Pressure Sensor Evaluation Dr. Lynn Fuller Lianna Dicke Webpage:

Size: px
Start display at page:

Download "Pressure Sensor Evaluation Dr. Lynn Fuller Lianna Dicke Webpage:"

Transcription

1 ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Pressure Sensor Evaluation Lianna Dicke Webpage: 82 Lomb Memorial Drive Rochester, NY Department webpage: PressureSensor.pptx Page 1

2 OUTLINE Introduction Theory Data Sheet Response Offset, Span, Linearity, Temperature, etc. Internal Electronics, Compensation Calibration Application Gas Mass Flow Measurements References Page 2

3 INTRODUCTION This document will evaluate a commercial pressure sensor and its application for gas flow measurements using Bernoulli s equation. The sensor is a single crystal diaphragm using piezoresistive sensors arranged in a bridge configuration. Pressure is applied to both top and bottom of the diaphragm creating a deflection proportional to the pressure difference. Thin silicon wafer Thickness = 10 µm Diameter 75 mm Page 3

4 SEM OF RIT PRESSURE SENSOR Front Back Page 4

5 CALCULATION OF EXPECTED OUTPUT VOLTAGE +5 Volts Vo1 R1 R3 R2 R4 Gnd Vo2 The equation for stress at the center edge of a square diaphragm (S.K. Clark and K.Wise, 1979) Stress = 0.3 P(L/H) 2 where P is pressure, L is length of diaphragm edge, H is diaphragm thickness For a 3000µm opening on the back of the wafer the diaphragm edge length L is (500/Tan ) = 2290 µm Page 5

6 CALCULATION OF EXPECTED OUTPUT VOLTAGE (Cont.) Stress = 0.3 P (L/H) 2 If we apply vacuum to the back of the wafer that is equivalent to and applied pressure of 14.7 psi or 103 N/m 2 P = 103 N/m 2 L= 2290 µm H= 25 µm Stress = 2.49E8 N/m 2 Hooke s Law: Stress = E Strain where E is Young s Modulus s = E e Young s Modulus of silicon is 1.9E11 N/m 2 Thus the strain = 1.31E-3 or.131% Page 6

7 CALCULATION OF EXPECTED OUTPUT VOLTAGE (Cont.) The sheet resistance (Rhos) from 4 point probe is 61 ohms/sq The resistance is R = Rhos L/W For a resistor R3 of L=350 µm and W=50 µm we find: R3 = 61 (350/50) = ohms R3 and R2 decrease as W increases due to the strain assume L is does not change, W becomes 50+50x0.131% W = µm R3 = Rhos L/W = 61 (350/ ) = ohms R1 and R4 increase as L increases due to the strain assume W does not change, L becomes x0.131% R1 = Rhos L /W = 61 ( /50) = ohms Page 7

8 CALCULATION OF EXPECTED OUTPUT VOLTAGE (Cont.) 5 Volts R1=427 R3=427 Vo1=2.5v R2=427 Gnd Vo2=2.5v R4=427 No stress Vo2-Vo1 = 0 With stress Vo2-Vo1 = 0.007v =7 mv R1=427.6 Vo1=2.4965v R2= Volts Gnd R3=426.4 Vo2=2.5035v R4=427.6 Page 8

9 IF RESISTORS ARE SINGLE CRYSTAL SILICON In addition to the effects of strain on the resistance if the resistor is made of single crystal silicon there is also a significant piezoresistive effect on the resistor value. Strain effects the mobility of holes and electrons in silicon. The resistors on the diaphragm of the pressure sensor drawn above have current flow longitudinal (R1 and R4) and transverse (R2 and R3) to the strain. The strain is tensile on the top surface of the diaphragm where the resistors are located if positive pressure is applied to the top of the diaphragm. The peizoresistive coefficient for R1 and R4 is 71.8 and for R2 and R3 is E-11/Pa. The calculations above give the stress as 2.49E8 Pa thus the hole mobility will decrease in R1 and R4 (R increases in value) by 2.49E8 x 71.8e-11 = 17.9% while R2 and R3 (decrease in value) because the mobility increases by 2.49E8 x 66.3E-11 = 16.5%, thus the overall effect will be dominated by the piezoresistance rather than the effect of strain on the dimensions. Page 9

10 EXPRESSION FOR RESISTANCE R = Ro [ 1 + p L s xx + p T (s yy + s zz )] where Ro = (L/W)(1/(qµ(N,T) Dose)) p L is longitudinal piezoresistive coefficient p T is transverse piezoresistive coefficient s xx is the x directed stress, same direction as current s yy is the y directed stress, transverse to current flow s zz is the z directed stress, transverse to current flow In the <110> direction p L (E -11 /Pa) p T (E -11 /Pa) Electrons holes (100) wafer <110> directions Page 10

11 CALCULATION OF EXPECTED OUTPUT VOLTAGE FOR SINGLE CRYSTAL RESISTORS 5 Volts R1=427 R3=427 Vo1=2.5v R2=427 Gnd Vo2=2.5v R4=427 No stress Vo2-Vo1 = 0 R1=503.4 Vo1=2.073v With stress Vo2-Vo1 = 0.854V = 854 mv R2= Volts Gnd R3=356.5 Vo2=2.9275v R4=503.4 Page 11

12 SENSOR AND INTERNAL ELECTRONICS One of 26,830 pressure sensors Page 12

13 MS4515 DIFFERENTIAL PRESSURE SENSOR Measurement Specialties Page 13

14 MS4515 SPECIFICATIONS Measurement Specialties Specifications Pressure Range 0-2 inches H 2 O Amplified Ratiometric Analog Output Differential Pressure, Port 1 Port 2 Temperature Compensated 3.3V or 5V operation 1/8 barbed pressure ports Response time 1mS Page 14

15 PRESSURE CONVERSION CHART 2 in-h 2 O x mmhg/in-h 2 O = 3.73 mmhg 2 in-h 2 O x psi/in-h 2 O = psi Page 15

16 MS4515 Page 16

17 TRANSFER FUNCTION measured Page 17

18 SENSOR AND INTERNAL ELECTRONICS The sensor is a single crystal diaphragm using piezoresistive sensors arranged in a bridge configuration. Page 18

19 INTRODUCTION The Analog Discovery module is used with your computer and the free WaveForms software to turn your computer into a two channel oscilloscope, curve tracer, 16 channel logic analyzer, arbitrary waveform generator, 16 channel digital pattern generator, power supplies and voltmeters, network analyzer, spectrum analyzer and more. The module connects to your USB port. Find more information on line at Academic price ~$159 Page 19

20 ANALOG DISCOVERY PIN-OUT Page 20

21 TESTING Page 21

22 TESTING Apply Pressure to Port 1 0, , 1.5, 2.0 Page 22

23 CONVERSION OF PRESSURE MEASUREMENTS Depth in H20 Voltage Pressure, Pa Pressure, psi Maximum Allowed Sensitivity 0.80V/in-H20 Sensitivity V/Pa Sensitivity 22.2 V/psi Page 23

24 MEASURING PRESSURE THROUGH 1um PIPETTE TIP ~1µm at tip Made at RIT by Olivia Scheibel from Epindorf M6-B3-AL Page 24

25 MEASURING PRESSURE THROUGH 1um PIPETTE TIP First attempt: It works but water goes into the tip by capillary action making subsequent measurements incorrect. The response time might be too slow. Needs improvement. Possibly treat the glass tip so it is hydrophobic or some other technique to keep the water out of the tip or fill the tip and tubing with liquid. Page 25

26 FLOW FROM DIFFERENTIAL PRESSURE Bernoulli s equation for steady-state flow of an incompressible, frictionless fluid in a channel of varying dimension, the pressure and the velocity of the flow along a streamline (path of a fluid molecule or particle in steady flow), and for level flow (no effect of gravity due to height differences. P 2 + ½ r v 2 2 = P 1 + ½ r v 1 2 where P 1 and P 2 are pressures at two points v 1 and v 2 are velocities at two points r is fluid density Static energy plus dynamic energy at point 1 and 2 are equal. Page 26

27 DIFFERENTIAL PRESSURE P1 DP P2 Flow pt1 pt2 Orifice At pt1 velocity is lower and pressure P1 is higher than at pt2 At pt2 velocity is higher and pressure P2 is lower than at pt1 Total kinetic plus potential energy is same at pt1 and pt2 Page 27

28 FLOW FROM DIFFERENTIAL PRESSURE Page 28

29 EXPERIMENTAL DP FLOW MEASUREMENTS Experimental verification of the basic concept. A flow channel is made from 1 ½ inch PVC pipe with a fan at one end to create air flow. An orifice is placed between the two sections and a sensor is used to measure the differential pressure across the orifice. The differential Microelectronic pressure Engineering is zero with no flow and finite with flow. Page 29

30 EXPERIMENTAL DP FLOW MEASUREMENTS fan pressure sensor Vout = fan on, DP = 1E-3 N/m fan off, DP = 0 Page 30

31 EXAMPLE CALCULATIONS Assume: B 4 = 0, C = 1 and e = 1, all are dimensionless Qm = (P d 2 /4) 2 Dp r1 caution: these assumptions not realistic!! Qm is mass flow rate in Kg/s Example: d is the orifice diameter in meters, m 0.02 m Dp is differential pressure in Pa 7.97E-3 Pa r1 is density of gas in Kg/m Kg/m 3 Giving: Qm = 3.96E-5 Kg/s B, C and e are correction factors that depend on temperature, pressure, Rochester compressibility Institute of Technology and dimensions of the flow channel and orifice. Page 31

32 MASS & VOLUMN FLOW RATE and VELOCITY Mass flow rate Qm = 3.96E-5 Kgm/s Volume flow rate Qv = 3.96E-5 m3/s = 39 cm 3 /s Velocity V = 3.4 cm/sec 3.81cm V ~3 cm/s 3.4cm Page 32

33 VELOCITY MEASUREMENTS WITH ANEMOMETER sensor Anemometer Gives Velocity of 0.04 m/s = 4 cm/s This value compares well with the velocity derived from the differential flow measurements, 3.4 cm/s Page 33

34 Mass Flow, g/s DATA WHEN USING 0.025m DIAMETER ORIFICE Power Supply(V) Fan Voltage (V) Output Voltage (V) Differential of Output Voltage Convert to Pa Mass Flow (g/s) Mass Flow vs Fan Voltage, 0.025m Diameter Orifice , , Fan Voltage, V q m = π 4 d2 2 p ρ 1 3 Volts 5 Volts ρ 1 = kg m 3 p = pressure difference in Pa Page 34

35 Mass Flow, g/s DATA WHEN USING 0.02m DIAMETER ORIFICE Power Supply(V) Fan Voltage (V) Output Voltage (V) Differential of Output Voltage Convert to Pa Mass Flow (g/s) Mass Flow vs Fan Voltage, 0.020m Diameter Orifice , Fan Voltage, V q m = π 4 d2 2 p ρ 1 ρ 1 = kg m 3 p = pressure difference in Pa 8 12, Volts 5 Volts Page 35

36 SUMMARY The data shows that the mass flow is not dependent on the supplied power to the pressure sensor. It depends on the fan voltage and to a smaller extent on the orifice size. The bigger the orifice diameter, the larger the flow. A commercial pressure sensor and its application for gas flow measurements has been evaluated. An experimental air flow differential pressure measurement apparatus was constructed and used to evaluate gas mass flow measurements based on Bernoulli s equation. Page 36

37 REFERENCES 1. Measurement Specialties, Northport Loop West, Fremont, CA 94538, , Digilent, 1300 Henley Court, Pullman, WA 99136, , Page 37

38 HOMEWORK: PRESSURE SENSOR EVALUATION 1. Go to Digikey and search for pressure sensors. Find: lowest price item, lowest pressure, ten manufacturer names, select a pressures sensor that would be good for measuring blood pressure and view the data sheet. 2. How might a differential pressure sensor be used to make a Spirometer? 3. Think of some other applications for pressure sensors. Page 38

Evaluation of Pressure Sensor Performance Dr. Lynn Fuller Webpage:

Evaluation of Pressure Sensor Performance Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Evaluation of Pressure Sensor Performance Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035

More information

Evaluation of Pressure Sensor Performance Dr. Lynn Fuller

Evaluation of Pressure Sensor Performance Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Evaluation of Pressure Sensor Performance Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604

More information

Microelectromechanical Systems (MEMs) Physical Fundamentals - Part 1 - Mechanical Fundamentals

Microelectromechanical Systems (MEMs) Physical Fundamentals - Part 1 - Mechanical Fundamentals ROCHESTER INSTITUTE OF TEHNOLOGY MICROELECTRONIC ENGINEERING Microelectromechanical Systems (MEMs) Physical Fundamentals - Part 1 - Mechanical Fundamentals Dr. Risa Robinson Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee

More information

Microelectromechanical Systems (MEMs) Applications Fluids

Microelectromechanical Systems (MEMs) Applications Fluids ROCHESTER INSTITUTE OF TEHNOLOGY MICROELECTRONIC ENGINEERING Microelectromechanical Systems (MEMs) Applications Fluids Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester,

More information

Temperature Compensation for MEAS Pressure Sensors

Temperature Compensation for MEAS Pressure Sensors INTRODUCTION Advancements in microelectronic technology have pushed silicon sensors not only toward greater sophistication and lower functional cost but also in the direction of higher performance. The

More information

1. Mark the correct statement(s)

1. Mark the correct statement(s) 1. Mark the correct statement(s) Figure to the right shows a mass measurement scale using a spring. 1.1 The span of the scale is a) 16 kg b) 21 kg c) 11 kg d) 5-16 kg 1.2 The range of the scale is a) 16

More information

TEMPERATURE COMPENSATION FOR MEAS PRESSURE SENSORS APPLICATION NOTE

TEMPERATURE COMPENSATION FOR MEAS PRESSURE SENSORS APPLICATION NOTE TEMPERATURE COMPENSATION FOR MEAS PRESSURE SENSORS INTRODUCTION Advancements in microelectronic technology have pushed silicon sensors not only toward greater sophistication and lower functional cost but

More information

Structures - Experiment 3B Sophomore Design - Fall 2006

Structures - Experiment 3B Sophomore Design - Fall 2006 Structures - Experiment 3B 1.101 Sophomore Design - Fall 2006 Linear elastic behavior of a beam. The objectives of this experiment are to experimentally study the linear elastic behavior of beams under

More information

Piezoresistive sensors

Piezoresistive sensors Perform a basic bridge analysis, specifically, find output voltage as a function of input voltage and the various resistances, and find the relationship between output voltage and changes in resistance.

More information

MEMS Mechanical Fundamentals

MEMS Mechanical Fundamentals ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Mechanical Fundamentals Dr. Lynn Fuller webpage: http://people.rit.edu/lffeee Electrical and Microelectronic Engineering Rochester Institute

More information

Fluid Mechanics 3502 Day 1, Spring 2018

Fluid Mechanics 3502 Day 1, Spring 2018 Instructor Fluid Mechanics 3502 Day 1, Spring 2018 Dr. Michele Guala, Civil Eng. Department UMN Office hours: (Tue -?) CEGE 162 9:30-10:30? Tue Thu CEGE phone (612) 626-7843 (Mon,Wed,Fr) SAFL, 2 third

More information

Summary PHY101 ( 2 ) T / Hanadi Al Harbi

Summary PHY101 ( 2 ) T / Hanadi Al Harbi الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force

More information

Smartec Pressure Sensor (bridge output)

Smartec Pressure Sensor (bridge output) DATASHEET Pressure sensor family 1/5 Smartec Pressure Sensor (bridge output) Features * Commercial grade * DIP version for high volume production * Gauge or absolute pressure * Resistive bridge technology

More information

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP( MEMS based Piezo resistive Pressure Sensor Swathi Krishnamurthy 1, K.V Meena 2, E & C Engg. Dept., The Oxford College of Engineering, Karnataka. Bangalore 560009 Abstract The paper describes the performance

More information

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity MECH 373 Instrumentation and Measurements Lecture 19 Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity Measuring Accepleration and

More information

Pressure and Flow Sensors for Biological Measurements Dr. Lynn Fuller

Pressure and Flow Sensors for Biological Measurements Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Pressure and Flow Sensors for Biological Measurements Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester,

More information

US06CPHY06 Instrumentation and Sensors UNIT 2 Part 2 Pressure Measurements

US06CPHY06 Instrumentation and Sensors UNIT 2 Part 2 Pressure Measurements US06CPHY06 Instrumentation and Sensors UNIT 2 Part 2 Pressure Measurements Pressure Measurements What is Pressure? Pressure: Force exerted by a fluid on unit surface area of a container i.e. P = F/A. Units

More information

CPO Science Foundations of Physics. Unit 8, Chapter 27

CPO Science Foundations of Physics. Unit 8, Chapter 27 CPO Science Foundations of Physics Unit 8, Chapter 27 Unit 8: Matter and Energy Chapter 27 The Physical Properties of Matter 27.1 Properties of Solids 27.2 Properties of Liquids and Fluids 27.3 Properties

More information

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters Last lecture Analog-to-digital conversion (Ch. 1.1). Introduction to flow measurement systems (Ch. 12.1). Today s menu Measurement of volume flow rate Differential pressure flowmeters Mechanical flowmeters

More information

CHE-201. I n t r o d u c t i o n t o Chemical E n g i n e e r i n g. I N S T R U CTOR: D r. N a b e e l S a l i m A b o - Ghander.

CHE-201. I n t r o d u c t i o n t o Chemical E n g i n e e r i n g. I N S T R U CTOR: D r. N a b e e l S a l i m A b o - Ghander. I n t r o d u c t i o n t o Chemical E n g i n e e r i n g CHE-201 I N S T R U CTOR: D r. N a b e e l S a l i m A b o - Ghander C h a p t e r 3 Processes and Process Variables Introduction What is a process?

More information

Millivolt Output Pressure Sensors

Millivolt Output Pressure Sensors Millivolt Output Pressure Sensors H-Grade Pressure Sensors Features 0 to 4 H2O to 0 to 100 Pressure Ranges % linearity...high accuracy version Temperature Compensated Calibrated Zero and Span General Description

More information

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements MECH 373 Instrumentation and Measurements Lecture 20 Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature 1 Measuring Acceleration and Vibration Accelerometers using

More information

Freescale Semiconductor

Freescale Semiconductor Freescale Semiconductor Pressure Rev 14, 10/2008 + 10 kpa Uncompensated Silicon Pressure The series silicon piezoresistive pressure sensors provide a very accurate and linear voltage output, directly proportional

More information

Hall Effect Sensors ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING

Hall Effect Sensors ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Hall Effect Sensors Dr. Lynn Fuller, Corey Shay, Michell Graciani Melo Espitia Webpage: http://people.rit.edu/lffeee Electrical and 82 Lomb

More information

MECHANICAL PROPERTIES OF FLUIDS:

MECHANICAL PROPERTIES OF FLUIDS: Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

More information

Mechatronics II Laboratory EXPERIMENT #1: FORCE AND TORQUE SENSORS DC Motor Characteristics Dynamometer, Part I

Mechatronics II Laboratory EXPERIMENT #1: FORCE AND TORQUE SENSORS DC Motor Characteristics Dynamometer, Part I Mechatronics II Laboratory EXPEIMENT #1: FOCE AND TOQUE SENSOS DC Motor Characteristics Dynamometer, Part I Force Sensors Force and torque are not measured directly. Typically, the deformation or strain

More information

St art. rp m. Km /h 1: : : : : : : : : : : : :5 2.5.

St art. rp m. Km /h 1: : : : : : : : : : : : :5 2.5. modified 22/05/14 t 3:5 2.5 3:5 5.0 3:5 7.5 4:0 0.0 4:0 2.5 4:0 5.0 4:0 7.5 4:1 0.0 4:1 2.5 4:1 5.0 4:1 7.5 4:2 0.0 Km /h 0 25 50 75 100 125 150 175 200 225 rp m 0 250 0 500 0 750 0 100 00 125 00 1 2 3

More information

Experiment A4 Sensor Calibration Procedure

Experiment A4 Sensor Calibration Procedure Experiment A4 Sensor Calibration Procedure Deliverables: Checked lab notebook, Brief technical memo Safety Note: Heat gloves and lab coats must be worn when dealing with boiling water. Open-toed shoes

More information

ORDERING INFORMATION # of Ports Pressure Type Device Name

ORDERING INFORMATION # of Ports Pressure Type Device Name Rev 13, 10/2008 10 kpa On-Chip Temperature + Compensated and Calibrated Silicon Pressure The series silicon piezoresistive pressure sensors provide a very accurate and linear voltage output directly proportional

More information

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation Chapter 9 Solids and Fluids Elasticity Archimedes Principle Bernoulli s Equation States of Matter Solid Liquid Gas Plasmas Solids: Stress and Strain Stress = Measure of force felt by material Stress= Force

More information

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Sensor devices Outline 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Introduction Two Major classes of mechanical

More information

Theory and Design for Mechanical Measurements

Theory and Design for Mechanical Measurements Theory and Design for Mechanical Measurements Third Edition Richard S. Figliola Clemson University Donald E. Beasley Clemson University John Wiley & Sons, Inc. New York / Chichester / Weinheim / Brisbane

More information

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS 1 Introduction... 3 2 Objective... 3 3 Supplies... 3 4 Theory...

More information

Chapter 9: Solids and Fluids

Chapter 9: Solids and Fluids Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical

More information

DUBLIN INSTITUTE OF TECHNOLOGY Kevin Street, Dublin 8.

DUBLIN INSTITUTE OF TECHNOLOGY Kevin Street, Dublin 8. Question Sheet Page 1 of 5 Instructions for the student: Question 1 is compulsory [40 marks] Attempt any two other questions [30 marks per question] The following must be made available during the examination:

More information

Rate of Flow Quantity of fluid passing through any section (area) per unit time

Rate of Flow Quantity of fluid passing through any section (area) per unit time Kinematics of Fluid Flow Kinematics is the science which deals with study of motion of liquids without considering the forces causing the motion. Rate of Flow Quantity of fluid passing through any section

More information

Physics 106 Lecture 13. Fluid Mechanics

Physics 106 Lecture 13. Fluid Mechanics Physics 106 Lecture 13 Fluid Mechanics SJ 7 th Ed.: Chap 14.1 to 14.5 What is a fluid? Pressure Pressure varies with depth Pascal s principle Methods for measuring pressure Buoyant forces Archimedes principle

More information

Chapter 15B - Fluids in Motion. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 15B - Fluids in Motion. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 15B - Fluids in Motion A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 007 Paul E. Tippens Fluid Motion The lower falls at Yellowstone National

More information

all stainless steel transducer multimedia compatibility

all stainless steel transducer multimedia compatibility all stainless steel transducer multimedia compatibility High-Performance Silicon technology LARGE INVENTORY Fast Shipment! 0-0.07 to 0-690 bar 100 mv, 0 to 5 V, and 4 to 20 ma Outputs U 1, 2 & 5 psi Low

More information

Cryogenic Instrumentation I Thermometry OUTLINE Thermometry Pt (pure metal) Temperature Ranges of Thermometer Application Typical Resistive Thermal

Cryogenic Instrumentation I Thermometry OUTLINE Thermometry Pt (pure metal) Temperature Ranges of Thermometer Application Typical Resistive Thermal Cryogenic Instrumentation I 1. Thermometry 2. anges of Application 3. Constant Volume 4. Thermocouples 5. Time esponse Data 6. 4 Terminal esistance Measurement OUTLINE 8. Pt (pure metal) 9. Typical esistive

More information

Laboratory work No 2: Calibration of Orifice Flow Meter

Laboratory work No 2: Calibration of Orifice Flow Meter Laboratory work No : Calibration of Orifice Flow Meter 1. Objective Calibrate the orifice flow meter and draw the graphs p = f 1 (Q) and C d = f (Re ).. Necessary equipment 1. Orifice flow meter. Measuring

More information

Fluids. Fluids in Motion or Fluid Dynamics

Fluids. Fluids in Motion or Fluid Dynamics Fluids Fluids in Motion or Fluid Dynamics Resources: Serway - Chapter 9: 9.7-9.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT - 8: Hydrostatics, Archimedes' Principle,

More information

BLC Series - Basic Compact Pressure Sensor Series. Introduction

BLC Series - Basic Compact Pressure Sensor Series. Introduction Sensors CoBeam TM Technology. The device provides a high output Features & Applications... signal at a low operating voltage and reduces the overall supply Standard Pressure Ranges... voltage while maintaining

More information

Nicholas J. Giordano. Chapter 10 Fluids

Nicholas J. Giordano.  Chapter 10 Fluids Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according

More information

Surface Analysis. Dr. Lynn Fuller Dr. Fuller s Webpage:

Surface Analysis. Dr. Lynn Fuller Dr. Fuller s Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Surface Analysis Dr. Lynn Fuller Dr. Fuller s Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585)

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Calendar Update Energy of Charges Intro to Circuits Ohm s Law Analog Discovery MATLAB What s next?

Calendar Update Energy of Charges Intro to Circuits Ohm s Law Analog Discovery MATLAB What s next? Calendar Update Energy of Charges Intro to Circuits Ohm s Law Analog Discovery MATLAB What s next? Calendar Update http://www.ece.utep.edu/courses/web1305/ee1305/reso urces.html P2 FOLLOW YOUR PROBLEM

More information

Amplified Low Pressure Sensors

Amplified Low Pressure Sensors Amplified Low Pressure Sensors 1 mbar (0.4 In H2O) to 60 In H2O Pressure Sensors Features 0 to 1 mbar to 0 to 60 In H2O Pressure Ranges Ratiometric 4 Output Temperature Compensated Calibrated Zero and

More information

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015 skiladæmi 10 Due: 11:59pm on Wednesday, November 11, 015 You will receive no credit for items you complete after the assignment is due Grading Policy Alternative Exercise 1115 A bar with cross sectional

More information

Piezoresistive Sensors

Piezoresistive Sensors Piezoresistive Sensors Outline Piezoresistivity of metal and semiconductor Gauge factor Piezoresistors Metal, silicon and polysilicon Close view of the piezoresistivity of single crystal silicon Considerations

More information

Experiment Five (5) Principal of Stress and Strain

Experiment Five (5) Principal of Stress and Strain Experiment Five (5) Principal of Stress and Strain Introduction Objective: To determine principal stresses and strains in a beam made of aluminum and loaded as a cantilever, and compare them with theoretical

More information

ATMO 551b Spring Barometry

ATMO 551b Spring Barometry Barometry In our context, a barometer is an instrument designed to measure the hydrostatic (as opposed to dynamic) pressure of the atmosphere. Units of pressure: Pressure is Force per unit area which is

More information

Lecture 4 Pressure Sensing. ECE 5900/6900 Fundamentals of Sensor Design

Lecture 4 Pressure Sensing. ECE 5900/6900 Fundamentals of Sensor Design EE 4900: Fundamentals of Sensor Design 1 Lecture 4 Pressure Sensing Pressure Sensing Q: What are we measuring? A: elative Pressure or Gauge Pressure. Pressure is Force (F) per Unit Area (A); P=F/A 2 SI

More information

v A v B V + V v S v A v B K = v S /(V + V K T = N/v S

v A v B V + V v S v A v B K = v S /(V + V K T = N/v S vs S v A v B V + V v S v A v B K = v S /(V + V K v S N T = N/v S P affiche = P S K T H u etal (S) = 50 µv/kp a P =2 R1 K u etal (K) = 0, 1 SEMICONDUCTOR TECHNICAL DATA Order this document by MPX2200/D

More information

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =! Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter 1 2 Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force

More information

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!L L. Example 9.

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!L L. Example 9. Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force

More information

Strain, Force, and Pressure

Strain, Force, and Pressure 10-1 10-1 Strain, Force, and Pressure Force is that which results in acceleration (when forces don t cancel). Strain is the change in shape of an object...... usually due to some force. (Force is usually

More information

Fig. 1. Two common types of van der Pauw samples: clover leaf and square. Each sample has four symmetrical electrical contacts.

Fig. 1. Two common types of van der Pauw samples: clover leaf and square. Each sample has four symmetrical electrical contacts. 15 2. Basic Electrical Parameters of Semiconductors: Sheet Resistivity, Resistivity and Conduction Type 2.1 Objectives 1. Familiarizing with experimental techniques used for the measurements of electrical

More information

6. Strain Gages and Strain Measurement

6. Strain Gages and Strain Measurement 6. Strain Gages and Strain Measurement 6.1 Strain gages: (Silva p.273) Strain gage measures strain and the measurements can be directly related to stress and force. Hence, strain gages can be utilized

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Sensors and Transducers. mywbut.com

Sensors and Transducers. mywbut.com Sensors and Transducers 1 Objectives At the end of this chapter, the students should be able to: describe the principle of operation of various sensors and transducers; namely.. Resistive Position Transducers.

More information

Measurement and instrumentation. Module 1: Measurements & error analysis

Measurement and instrumentation. Module 1: Measurements & error analysis Measurement and instrumentation Module 1: Measurements & error analysis Watch the following video and answer the questions How would you The length of an eraser? measure...? Inches Feet Yards Meters How

More information

Amplified Low Pressure Sensors

Amplified Low Pressure Sensors Amplified Low Pressure Sensors 1 mbar (0.4 In H2O) to 60 In H2O Pressure Sensors Features 0 to 1 mbar to 0 to 60 In H2O Pressure Ranges Ratiometric 4 Output Temperature Compensated Calibrated Zero and

More information

Biosensors and Instrumentation: Tutorial 2

Biosensors and Instrumentation: Tutorial 2 Biosensors and Instrumentation: Tutorial 2. One of the most straightforward methods of monitoring temperature is to use the thermal variation of a resistor... Suggest a possible problem with the use of

More information

Force Sensors. What is a force sensor?

Force Sensors. What is a force sensor? orce Sensors What is a force sensor? In physics, the definition of force is any agent that causes a mass to move. When you push an object, say a toy wagon, you re applying a force to make the wagon roll.

More information

Mechatronics II Laboratory EXPERIMENT #1 MOTOR CHARACTERISTICS FORCE/TORQUE SENSORS AND DYNAMOMETER PART 1

Mechatronics II Laboratory EXPERIMENT #1 MOTOR CHARACTERISTICS FORCE/TORQUE SENSORS AND DYNAMOMETER PART 1 Mechatronics II Laboratory EXPEIMENT #1 MOTO CHAACTEISTICS FOCE/TOQUE SENSOS AND DYNAMOMETE PAT 1 Force Sensors Force and torque are not measured directly. Typically, the deformation or strain of some

More information

HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION

HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION AMEE 0 Introduction to Fluid Mechanics Instructor: Marios M. Fyrillas Email: m.fyrillas@frederick.ac.cy HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION. Conventional spray-guns operate by achieving a low pressure

More information

Part 2. Sensor and Transducer Instrument Selection Criteria (3 Hour)

Part 2. Sensor and Transducer Instrument Selection Criteria (3 Hour) Part 2 Sensor and Transducer Instrument Selection Criteria (3 Hour) At the end of this chapter, you should be able to: Describe the definition of sensor and transducer Determine the specification of control

More information

AWM3000 Series Mass flow sensor for gases

AWM3000 Series Mass flow sensor for gases FEATURES Ranges 0...30 to 0...±1000 1 or 0...0. to 0... "H O (0... to 0... mbar).. V,..3.7 V, 4...0 ma output Actual mass flow sensing Low differential pressure sensing SERVICE To be used with dry gases

More information

SENSOR DEVICES MECHANICAL SENSORS

SENSOR DEVICES MECHANICAL SENSORS SENSOR DEVICES MECHANICAL SENSORS OUTLINE 4 Mechanical Sensors Introduction General mechanical properties Piezoresistivity Piezoresistive sensors Capacitive sensors Applications INTRODUCTION MECHANICAL

More information

Background Information for Use of Pitot Tube, Manometer, Hot Wires, and Hot Films

Background Information for Use of Pitot Tube, Manometer, Hot Wires, and Hot Films AAE 50 Notes, 9-Jan-04 Page 1 Background Information for Use of Pitot Tube, Manometer, Hot Wires, and Hot Films 1 Background The following is adapted from the handout in AAE333L. 1.1.1 Specific Applications:

More information

Strain Measurements. Isaac Choutapalli

Strain Measurements. Isaac Choutapalli Note that for axial elongation (Eaxiai > 0), Erransverse (from Equation C.6), and therefore Strain Measurements Isaac Choutapalli Department of Mechanical Engineering The University of Texas - Pan American

More information

Low Power CMOS Dr. Lynn Fuller Webpage:

Low Power CMOS Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email: Lynn.Fuller@rit.edu Department

More information

Flow rate and mass flow rate

Flow rate and mass flow rate EEN-E1040 Measurement and control of energy systems Flow measurements / 14 Sep 2017 WELCOME! v. 01 / T. Paloposki Flow rate and mass flow rate Consider the system shown here 1 Volume flow rate through

More information

Siddharth Institute of Engineering & Technology

Siddharth Institute of Engineering & Technology SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS) (Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu) (Accredited by NBA & Accredited by NAAC with A Grade) (An ISO 9001:2008

More information

MEMS Capacitor Sensor Laboratory

MEMS Capacitor Sensor Laboratory ROCHESTER INSTITUTE OF TEHNOLOGY MICROELECTRONIC ENGINEERING MEMS Capacitor Sensor Laboratory Dr. Lynn Fuller, Dr. Ivan Puchades Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester,

More information

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline Introduction to Micro/Nanofluidics Date: 2015/03/13 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics

More information

ME 515 Mechatronics. Overview of Computer based Control System

ME 515 Mechatronics. Overview of Computer based Control System ME 515 Mechatronics Introduction to Sensors I Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 081239 (3627) Email: asangar@pdn.ac.lk Overview of Computer based Control

More information

MCE380: Measurements and Instrumentation Lab

MCE380: Measurements and Instrumentation Lab MCE380: Measurements and Instrumentation Lab Chapter 8: Flow Measurements Topics: Basic Flow Equations Flow Obstruction Meters Positive Displacement Flowmeters Other Methods Holman, Ch. 7 Cleveland State

More information

Steven Burian Civil & Environmental Engineering September 25, 2013

Steven Burian Civil & Environmental Engineering September 25, 2013 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

More information

1 Force Sensing. Lecture Notes. 1.1 Load Cell. 1.2 Stress and Strain

1 Force Sensing. Lecture Notes. 1.1 Load Cell. 1.2 Stress and Strain Lecture Notes 1 Force Sensing 1.1 Load Cell A Load Cell is a structure which supports the load and deflects a known amount in response to applied forces and torques. The deflections are measured to characterize

More information

CH.1 Overview of Fluid Mechanics/22 MARKS. 1.1 Fluid Fundamentals.

CH.1 Overview of Fluid Mechanics/22 MARKS. 1.1 Fluid Fundamentals. Content : 1.1 Fluid Fundamentals. 08 Marks Classification of Fluid, Properties of fluids like Specific Weight, Specific gravity, Surface tension, Capillarity, Viscosity. Specification of hydraulic oil

More information

(Refer Slide Time: 01:16)

(Refer Slide Time: 01:16) Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module - 4 Lecture - 50 Case Studies This will be lecture 50 in

More information

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

More information

Fluid Mechanics Abdusselam Altunkaynak

Fluid Mechanics Abdusselam Altunkaynak Fluid Mechanics Abdusselam Altunkaynak 1. Unit systems 1.1 Introduction Natural events are independent on units. The unit to be used in a certain variable is related to the advantage that we get from it.

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

Unit C-1: List of Subjects

Unit C-1: List of Subjects Unit C-: List of Subjects The elocity Field The Acceleration Field The Material or Substantial Derivative Steady Flow and Streamlines Fluid Particle in a Flow Field F=ma along a Streamline Bernoulli s

More information

AC : ENGINEERING SQUEEZEOMETER AND HUGGOME- TER

AC : ENGINEERING SQUEEZEOMETER AND HUGGOME- TER AC 202-50: ENGNEERNG SQUEEZEOMETER AND HUGGOME- TER Dr. James Aflaki, Christian Brothers University James Aflaki received his Ph.D. in mechanical engineering from the University of Maryland, College Park.

More information

P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid.

P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid. CEE 3310 Thermodynamic Properties, Aug. 27, 2010 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

More information

Detection range and accuracy specs.

Detection range and accuracy specs. Example Detection range and accuracy specs. Calculate accuracy and relative error for I = 2.458 ma in all possible ranges. Select the best range and answer why is the best? Write the display indication

More information

St Olave s Grammar School. AS Physics Mock Revision Checklist

St Olave s Grammar School. AS Physics Mock Revision Checklist St Olave s Grammar School Mock Practical skills.. a Can you design experiments, including ones to solve problems set in a practical context?.. b Can you identify the variables that must be controlled in

More information

Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi

Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi WHAT we will learn I. Characterization of Fluids - What is the fluid? (Physical properties of Fluid) II. Behavior of fluids - Fluid

More information

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, Shear Modulus, (S) N/m 2

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, Shear Modulus, (S) N/m 2 When you bend a piece of metal, the Strain Gages Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, 1979 Material Young's Modulus, (E) 10 11 N/m 2 Shear Modulus,

More information

Lecture 8 Equilibrium and Elasticity

Lecture 8 Equilibrium and Elasticity Lecture 8 Equilibrium and Elasticity July 19 EQUILIBRIUM AND ELASTICITY CHAPTER 12 Give a sharp blow one end of a stick on the table. Find center of percussion. Baseball bat center of percussion Equilibrium

More information

200 kpa On-Chip Temperature Compensated Silicon Pressure Sensors

200 kpa On-Chip Temperature Compensated Silicon Pressure Sensors Freescale Semiconductor Data Sheet: Technical Data Pressure Document Number: Rev 8, 10/2012 200 kpa On-Chip Temperature Compensated Silicon Pressure The devices series are silicon piezoresistive pressure

More information

APPENDIX 1 DESCRIPTION OF HOT WIRE ANEMOMETER

APPENDIX 1 DESCRIPTION OF HOT WIRE ANEMOMETER 146 APPENDIX 1 DESCRIPTION OF HOT WIRE ANEMOMETER Basic Principles of CTA Anemometer The hot-wire anemometer was introduced in its original form in the first half of the 0 th century. A major breakthrough

More information

Paper Reference. Paper Reference(s) 7540/01 London Examinations GCE. Ordinary Level Paper 1 Thursday 8 May 2008 Afternoon. Time: 1 hour 15 minutes

Paper Reference. Paper Reference(s) 7540/01 London Examinations GCE. Ordinary Level Paper 1 Thursday 8 May 2008 Afternoon. Time: 1 hour 15 minutes Centre No. Candidate No. Paper Reference(s) 7540/01 London Examinations GCE Physics Ordinary Level Paper 1 Thursday 8 May 2008 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Items

More information

Strain Gauge Application and Measurement of Unknown Load

Strain Gauge Application and Measurement of Unknown Load University Diploma Program Electronic Equipment Maintenance Lab Instructor: Muhammad Ajmal Khan EET-027, Experiment # 6 Strain Gauge Application and Measurement of Unknown Load Objectives: 1. To find the

More information

Design And Analysis of Microcantilevers Type Sensor With Different Shape of Piezoresistive Patch

Design And Analysis of Microcantilevers Type Sensor With Different Shape of Piezoresistive Patch Aakash Swami, Pulkit Agarwal 45 Design And Analysis of Microcantilevers Type Sensor With Different Shape of Piezoresistive Patch Aakash Swami and Pulkit Agarwal Student MNNIT Allahabad Email:aakashswami7@gmail.com

More information

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics ART II Some applications of fluid mechanics Fluid Mechanics ressure ressure = F/A Units: Newton's per square meter, Nm -, kgm - s - The same unit is also known as a ascal, a, i.e. a = Nm - ) English units:

More information