Evaluation of Pressure Sensor Performance Dr. Lynn Fuller

Size: px
Start display at page:

Download "Evaluation of Pressure Sensor Performance Dr. Lynn Fuller"

Transcription

1 ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Evaluation of Pressure Sensor Performance Dr. Lynn Fuller Webpage: 82 Lomb Memorial Drive Rochester, NY Tel (585) Fax (585) Department webpage: Pressure_Sensor_Evaluation.ppt Page 1

2 OUTLINE Introduction Theory SEM Pictures Basics Response Offset, Span, Linearity, etc. Compensation Temperature Dependence and Compensation Frequency Response References Page 2

3 INTRODUCTION In this lab we will test piezoresistive pressure sensors made at Rit and compare them with sensors made by Freescale Semiconductor, see Page 3

4 CALCULATION OF EXPECTED OUTPUT VOLTAGE +5 Volts R1 R3 R2 R4 Vo2 The equation for stress at the center edge of a square diaphragm (S.K. Clark and K.Wise, 1979) Stress = 0.3 P(L/H) 2 where P is pressure, L is length of diaphragm edge, H is diaphragm thickness Vo1 Gnd For a 3000µm opening on the back of the wafer the diaphragm edge length L is (500/Tan 54 ) = 2246 µm Page 4

5 CALCULATION OF EXPECTED OUTPUT VOLTAGE (Cont.) Stress = 0.3 P (L/H) 2 If we apply vacuum to the back of the wafer that is equivalent to and applied pressure of 14.7 psi or 103 N/m 2 P = 103 N/m 2 L= 2246 µm Stress = 2.49E8 N/m H= 25 µm 2 Hooke s Law: Stress = E Strain where E is Young s Modulus σ = E ε Young s Modulus ofr silicon is 1.9E11 N/m 2 Thus the strain = 1.31E-3 or.131% Page 5

6 CALCULATION OF EXPECTED OUTPUT VOLTAGE (Cont.) The sheet resistance (Rhos) from 4 point probe is 61 ohms/sq The resistance is R = Rhos L/W For a resistor R3 of L=350 µm and W=50 µm we find: R3 = 61 (350/50) = ohms R3 and R2 decrease as W increases due to the strain assume L is does not change, W becomes 50+50x0.131% W = µm R3 = Rhos L/W = 61 (350/ ) = ohms R1 and R4 increase as L increases due to the strain assume W does not change, L becomes x0.131% R1 = Rhos L /W = 61 ( /50) = ohms Page 6

7 CALCULATION OF EXPECTED OUTPUT VOLTAGE (Cont.) 5 Volts R1=427 R3=427 Vo1=2.5v R2=427 Gnd Vo2=2.5v R4=427 No stress Vo2-Vo1 = 0 With stress Vo2-Vo1 = 0.007v =7 mv R1=427.6 Vo1=2.4965v R2= Volts Gnd R3=426.4 Vo2=2.5035v R4=427.6 Page 7

8 Pressure Sensor SEM OF RIT PRESSURE SENSOR Front Back March 10, 2008 Dr. Lynn Fuller Page 8

9 BASICS 5 Volts Vo2=2.5035v R1 R3 R2 R4 Vo1=2.4965v Gnd Check that vo1 and Vo2 are near Vsupply/2 and Vo ~ 0 Apply and release chuck vacuum to observe change in output voltage Page 9

10 PRESSURE SENSOR TEST SETUP Apply pressure, measure and compare with other pressure gages. Collect data. Page 10

11 OUTPUT VOLTAGE VERSUS PRESSURE MEMS Pressure Sensor Output Output Voltage (mv) y = x x psi mv Pressure (psi) Page 11

12 ZERO AND SPAN COMPENSATION Vo- Rzt R1 R2 Rzb Vs Rst R3 R4 Rsb Gnd Vo+ Dr. Lynn Fuller 4/18/2007 Bridge_Balance.xls This spread sheet can be used to find resistor values used to compensate a wheatstone bridge resistor pressure sensor for output offset voltage and span. If we assume that the resistors are TaN thin film resistors that are adjusted by laser trimming then the trimmed value has to be higher than the nominal value. First adjust the value of Rzt and Rzb to set Vout trimmed to zero. Then set Rst and Rsb to make the trimmed stressed value equal to the specified output voltage at maximum applied pressure. Vout Vout Vout Vout Vsupply 10 volts no trim no trim trimmed trimmed nominal stressed nominal stressed nominal stressed R Vo volts R Vo volts R Vout mv R %change 0.5 when maximum pressure is applied (stressed) nominal Rst ohms Vo+ = Itotal * Rsb + Iright * R4 Rsb ohms Vo- = Itotal * Rsb + Ileft * R2//Rzb Vout = Vo+ - Vo- Rzt ohms Rzb ohms no trim no trim trimmed trimmed nominal stressed nominal stressed Rleft (Rzt//R1) +(Rzb//R2) Rright R3+R4 Rtotal Rleft//Rritght + Rst + Rsb Itotal Vs/Rtotal Vbridge Vs- Itotal (Rst+Rsb) Ileft Vbridge/Rleft Iright Vbridge/Rright Page 12

13 TEST SETUP FOR FREQUENCY MEASUREMENT Page 13

14 BALLOON ABOUT TO POP Page 14

15 MEASURED STEP RESPONSE Page 15

16 Dr. Lynn Fuller step to frequency.xls 7-Apr-07 This spread sheet finds the frequency response from the measured step response. The measured step response is converted into a series of 128 data points. The derivitive is found to get the impulse response. The fourier transform of the impulse response is found to get the frequency response. The frequency response is the real part of the fourier transform of the impulse response for positive frequencies. Assume the step responsem (Rn) has the general form shown in the figure below, enter times to, tmid, tend to = sec, where Rn = 0 tmid = sec, where Rn = 0.5 tend = sec, where Rn =1.0 normalized response, Rn to = time at start time increment = Measured Step Response tmid = time at midpoint tend = time at end Number of Samples N = 128 Normalized n t Step Impulse fourier transform freq = (n-n/2)/dt/n sample time Response response dt = number sec Rn dv/dt Real Imag freq 20Log Real E E E E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E E E+03 #NUM! E E E E+03 #NUM! E E E E+03 #NUM! E E E E+03 #NUM! E E E E+03 #NUM! E E E E E E E i E E E E E E E E E E E E E E E E E E E E E E E E E E E E i E E E E i E E E E E E E E E E E E E E E E E E E E E i E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E i E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E+03 #NUM! E E E E+03 #NUM! E E E E+03 #NUM! E E E E+03 #NUM! E E E E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E i E+03 #NUM! E E E+03 time Pressure Sensor 4.50E E E E E E E E E E E+01 Normalized Step Response versus time 1.20E E E E E E E E-01 time (seconds) Real part of Fourier transform versus frequency E E E E E E E E E E E Impulse Response time (seconds) -45 Frequency (hz) 20 log (Real Part of Fourier Transform) versus frequency E E E E E E E+03 frequency (Hz) Measured Step Response from Oscilloscope 60 Hz noise filtered STEP TO IMPULSE TO FREQUENCY RESPONSE Excel Spreadsheet Data Filtered Normalized Step Response Derivative gives Impulse Response Fourier Transform Gives frequency response Real Part in db Page 16

17 STEP TO FREQUENCY.XLS Dr. Lynn Fuller step to frequency.xls 7-Apr-07 This spread sheet finds the frequency response from the measured step response. The measured step response is converted into a series of 128 data points. The derivitive is found to get the impulse response. The fourier transform of the impulse response is found to get the frequency response. The frequency response is the real part of the fourier transform of the impulse response for positive frequencies. Assume the step responsem (Rn) has the general form shown in the figure below, enter times to, tmid, tend to = sec, where Rn = 0 tmid = sec, where Rn = 0.5 tend = sec, where Rn =1.0 Measured Step Response normalized response, Rn time to = time at start tmid = time at midpoint tend = time at end time increment = Page 17

18 MEASURED STEP RESPONSE Measured Step Response from Oscilloscope 60 Hz noise filtered Page 18

19 FILTERED NORMALIZED STEP RESPONSE 1.20E+00 Normalized Step Response versus time 1.00E E E E E E E time (seconds) Page 19

20 IMPULSE RESPONSE 4.50E+02 Impulse Response 4.00E E E E E E E E E E time (seconds) Page 20

21 FOURIER TRANSFORM Real part of Fourier transform versus frequency E E E E E E E E E E E Frequency (hz) Page 21

22 FREQUENCY RESPONSE 0 20 log (Real Part of Fourier Transform) versus frequency E E E E E E E frequency (Hz) Page 22

23 REFERENCES Microsystem Design, Stephen D, Senturia, Lluwer Academic Publishers, 2000, pg Micromachined Transducers, McGraw Hill, 1998,Kovacs, pg 253 Page 23

Evaluation of Pressure Sensor Performance Dr. Lynn Fuller Webpage:

Evaluation of Pressure Sensor Performance Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Evaluation of Pressure Sensor Performance Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035

More information

Pressure Sensor Evaluation Dr. Lynn Fuller Lianna Dicke Webpage:

Pressure Sensor Evaluation Dr. Lynn Fuller Lianna Dicke Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Pressure Sensor Evaluation Lianna Dicke Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email: Lynn.Fuller@rit.edu

More information

Microelectromechanical Systems (MEMs) Physical Fundamentals - Part 1 - Mechanical Fundamentals

Microelectromechanical Systems (MEMs) Physical Fundamentals - Part 1 - Mechanical Fundamentals ROCHESTER INSTITUTE OF TEHNOLOGY MICROELECTRONIC ENGINEERING Microelectromechanical Systems (MEMs) Physical Fundamentals - Part 1 - Mechanical Fundamentals Dr. Risa Robinson Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee

More information

Microelectromechanical Systems (MEMs) Applications Fluids

Microelectromechanical Systems (MEMs) Applications Fluids ROCHESTER INSTITUTE OF TEHNOLOGY MICROELECTRONIC ENGINEERING Microelectromechanical Systems (MEMs) Applications Fluids Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester,

More information

Smart Phone MEMS Labs Dr. Lynn Fuller

Smart Phone MEMS Labs Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Smart Phone MEMS Labs Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035

More information

Piezoresistive sensors

Piezoresistive sensors Perform a basic bridge analysis, specifically, find output voltage as a function of input voltage and the various resistances, and find the relationship between output voltage and changes in resistance.

More information

MEMS Mechanical Fundamentals

MEMS Mechanical Fundamentals ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Mechanical Fundamentals Dr. Lynn Fuller webpage: http://people.rit.edu/lffeee Electrical and Microelectronic Engineering Rochester Institute

More information

Hall Effect Sensors ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Hall Effect Sensors ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Hall Effect Sensors Dr. Lynn Fuller, Corey Shay, Michell Graciani Melo Espitia Webpage: http://people.rit.edu/lffeee Electrical and 82 Lomb

More information

MEMS Capacitor Sensor Laboratory

MEMS Capacitor Sensor Laboratory ROCHESTER INSTITUTE OF TEHNOLOGY MICROELECTRONIC ENGINEERING MEMS Capacitor Sensor Laboratory Dr. Lynn Fuller, Dr. Ivan Puchades Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester,

More information

v A v B V + V v S v A v B K = v S /(V + V K T = N/v S

v A v B V + V v S v A v B K = v S /(V + V K T = N/v S vs S v A v B V + V v S v A v B K = v S /(V + V K v S N T = N/v S P affiche = P S K T H u etal (S) = 50 µv/kp a P =2 R1 K u etal (K) = 0, 1 SEMICONDUCTOR TECHNICAL DATA Order this document by MPX2200/D

More information

Freescale Semiconductor

Freescale Semiconductor Freescale Semiconductor Pressure Rev 14, 10/2008 + 10 kpa Uncompensated Silicon Pressure The series silicon piezoresistive pressure sensors provide a very accurate and linear voltage output, directly proportional

More information

Pressure and Flow Sensors for Biological Measurements Dr. Lynn Fuller

Pressure and Flow Sensors for Biological Measurements Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Pressure and Flow Sensors for Biological Measurements Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester,

More information

ORDERING INFORMATION # of Ports Pressure Type Device Name

ORDERING INFORMATION # of Ports Pressure Type Device Name Rev 13, 10/2008 10 kpa On-Chip Temperature + Compensated and Calibrated Silicon Pressure The series silicon piezoresistive pressure sensors provide a very accurate and linear voltage output directly proportional

More information

PHYS 2212L - Principles of Physics Laboratory II

PHYS 2212L - Principles of Physics Laboratory II PHYS 2212L - Principles of Physics Laboratory II Laboratory Advanced Sheet Resistors 1. Objectives. The objectives of this laboratory are a. to verify the linear dependence of resistance upon length of

More information

Temperature Compensation for MEAS Pressure Sensors

Temperature Compensation for MEAS Pressure Sensors INTRODUCTION Advancements in microelectronic technology have pushed silicon sensors not only toward greater sophistication and lower functional cost but also in the direction of higher performance. The

More information

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP( MEMS based Piezo resistive Pressure Sensor Swathi Krishnamurthy 1, K.V Meena 2, E & C Engg. Dept., The Oxford College of Engineering, Karnataka. Bangalore 560009 Abstract The paper describes the performance

More information

Surface Analysis. Dr. Lynn Fuller Dr. Fuller s Webpage:

Surface Analysis. Dr. Lynn Fuller Dr. Fuller s Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Surface Analysis Dr. Lynn Fuller Dr. Fuller s Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585)

More information

MEMS Electrical Fundamentals

MEMS Electrical Fundamentals ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Electrical Fundamentals Dr. Lynn Fuller webpage: http://people.rit.edu/lffeee Electrical and Microelectronic Engineering Rochester Institute

More information

TEMPERATURE COMPENSATION FOR MEAS PRESSURE SENSORS APPLICATION NOTE

TEMPERATURE COMPENSATION FOR MEAS PRESSURE SENSORS APPLICATION NOTE TEMPERATURE COMPENSATION FOR MEAS PRESSURE SENSORS INTRODUCTION Advancements in microelectronic technology have pushed silicon sensors not only toward greater sophistication and lower functional cost but

More information

Millivolt Output Pressure Sensors

Millivolt Output Pressure Sensors Millivolt Output Pressure Sensors H-Grade Pressure Sensors Features 0 to 4 H2O to 0 to 100 Pressure Ranges % linearity...high accuracy version Temperature Compensated Calibrated Zero and Span General Description

More information

Mechatronics II Laboratory EXPERIMENT #1: FORCE AND TORQUE SENSORS DC Motor Characteristics Dynamometer, Part I

Mechatronics II Laboratory EXPERIMENT #1: FORCE AND TORQUE SENSORS DC Motor Characteristics Dynamometer, Part I Mechatronics II Laboratory EXPEIMENT #1: FOCE AND TOQUE SENSOS DC Motor Characteristics Dynamometer, Part I Force Sensors Force and torque are not measured directly. Typically, the deformation or strain

More information

Diode Sensors Theory

Diode Sensors Theory ROCHESTER INSTITUTE OF TEHNOLOGY MICROELECTRONIC ENGINEERING Diode Sensors Theory Dr. Lynn Fuller Dr. Fuller s Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email:

More information

Strain Measurements. Isaac Choutapalli

Strain Measurements. Isaac Choutapalli Note that for axial elongation (Eaxiai > 0), Erransverse (from Equation C.6), and therefore Strain Measurements Isaac Choutapalli Department of Mechanical Engineering The University of Texas - Pan American

More information

Fundamental Theory and Design of Micro Pressure Sensor

Fundamental Theory and Design of Micro Pressure Sensor Chapter 4 Fundamental Theory and Design of Micro Pressure Sensor Pressure sensor fabricated in this work is based on the piezoresistors. These piezoresistors undergo a change in resistance due to the applied

More information

b. The displacement of the mass due to a constant acceleration a is x=

b. The displacement of the mass due to a constant acceleration a is x= EE147/247A Final, Fall 2013 Page 1 /35 2 /55 NO CALCULATORS, CELL PHONES, or other electronics allowed. Show your work, and put final answers in the boxes provided. Use proper units in all answers. 1.

More information

Biosensors and Instrumentation: Tutorial 2

Biosensors and Instrumentation: Tutorial 2 Biosensors and Instrumentation: Tutorial 2. One of the most straightforward methods of monitoring temperature is to use the thermal variation of a resistor... Suggest a possible problem with the use of

More information

200 kpa On-Chip Temperature Compensated Silicon Pressure Sensors

200 kpa On-Chip Temperature Compensated Silicon Pressure Sensors Freescale Semiconductor Data Sheet: Technical Data Pressure Document Number: Rev 8, 10/2012 200 kpa On-Chip Temperature Compensated Silicon Pressure The devices series are silicon piezoresistive pressure

More information

Mechatronics II Laboratory EXPERIMENT #1 MOTOR CHARACTERISTICS FORCE/TORQUE SENSORS AND DYNAMOMETER PART 1

Mechatronics II Laboratory EXPERIMENT #1 MOTOR CHARACTERISTICS FORCE/TORQUE SENSORS AND DYNAMOMETER PART 1 Mechatronics II Laboratory EXPEIMENT #1 MOTO CHAACTEISTICS FOCE/TOQUE SENSOS AND DYNAMOMETE PAT 1 Force Sensors Force and torque are not measured directly. Typically, the deformation or strain of some

More information

Impact-Tek, LLC, Oil Sensors Phase 2, Design Review

Impact-Tek, LLC, Oil Sensors Phase 2, Design Review ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Impact-Tek, LLC, Oil Sensors Phase 2, Design Review Dr. Lynn Fuller Ivan Puchades Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive

More information

Simple calibration for ceramic sensing elements using an ME651

Simple calibration for ceramic sensing elements using an ME651 Simple calibration for ceramic sensing elements using an ME651 This article describes in detail a simple electronic circuit based on a suitable IC and few external components to amplify and to calibrate

More information

Structures - Experiment 3B Sophomore Design - Fall 2006

Structures - Experiment 3B Sophomore Design - Fall 2006 Structures - Experiment 3B 1.101 Sophomore Design - Fall 2006 Linear elastic behavior of a beam. The objectives of this experiment are to experimentally study the linear elastic behavior of beams under

More information

SENSOR DEVICES MECHANICAL SENSORS

SENSOR DEVICES MECHANICAL SENSORS SENSOR DEVICES MECHANICAL SENSORS OUTLINE 4 Mechanical Sensors Introduction General mechanical properties Piezoresistivity Piezoresistive sensors Capacitive sensors Applications INTRODUCTION MECHANICAL

More information

Strain and Force San José State University A. Mysore Spring 2009

Strain and Force San José State University A. Mysore Spring 2009 Strain and Force Strain Gage Measures strain as a change in length L, observed by change in resistance R, for a given resistivity ρ and cross-sectional area A. For elastic materials that follow Hooke s

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 13: Material

More information

Temperature Measurements

Temperature Measurements ME 22.302 Mechanical Lab I Temperature Measurements Dr. Peter Avitabile University of Massachusetts Lowell Temperature - 122601-1 Copyright 2001 A transducer is a device that converts some mechanical quantity

More information

10 kpa On-Chip Temperature Compensated & Calibrated Silicon Pressure Sensors

10 kpa On-Chip Temperature Compensated & Calibrated Silicon Pressure Sensors Freescale Semiconductor Technical Data 10 kpa On-Chip Temperature Compensated & Calibrated Silicon Pressure The /MPXV2010G series silicon piezoresistive pressure sensors provide a very accurate and linear

More information

1. Mark the correct statement(s)

1. Mark the correct statement(s) 1. Mark the correct statement(s) Figure to the right shows a mass measurement scale using a spring. 1.1 The span of the scale is a) 16 kg b) 21 kg c) 11 kg d) 5-16 kg 1.2 The range of the scale is a) 16

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 12, 2003 Closed Book and Notes 1. Be sure to fill in your

More information

200 kpa On-Chip Temperature. Compensated Silicon Pressure Sensors. MPX2200 Series. Pressure. Application Examples. Features. MPX2200 Rev 13, 10/2008

200 kpa On-Chip Temperature. Compensated Silicon Pressure Sensors. MPX2200 Series. Pressure. Application Examples. Features. MPX2200 Rev 13, 10/2008 Pressure Rev 13, 10/2008 200 kpa On-Chip Temperature + Compensated ilicon Pressure The series devices are silicon piezoresistive pressure sensor providing a highly accurate and linear voltage output directly

More information

Amplified Low Pressure Sensors

Amplified Low Pressure Sensors Amplified Low Pressure Sensors 1 mbar (0.4 In H2O) to 60 In H2O Pressure Sensors Features 0 to 1 mbar to 0 to 60 In H2O Pressure Ranges Ratiometric 4 Output Temperature Compensated Calibrated Zero and

More information

Sensors, Signals and Noise 1 COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Strain Gauges. Signal Recovery, 2017/2018 Strain Gauges

Sensors, Signals and Noise 1 COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Strain Gauges. Signal Recovery, 2017/2018 Strain Gauges Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: Strain Gauges Strain Gauges 2 Stress and strain in elastic materials Piezoresistive Effect Strain Gauge principle

More information

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Sensor devices Outline 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Introduction Two Major classes of mechanical

More information

Exercise 1: Thermistor Characteristics

Exercise 1: Thermistor Characteristics Exercise 1: Thermistor Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics of thermistors. DISCUSSION A thermistor

More information

Calibrating a Pressure Transducer, Accelerometer, and Spring System

Calibrating a Pressure Transducer, Accelerometer, and Spring System Laboratory Experiment 6: Calibrating a Pressure Transducer, Accelerometer, and Spring System Presented to the University of California, San Diego Department of Mechanical and Aerospace Engineering MAE

More information

Micro Bolometer Dr. Lynn Fuller, Jackson Anderson

Micro Bolometer Dr. Lynn Fuller, Jackson Anderson ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Micro Bolometer Dr. Lynn Fuller, Jackson Anderson Webpage: http://people.rit.edu/lffeee Electrical and 82 Lomb Memorial Drive Rochester, NY

More information

MAS.836 PROBLEM SET THREE

MAS.836 PROBLEM SET THREE MAS.836 PROBLEM SET THREE FSR, Strain Gauge, and Piezo Circuits: The purpose of this problem set is to familiarize yourself with the most common forms of pressure and force measurement. The circuits you

More information

Piezoresistive Sensors

Piezoresistive Sensors Piezoresistive Sensors Outline Piezoresistivity of metal and semiconductor Gauge factor Piezoresistors Metal, silicon and polysilicon Close view of the piezoresistivity of single crystal silicon Considerations

More information

MEMS Capacitor Sensors and Signal Conditioning

MEMS Capacitor Sensors and Signal Conditioning ROCHESTER INSTITUTE OF TEHNOLOGY MICROELECTRONIC ENGINEERING MEMS Capacitor Sensors and Signal Conditioning Dr. Lynn Fuller Dr. FullersWebpage: http://people.rit.edu/lffeee Electrical and 82 Lomb Memorial

More information

The Strain Gauge. James K Beard, Ph.D. Rowan Hall Auditorium November 2, 2006

The Strain Gauge. James K Beard, Ph.D. Rowan Hall Auditorium  November 2, 2006 The Strain Gauge James K Beard, Ph.D. Rowan Hall Auditorium beard@rowan.edu http://rowan.jkbeard.com November 2, 2006 What is Strain? Strain is elongation or deformation of a solid body due to forces applied

More information

Modeling, Simulation and Optimization of the Mechanical Response of Micromechanical Silicon Cantilever: Application to Piezoresistive Force Sensor

Modeling, Simulation and Optimization of the Mechanical Response of Micromechanical Silicon Cantilever: Application to Piezoresistive Force Sensor Available online at www.sciencedirect.com ScienceDirect Physics Procedia 55 (2014 ) 348 355 Eight International Conference on Material Sciences (CSM8-ISM5) Modeling, Simulation and Optimization of the

More information

Introduction to Strain Gage (SG) Technology

Introduction to Strain Gage (SG) Technology IDMIL - Input Devices and Music Interaction Laboratory McGill University Introduction to Strain Gage (SG) Technology Carolina Brum Medeiros March 14, 2011 About this talk objective: present the essential

More information

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 6 Transient Response of An RC Circuit Equipment: Supplies: Function Generator, Dual Trace Oscilloscope.002 Microfarad, 0.1 Microfarad capacitors; 1 Kilohm,

More information

Electronic Instrumentation

Electronic Instrumentation Electronic Instrumentation Experiment 5 Part A: Bridge Circuit Basics Part B: Analysis using Thevenin Equivalent Part C: Potentiometers and Strain Gauges Agenda Bridge Circuit Introduction Purpose Structure

More information

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO INF5490 RF MEMS LN03: Modeling, design and analysis Spring 2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture MEMS functional operation Transducer principles Sensor principles Methods

More information

Electromechanical devices MM2EMD. Lecture 5 Using Operational Amplifiers (opamps) in the real world

Electromechanical devices MM2EMD. Lecture 5 Using Operational Amplifiers (opamps) in the real world University of Nottingham Electromechanical devices MM2EMD Lecture 5 Using Operational Amplifiers (opamps) in the real world Dr. roderick.mackenzie@nottingham.ac.uk Summer 2015 @rcimackenzie Released under

More information

SX Series Pressure sensors

SX Series Pressure sensors FEATURES 0...1 to 0...150 Absolute, differential and gage devices High impedance bridge Low power consumption for battery operation APPLICATIONS Industrial controls Pneumatic controls Medical instrumentation

More information

BLC Series - Basic Compact Pressure Sensor Series. Introduction

BLC Series - Basic Compact Pressure Sensor Series. Introduction Sensors CoBeam TM Technology. The device provides a high output Features & Applications... signal at a low operating voltage and reduces the overall supply Standard Pressure Ranges... voltage while maintaining

More information

Force Sensors. What is a force sensor?

Force Sensors. What is a force sensor? orce Sensors What is a force sensor? In physics, the definition of force is any agent that causes a mass to move. When you push an object, say a toy wagon, you re applying a force to make the wagon roll.

More information

MODELING OF T-SHAPED MICROCANTILEVER RESONATORS. Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Cané

MODELING OF T-SHAPED MICROCANTILEVER RESONATORS. Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Cané Stresa, Italy, 5-7 April 007 MODELING OF T-SHAPED MICROCANTILEVER RESONATORS Margarita Narducci, Eduard Figueras, Isabel Gràcia, Luis Fonseca, Joaquin Santander, Carles Centro Nacional de Microelectrónica

More information

6. Strain Gages and Strain Measurement

6. Strain Gages and Strain Measurement 6. Strain Gages and Strain Measurement 6.1 Strain gages: (Silva p.273) Strain gage measures strain and the measurements can be directly related to stress and force. Hence, strain gages can be utilized

More information

Micro Spectro Photometer ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. Dr. Lynn Fuller. Webpage:

Micro Spectro Photometer ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. Dr. Lynn Fuller. Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Micro Spectro Photometer Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035

More information

Electronics Resistive Sensors and Bridge Circuits

Electronics Resistive Sensors and Bridge Circuits Electronics Resistive Sensors and Bridge Circuits Wilfrid Laurier University September 27, 2012 Switches in voltage dividers One of the simplest forms of voltage divider is where one of the elements is

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

AC : MEMS FABRICATION AS A MULTIDISCIPLINARY LABORATORY

AC : MEMS FABRICATION AS A MULTIDISCIPLINARY LABORATORY AC 2007-524: MEMS FABRICATION AS A MULTIDISCIPLINARY LABORATORY Todd Kaiser, Montana State University Andrew Lingley, Montana State University Matt Leone, Montana State University Brad Pierson, Montana

More information

Force and Displacement Measurement

Force and Displacement Measurement Force and Displacement Measurement Prof. R.G. Longoria Updated Fall 20 Simple ways to measure a force http://scienceblogs.com/dotphysics/200/02/diy_force_probe.php Example: Key Force/Deflection measure

More information

Exercise 2: Bending Beam Load Cell

Exercise 2: Bending Beam Load Cell Transducer Fundamentals The Strain Gauge Exercise 2: Bending Beam Load Cell EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain and demonstrate the operation of a board,

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory.

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. Issued: Thursday, Nov. 24, 2009 PROBLEM SET #7 Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. 1. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

MOS TRANSISTOR PRESSURE SENSOR

MOS TRANSISTOR PRESSURE SENSOR MOS TRANSSTOR PRESSURE SENSOR Salvador Alcantara. Antonio Cerdeira and Gabriel RomeroParedes Seccion de Elecrronica del Estadu dido. Depto. de lngenieria Elecrrica CNVESTAV PN. Av. PN No. 1508. A.P. 14740,

More information

Operating Characteristics Table 1. Operating Characteristics (V S = 3.0 Vdc, T A = 25 C unless otherwise noted, P1 > P2) Characteristic Symbol Min Typ

Operating Characteristics Table 1. Operating Characteristics (V S = 3.0 Vdc, T A = 25 C unless otherwise noted, P1 > P2) Characteristic Symbol Min Typ Freescale Semiconductor Pressure Rev 14, 10/2008 + 10 kpa Uncompensated Silicon Pressure Sensors The series silicon piezoresistive pressure sensors provide a very accurate and linear voltage output, directly

More information

ELECTROMECHANICAL RELIABILITY TESTING OF THREE-AXIAL SILICON FORCE SENSORS

ELECTROMECHANICAL RELIABILITY TESTING OF THREE-AXIAL SILICON FORCE SENSORS ELECTROMECHANICAL RELIABILITY TESTING OF THREE-AXIAL SILICON FORCE SENSORS S. Spinner 1,2, J. Bartholomeyczik 1, B. Becker 2, M. Doelle 1, O. Paul 1, I. Polian 2, R. Roth 3, K. Seitz 3, and P. Ruther 1

More information

Sensors and Transducers. mywbut.com

Sensors and Transducers. mywbut.com Sensors and Transducers 1 Objectives At the end of this chapter, the students should be able to: describe the principle of operation of various sensors and transducers; namely.. Resistive Position Transducers.

More information

I. MEASUREMENT OF TEMPERATURE

I. MEASUREMENT OF TEMPERATURE I. MEASUREMENT OF TEMPERATURE Most frequent measurement and control Direct contact: thermometer, Indirect contact: pyrometer (detect generated heat or sensing optical properties) 1. Definition of temperature

More information

MET 487 Instrumentation and Automatic Controls. Lecture 13 Sensors

MET 487 Instrumentation and Automatic Controls. Lecture 13 Sensors MET 87 nstrumentation and utomatic Controls Lecture Sensors July 6-9, 00 Stress and Strain Measurement Safe Load Level monitoring Force (indirect measurement by measuring strain of a flexural element Pressure

More information

MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary

MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary Abstract MEMS based gyroscopes have gained in popularity for use as rotation rate sensors in commercial products like

More information

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS 1 Introduction... 3 2 Objective... 3 3 Supplies... 3 4 Theory...

More information

Appendix A Glossary of Mathematical Symbols

Appendix A Glossary of Mathematical Symbols Appendix A Glossary of Mathematical Symbols This Appendix summarizes the mathematical symbols that are used throughout the book. Several symbols have multiple meanings; for example, α is used to represent

More information

Print Name : ID : ECE Test #1 9/22/2016

Print Name :  ID : ECE Test #1 9/22/2016 Print Name : Email ID : ECE 2660 Test #1 9/22/2016 All answers must be recorded on the answer page (page 2). You must do all questions on the exam. For Part 4 you must show all your work and write your

More information

Amplified Low Pressure Sensors

Amplified Low Pressure Sensors Amplified Low Pressure Sensors 1 mbar (0.4 In H2O) to 60 In H2O Pressure Sensors Features 0 to 1 mbar to 0 to 60 In H2O Pressure Ranges Ratiometric 4 Output Temperature Compensated Calibrated Zero and

More information

Modelling of Different MEMS Pressure Sensors using COMSOL Multiphysics

Modelling of Different MEMS Pressure Sensors using COMSOL Multiphysics International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Modelling

More information

PMF2000 Series DESCRIPTION FEATURES APPLICATIONS MAXIMUM RATINGS MASS AIR FLOW SENSOR

PMF2000 Series DESCRIPTION FEATURES APPLICATIONS MAXIMUM RATINGS MASS AIR FLOW SENSOR DESCRIPTION PMF2000 features Posifa s third-generation thermal flow die, benefiting from the latest innovations in microfabrication. The sensor die uses a pair of thermopiles to detect changes in temperature

More information

Excerpt from the Proceedings of the COMSOL Conference 2010 Boston

Excerpt from the Proceedings of the COMSOL Conference 2010 Boston Excerpt from the Proceedings of the COMSOL Conference 21 Boston Uncertainty Analysis, Verification and Validation of a Stress Concentration in a Cantilever Beam S. Kargar *, D.M. Bardot. University of

More information

Hot Strain Gage Processing using ncode Glyphworks. Dave Woerner, Senior Principal Test & Durability Engineer, Faurecia

Hot Strain Gage Processing using ncode Glyphworks. Dave Woerner, Senior Principal Test & Durability Engineer, Faurecia Hot Strain Gage Processing using ncode Glyphworks Dave Woerner, Senior Principal Test & Durability Engineer, Faurecia Acknowledgements Mr. John Menefee, FECT For Python Script Programming 2 Motivations

More information

DESIGN AND SIMULATION OF UNDER WATER ACOUSTIC MEMS SENSOR

DESIGN AND SIMULATION OF UNDER WATER ACOUSTIC MEMS SENSOR DESIGN AND SIMULATION OF UNDER WATER ACOUSTIC MEMS SENSOR Smitha G Prabhu 1, Nagabhushana S *2 1 Dept. Of Electronics and communication, Center for Nano Materials and MEMS, 2 Dept. of Electronics and Communication,

More information

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown. Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)

More information

ECE2019 Sensors, Circuits, and Systems A2015. Lab #2: Temperature Sensing

ECE2019 Sensors, Circuits, and Systems A2015. Lab #2: Temperature Sensing ECE2019 Sensors, Circuits, and Systems A2015 Lab #2: Temperature Sensing Introduction This lab investigates the use of a resistor as a temperature sensor. Using the temperature-sensitive resistance as

More information

Compound Coefficient Pressure Sensor PSPICE Models

Compound Coefficient Pressure Sensor PSPICE Models Freescale Semiconductor Application Note Rev 2, 05/2005 Compound Coefficient Pressure Sensor PSPICE Models by: Warren Schultz INTRODUCTION PSPICE models for Uncompensated, MPX2000 series, and MPX5000 series

More information

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements MECH 373 Instrumentation and Measurements Lecture 20 Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature 1 Measuring Acceleration and Vibration Accelerometers using

More information

Strain Gauge Application and Measurement of Unknown Load

Strain Gauge Application and Measurement of Unknown Load University Diploma Program Electronic Equipment Maintenance Lab Instructor: Muhammad Ajmal Khan EET-027, Experiment # 6 Strain Gauge Application and Measurement of Unknown Load Objectives: 1. To find the

More information

Low Power CMOS Dr. Lynn Fuller Webpage:

Low Power CMOS Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email: Lynn.Fuller@rit.edu Department

More information

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, Shear Modulus, (S) N/m 2

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, Shear Modulus, (S) N/m 2 When you bend a piece of metal, the Strain Gages Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, 1979 Material Young's Modulus, (E) 10 11 N/m 2 Shear Modulus,

More information

INSTRUMENTATION ECE Fourth Semester. Presented By:- Sumit Grover Lect., Deptt. of ECE

INSTRUMENTATION ECE Fourth Semester. Presented By:- Sumit Grover Lect., Deptt. of ECE INSTRUMENTATION ECE Fourth Semester Presented By:- Sumit Grover Lect., Deptt. of ECE Detailed Contents Objectives Sensors and transducer Classification of transducers Temperature transducers Resistance

More information

resistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( )

resistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( ) DC Fundamentals Ohm s Law Exercise 1: Ohm s Law Circuit Resistance EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine resistance by using Ohm s law. You will verify

More information

L 1 L 2 L 2. Almost rigid Motion

L 1 L 2 L 2. Almost rigid Motion Microsystem Design Stephen D. Senturia Kluwer Academic Publishers Errata The following errors occur in the First Printing This list compiled on March 9, Page 36 Page 4 Page 159 Page 168 Page 179 Page 18

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 12: Mechanical

More information

AWM3000 Series Mass flow sensor for gases

AWM3000 Series Mass flow sensor for gases FEATURES Ranges 0...30 to 0...±1000 1 or 0...0. to 0... "H O (0... to 0... mbar).. V,..3.7 V, 4...0 ma output Actual mass flow sensing Low differential pressure sensing SERVICE To be used with dry gases

More information

MET 301 EXPERIMENT # 2 APPLICATION OF BONDED STRAIN GAGES

MET 301 EXPERIMENT # 2 APPLICATION OF BONDED STRAIN GAGES MET 301 EPERIMENT # 2 APPLICATION OF BONDED STRAIN GAGES 1. Objective To understand the working principle of bonded strain gauge and to study the stress and strain in a hollow cylindrical shaft under bending,

More information

Lecture 4 Pressure Sensing. ECE 5900/6900 Fundamentals of Sensor Design

Lecture 4 Pressure Sensing. ECE 5900/6900 Fundamentals of Sensor Design EE 4900: Fundamentals of Sensor Design 1 Lecture 4 Pressure Sensing Pressure Sensing Q: What are we measuring? A: elative Pressure or Gauge Pressure. Pressure is Force (F) per Unit Area (A); P=F/A 2 SI

More information

Diffusion and Ion implantation Reference: Chapter 4 Jaeger or Chapter 3 Ruska N & P Dopants determine the resistivity of material Note N lower

Diffusion and Ion implantation Reference: Chapter 4 Jaeger or Chapter 3 Ruska N & P Dopants determine the resistivity of material Note N lower Diffusion and Ion implantation Reference: Chapter 4 Jaeger or Chapter 3 Ruska N & P Dopants determine the resistivity of material Note N lower resistavity than p: due to higher carrier mobility Near linear

More information

1 Force Sensing. Lecture Notes. 1.1 Load Cell. 1.2 Stress and Strain

1 Force Sensing. Lecture Notes. 1.1 Load Cell. 1.2 Stress and Strain Lecture Notes 1 Force Sensing 1.1 Load Cell A Load Cell is a structure which supports the load and deflects a known amount in response to applied forces and torques. The deflections are measured to characterize

More information

CEE575 - Homework 1. Resistive Sensing: Due Monday, January 29

CEE575 - Homework 1. Resistive Sensing: Due Monday, January 29 CEE575 - Homework 1 Resistive Sensing: Due Monday, January 29 Problem 1: Planes A metallic wire embedded in a strain gage is 4 cm long with a diameter of 0.1 mm. The gage is mounted on the upper surface

More information