problems I.G. Graham (University of Bath) Woudschoten October 2014 High freq. problem for the Helmholtz equation Given an object Ω R d, with

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information

On some weighted fractional porous media equations

On some weighted fractional porous media equations On some weighted fractional porous media equations Gabriele Grillo Politecnico di Milano September 16 th, 2015 Anacapri Joint works with M. Muratori and F. Punzo Gabriele Grillo Weighted Fractional PME

More information

Weak Convergence Methods for Energy Minimization

Weak Convergence Methods for Energy Minimization Weak Convergence Methods for Energy Minimization Bo Li Department of Mathematics University of California, San Diego E-mail: bli@math.ucsd.edu June 3, 2007 Introduction This compact set of notes present

More information

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS CHARALAMBOS MAKRIDAKIS AND RICARDO H. NOCHETTO Abstract. It is known that the energy technique for a posteriori error analysis

More information

weak Galerkin, finite element methods, interior estimates, second-order elliptic

weak Galerkin, finite element methods, interior estimates, second-order elliptic INERIOR ENERGY ERROR ESIMAES FOR HE WEAK GALERKIN FINIE ELEMEN MEHOD HENGGUANG LI, LIN MU, AND XIU YE Abstract Consider the Poisson equation in a polytopal domain Ω R d (d = 2, 3) as the model problem

More information