Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce 1 x Yb x CoIn 5

Size: px
Start display at page:

Download "Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce 1 x Yb x CoIn 5"

Transcription

1 ARTICLE Reeived Fe 26 Aepted 27 Jul 26 Pulished 28 Sep 26 DOI:.38/nomms277 OPEN Roust upwrd dispersion of the neutron spin resonne in the hevy fermion superondutor Ce x Y x CoIn 5 Yu Song, John Vn Dyke 2, I.K. Lum 3,,5, B.D. White,5, Sooyoung Jng 3,,5, Duygu Yzii 3,,5, L. Shu 6,7, A. Shneidewind 8, Petr Čermák 8, Y. Qiu 9, M.B. Mple 3,,5, Dirk K. Morr 2 & Pengheng Di The neutron spin resonne is olletive mgneti exittion tht ppers in the unonventionl opper oxide, iron pnitide nd hevy fermion superondutors. Although the resonne is ommonly ssoited with spin-exiton due to the d(s ± )-wve symmetry of the superonduting order prmeter, it hs lso een proposed to e mgnon-like exittion ppering in the superonduting stte. Here we use inelsti neutron sttering to demonstrte tht the resonne in the hevy fermion superondutor Ce x Y x CoIn 5 with x ¼,.5 nd.3 hs ring-like upwrd dispersion tht is roust ginst Y-doping. By ompring our experimentl dt with rndom phse pproximtion lultion using the eletroni struture nd the momentum dependene of the d x 2 y 2-wve superonduting gp determined from snning tunnelling mirosopy (STM) for CeCoIn 5, we onlude tht the roust upwrd-dispersing resonne mode in Ce x Y x CoIn 5 is inonsistent with the downwrd dispersion predited within the spin-exiton senrio. Deprtment of Physis nd Astronomy, Rie University, Houston, Texs 775, USA. 2 Deprtment of Physis, University of Illinois t Chigo, Chigo, Illinois 667, USA. 3 Mterils Siene nd Engineering Progrm, University of Cliforni, Sn Diego, L Joll, Cliforni 9293, USA. Deprtment of Physis, University of Cliforni, Sn Diego, L Joll, Cliforni 9293, USA. 5 Center for Advned Nnosiene, University of Cliforni, Sn Diego, L Joll, Cliforni 9293, USA. 6 Stte Key Lortory of Surfe Physis, Deprtment of Physis, Fudn University, Shnghi 233, Chin. 7 Collortive Innovtion Center of Advned Mirostrutures, Nnjing 293, Chin. 8 Jülih Center for Neutron Siene JCNS, Forshungszentrum Jülih GmH, Outsttion t MLZ, D-8577 Grhing, Germny. 9 NIST Center for Neutron Reserh, Ntionl Institute of Stndrd nd Tehnology, Githersurg, Mrylnd 2899, USA. Correspondene nd requests for mterils should e ddressed to D.K.M. (emil: dkmorr@ui.edu) or to P.D. (emil: pdi@rie.edu). NATURE COMMUNICATIONS 7:277 DOI:.38/nomms277

2 ARTICLE NATURE COMMUNICATIONS DOI:.38/nomms277 Understnding the origin of unonventionl superondutivity in strongly orrelted eletron mterils ontinues to e t the forefront of modern ondensed mtter physis 5. In opper oxide 6 8, iron pnitide 9, nd hevy fermion,2 superondutors, the pperne of neutron spin resonne elow the superonduting trnsition temperture T suggests tht spin-flutution-medited piring is ommon thred for different fmilies of unonventionl superondutors 2. The neutron spin resonne is olletive mgneti exittion oupled to superondutivity with temperture dependene similr to the superonduting order prmeter 6,7. It is loted ner the ntiferromgneti (AF) ordering wve vetor Q AF of the undoped prent ompound nd its energy E r t Q AF is relted to either T (ref. 3) or the superonduting energy gp D (ref. ). Although it is generlly epted tht the resonne is signture of unonventionl superondutivity 2, there is no onsensus on its mirosopi origin. A ommon interprettion of the resonne is tht it is spin-exiton, rising from prtile-hole exittions involving momentum sttes ner the Fermi surfes tht possess opposite signs of the d (or s ± )-wve superonduting order prmeter 7,2,5. Alterntively, it hs lso een proposed to e mgnon-like exittion 6,7. At present, there is no onsensus on its mirosopi origin 2,7,8,. In hole-doped opper oxide superondutors, the mgneti exittions hve n hourglss dispersion with downwrd dispersion t energies elow E r nd n upwrd mgnon-like dispersion t energies ove E r (ref. 8). The resonne, on the other hnd, otined y sutrting the norml-stte mgneti exittions from those in the superonduting stte, displys predominntly downwrd dispersion 8 2. In the se of Ni-underdoped BFe 2 As 2 with oexisting AF order nd superondutivity 22, the resonne only revels n upwrd mgnon-like dispersion 23. In oth ses, the resonne is well desried y the spin-exiton senrio, the opposite dispersions eing result of d x 2 y 2 or s± symmetry of the superonduting order prmeter 23,2. For the hevy fermion superondutor CeCoIn 5 (T ¼ 2.3 K) (ref. ), the resonne ppers elow T t E r ¼.6±.3 mev nd the ommensurte AF wve vetor Q AF ¼ (/2, /2, /2) in reiprol spe 2. Sine CeCoIn 5 hs superonduting gp with d x2 y2-wve symmetry s determined from snning tunnelling mirosopy (STM) experiments 25,26, the resonne is expeted to show downwrd dispersion similr to the uprtes within the spin-exiton piture 27,28. Alterntively, the resonne, with its three-dimensionl hrter 2, ould e mgnon-like exittion of f eletrons tht eomes visile due to its redued dey rte in the superonduting stte 6,7. In this se, the resonne is not signture of d x 2 y2-wve superondutivity, ut mesure of the hyridiztion etween f eletrons nd ondution eletrons nd its ssoited piring-sensitive Lndu dmping 7. When L is sustituted for Ce in Ce x L x CoIn 5 (refs 29,3), superondutivity nd the energy of the resonne re oth rpidly suppressed, while E r /k B T remins pproximtely onstnt, where k B is the Boltzmnn onstnt. At the sme time, the energy width of the resonne rodens with inresing L-doping 3,32. When Y is doped into CeCoIn 5 to form Ce x Y x CoIn 5, superondutivity is suppressed muh slower 33.Withinresing Y, de Hs-vn Alphen nd ngle-resolved photo-emission spetrosopy studies find hnge in the Fermi-surfe topology etween Y nominl doping levels of x ¼. nd.2 (refs 3,35). In ddition, London penetrtion depth mesurements suggest tht the superonduting gp hnges from nodl to nodeless round similr Y-doping level 36, rising possily from omposite eletron piring in fully gpped superondutor for x.2 (ref. 37). If the resonne in CeCoIn 5 is spin-exiton, it should e drmtilly ffeted y the Y-doping-indued hnges in Fermi surfe topology nd superonduting gp. On the other hnd, if the resonne is mgnon-like exittion, it should e muh less sensitive to Y-doping ross x ¼.2 nd disply upwrd dispersion similr to spin wves in ntiferromgnetilly ordered nonsuperonduting CeRhIn 5 hrteristi of roust effetive nerest-neighour exhnge oupling, regrdless of its itinernt eletron or lol moment origin 7,38,39. Here we use inelsti neutron sttering to demonstrte tht the resonne in the hevy fermion superondutor Ce x Y x CoIn 5 with x ¼,.5 nd.3, nd T E2.3, 2.25 nd.5 K, respetively (Methods setion nd Supplementry Fig. ),2,33, hs dominnt ring-like upwrd dispersion tht is roust ginst Y-doping nd the onomitnt hnges in eletroni struture, feture not present in the spin-exiton senrio. Moreover, downwrd dispersion expeted in the spin-exiton senrio is not oserved. The roust upwrd dispersion of the resonne suggests tht it my hve mgnon-like ontriution 7. Speifilly, we find tht the resonne in Ce.95 Y.5 CoIn 5 displys n upwrd dispersion long [H, H,.5], [.5, K,.5] nd [.5,.5, L] s shown in Fig. d f, respetively. Upon inresing Y-doping to x ¼.3, the energy of the resonne t Q AF dereses orresponding to the redution in T (Supplementry Fig. 2), ut the overll dispersion nd lotion of the mode in reiprol spe remin unhnged. Upwrd dispersions similr to Ce.95 Y.5 CoIn 5 re lso found in undoped CeCoIn 5 nd Ce.7 Y.3 CoIn 5 (Supplementry Figs 3 5). Using the eletroni struture nd the momentum dependene of the d x 2 y2-wve superonduting gp determined from STM for CeCoIn 5 (Fig. g) 28, we lulte the feedk of superondutivity on the mgneti exittions within the spin-exiton senrio (Supplementry Note, Supplementry Figs 6 8). The resulting wve vetor dependene of the spin-exiton long [.5, K] nd [H, H], whih re shown in Fig. h,i, respetively, re inonsistent with the experimentlly determined upwrd dispersion (solid lines). Similr dispersive resonnes in CeCoIn 5 nd Ce.7 Y.3 CoIn 5 (Fig. 3, Supplementry Figs 3 nd nd Fig. 5) re seen in spite of possile hnges in the Fermi surfe nd superonduting gp symmetry on moving from x ¼ to.3 (refs 3 36), lso inonsistent with the expettion tht spin-exiton should depend sensitively on the Fermi surfe. We thus onlude tht the upwrd-dispersing resonne mode in Ce.95 Y.5 CoIn 5 nnot e interpreted s spin-exiton rising from the feedk of unonventionl d-wve superondutivity 2,27,28. On the other hnd, the similrity of the resonne s dispersion long the [H, H,.5] diretion with the spin-wve dispersion in AF-ordered nonsuperonduting CeRhIn 5 long the sme diretion 38,39 (Fig. j) suggests tht the upwrd-dispersing resonne my e mgnon-like. In this senrio, the mgneti resonne rises sine the opening of the superonduting gp leds to strong suppression of Lndu dmping for preexisting mgnon-like exittions, s shown in Fig. k,l (Supplementry Note 2 nd Supplementry Figs 9 ). This is, therefore, the first experimentl oservtion of mgneti resonne in n unonventionl superondutor tht nnot e interpreted s spin-exiton. Results Dispersion of the resonne in Ce.95 Y.5 CoIn 5 long [H, H,.5] nd [.5,.5, L]. Using tetrgonl unit ell with ¼ ¼.6 Å nd ¼ 7.5 Å for Ce.95 Y.5 CoIn 5 (Fig. ), we define the momentum trnsfer Q in three-dimensionl reiprol spe in Å s Q ¼ H þ K þ L, where H, K nd L re Miller indies nd ¼^2p=, ¼^2p= nd ¼^2p=. The experiments re rried out using the [H, H, L] nd [H, K, H] 2 NATURE COMMUNICATIONS 7:277 DOI:.38/nomms277

3 NATURE COMMUNICATIONS DOI:.38/nomms277 ARTICLE Ce/Y L HH In q = Q Q AF Co.5 Q q.5 Q AF.5 HH.5 K [H, H,.5] (r.l.u.) [.5, K,.5] (r.l.u.) [.5,.5, L] (r.l.u.) d e f K MACS K PANDA K PANDA K MACS q (Å ) q (Å ) q (Å ).5 g α h Min i Mx K (r.l.u.) Q AF β α H (r.l.u.).5 k Fit to exp. dt Spin exiton l.5.5 CeRhIn 5, ref. (38) CeRhIn 5, ref. (39) j Mgnon [H, H] (r.l.u.) [.5, K ] (r.l.u.) [H, H ] (r.l.u.).5 Figure Summry of neutron sttering results on Ce.95 Y.5 CoIn 5. () Crystl struture of Ce x Y x CoIn 5.() [H, H, L] sttering plne, where q is mesured from Q AF vi q ¼ Q Q AF. The red nd green rrows represent sns long [.5,.5, L] nd [H, H,.5] entred t Q AF, respetively. () [H, K, H] sttering plne. Here sns long [.5, K,.5] entred t Q AF n e rried out s indited y the lue rrow. (d) Dispersion of the resonne long qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi [H, H,.5]. The xis ove the figure is Q in r.l.u., wheres the xis t the ottom is q in Å. An isotropi dispersion E¼ D 2 þ ðjqjþ 2 (D ¼.55() mev, ¼ 3.2() mev Å) is shown s yn solid line, where D represents spin gp nd is the effetive spin wve veloity. The horizontl rs represent experimentlly oserved pek full-width-t-hlf-mximum. The dshed vertil lines indite the ordering wve vetor of the so-lled Q phse t Q ¼ Q AF ±(d, d, ) with d ¼.5 (ref. ). (e,f) re similr to (d), ut re for dispersions long [.5, K,.5] nd [.5,.5, L], respetively. (g) The Fermi surfes of CeCoIn 5, where the lue nd red shding represent the d-wve symmetry of the superondutivity order prmeter. The lk rrow indites Q AF, whih onnets prts of Fermi surfes with sign-reversed superondutivity-order prmeters. (h) Colour-oded lulted intensity long the [.5, K] diretion y onsidering the resonne mode to e spin-exiton. (i) Clulted intensity for the spin-exiton long the [H, H] diretion. (j) Comprison of dispersions of the resonne in Ce.95 Y.5 CoIn 5 (solid yn line) nd spin wves in CeRhIn 5 (dshed purple nd ornge lines) 38,39. (k) Clulted intensity of the resonne long the [.5, K] diretion ssuming it is mgnon-like exittion. Dispersion of the mgnon-like exittions is otined from fits to experimentl dt nd the intensity is ffeted y dmping due to the prtile hole ontinuum. (l) Clulted intensity for the mgnon-like exittion long the [H, H] diretion. NATURE COMMUNICATIONS 7:277 DOI:.38/nomms

4 ARTICLE NATURE COMMUNICATIONS DOI:.38/nomms277 sttering plnes to study the dispersions of the resonne long [H, H,.5], [.5, K,.5] nd [.5,.5, L] (Fig.,). Figure 2 shows the olour-oded plot of the spin exittions t.6 K otined from fits to the rw dt t energies E ¼.3,.55,.7,.85 nd mev long [H, H,.5] for Ce.95 Y.5 CoIn 5 (Fig. 2). Although the dt show wek ommensurte pek t E ¼.3 mev, we see ler ommensurte resonne t E r E.55 mev nd upwrd-dispersing inommensurte peks for energies E ¼.7,.85 nd mev. Figure 2 shows onstntenergy sns t E ¼.7 mev elow nd ove T.AtT ¼ 2.3 K, we see rod pek entred t the ommensurte AF wve vetor Q AF. Upon ooling to elow T t T ¼.6 K, the ommensurte pek eomes two inommensurte peks, whih disperse outwrd with inresing energy (Fig. 2). Figure 2d shows onstnt- Q sns t Q AF for tempertures T ¼.6,.5 nd 2.3 K. Similr to previous work on pure CeCoIn 5 (ref. 2), the dt revel ler resonne t E r E.55 mev elow T, nd no pek in the norml stte ove T. To further illustrte the dispersive nture of the resonne, we show in Fig. 3 mps of sttering intensities in the [H, H, L] sttering plne of the spin exittions t different energies ove nd elow T otined on the multi-xis rystl spetrometer (MACS) for Ce.95 Y.5 CoIn 5. In the proed reiprol spe, we see ler spin exittions round Q AF, whih disperse outwrd with inresing energy. At n energy (E ¼. mev) elow the resonne, spin exittions re ommensurte elow (Fig. 3) nd ove (Fig. 3) T. The onstnt-energy uts of the dt long the [H, H,.5] diretion onfirm this onlusion (Fig. 3). Figure 3d f shows similr sns t E ¼.55 mev nd indite tht the sttering eomes roder in reiprol spe. Upon moving to E ¼.7 mev (Fig. 3g i),. mev (Fig. 3j l) nd.2 mev (Fig. 3m o), we see ler ring-like sttering dispersing wy from Q AF with inresing energy in the superonduting stte. The norml-stte sttering is ommensurte t ll energies, nd this is most lerly seen in the onstnt-energy uts long the [H, H,.5] diretion. Bsed on the differene of dt t 2. nd K in Fig. 3, one n ompose the dispersions of the resonne long the [H, H,.5] (Fig. d) nd [.5,.5, L] (Fig. f) diretions. By plotting the dispersion in Å wy from Q AF (q s defined in Fig. ), we see tht the resonne disperses lmost isotropilly long these two diretions. Dispersion of the resonne in Ce.95 Y.5 CoIn 5 long [.5, K,.5]. In uprte superondutors suh s YB 2 Cu 3 O 6.5 (ref. 2), YB 2 Cu 3 O 6.6 (ref. ) nd L.875 B.25 CuO (ref. ), spin E =.7 mev K fit to exp. dt.6 K 2.3 K Intensity (ounts per min) 3. mev [H, H,.5] (r.l.u.) Intensity (ounts per min) mev.7 mev.55 mev.3 mev.6 K d Q AF = (.5,.5,.5).6 K.5 K 2.3 K 5 5 Intensity (ounts per min) [H, H,.5] (r.l.u.).5. Figure 2 Neutron sttering results on Ce.95 Y.5 CoIn 5 in the [H, H, L] sttering plne. () Colour-oded intensity of mgneti exittions long [H, H,.5] entred t Q AF t.6 K, otined from fits to dt in (). () Constnt-energy sns long [H, H,.5] entred t Q AF with E ¼.7 mev. The solid symols re dt well elow T (.6 K), where two peks n e resolved wheres open symols re otined ove T (2.3 K) showing single pek entred t Q AF. The solid line is fit to the dt t.6 K with two Gussin funtions, wheres the dshed line is fit to single Gussin funtion for the dt t 2.3 K. Dt t the two tempertures re fit simultneously to hve the sme liner kground. () Constnt-energy sns long [H, H,.5] t.6 K. For lrity, sns with E ¼.55,.75,.75 nd mev re, respetively, shifted upwrds y 5, 3, 8 nd 22. The solid lines re fits to either one or two Gussin funtions with liner kground. (d) Constnt-Q sns t Q AF. The rrows represent energies for whih onstnt-energy sns re shown in (). All vertil error rs in the figure represent sttistil errors of s.d. NATURE COMMUNICATIONS 7:277 DOI:.38/nomms277

5 NATURE COMMUNICATIONS DOI:.38/nomms277 ARTICLE.55 mev. mev.7 mev. mev.2 mev d g j m.3 K HH (r.l.u.) e h k n.3 2. K HH (r.l.u.) f i l o K 2. K [H, H,.5] (r.l.u.) Intensity (ounts) Intensity (ounts) Intensity (ounts) Intensity (ounts) Intensity (ounts) Figure 3 Constnt-energy mps of sttering intensities in the [H, H, L] sttering plne for Ce.95 Y.5 CoIn 5. Constnt-energy mp t E ¼. mev t () K nd () 2. K. A Q -dependent kground hs een sutrted. () Cuts otined from (,) y inning dt with.5rlr.55; solid lines re fits to the dt using either single or two Gussin funtions. Sine kground hs lredy een sutrted in mps in (,), no kground is ssumed in the fits. Similrly, (d f) re for E ¼.55 mev, (g i) re for E ¼.7 mev, (j l) re for E ¼. mev nd (m o) re for E ¼.2 mev. All vertil error rs in the figure represent sttistil errors of s.d. exittions ove the resonne form ring-like upwrd dispersion in the plne slightly softened from the spin wves in their AF-ordered prent ompounds 8. To onlusively determine if the resonne dispersion is lso ring-like in the plne in Ce.95 Y.5 CoIn 5, we ligned the single rystls in the [H,,H] [, K, ]([H, K, H]) sttering plne to mesure the dispersion of the resonne long [.5, K,.5] entred t Q AF. Figure f summrizes the onstnt-energy sns t E ¼.35,.5,.55,.7,.85 nd. mev long [.5, K,.5]. Although the sttering is lerly ommensurte t E ¼.35 nd.5 mev elow the resonne t E r E.55 mev (Fig.,), it eomes inommensurte ove the resonne t E ¼.7,.85 nd. mev with n upwrd dispersion s funtion of inresing energy (Fig. d f). Figure e summrizes the dispersion of the resonne in Å wy from Q AF long [.5, K,.5]. Figure g shows the differene of the onstnt-q sns elow nd ove T t Q AF, gin reveling strong pek t the resonne energy of E r E.55 mev similr to Fig. 2d. Finlly, Fig. h shows the temperture dependene of the sttering t n inommensurte wve vetor (.5,.35,.5) nd E ¼.85 mev, whih revels ler superonduting order-prmeter-like inrese elow T nd indites tht the inommensurte prt of the resonne is lso oupled to superondutivity. Dispersion of the resonne for CeCoIn 5 nd Ce.7 Y.3 CoIn 5. To determine how Y-doping, nd in prtiulr the possile hnges in the Fermi surfe topology nd superonduting gp struture etween Y-doping of x ¼. nd.2, ffets the ehviour of the resonne 3 36, we rried out dditionl inelsti neutron sttering experiments on CeCoIn 5 nd Ce.7 Y.3 CoIn 5 t MACS. Figure 5 shows temperture differenes of onstnt-q sns t Q AF elow nd ove T in Ce.7 Y.3 CoIn 5, whih revels ler resonne t E r E. mev. Figure 5 plots the temperture dependene of the resonne, displying superonduting order-prmeter-like inrese in intensity elow T. From wve vetor sns long the [H, H,.5] nd [.5,.5, L] diretions t different energies elow nd ove T for Ce.7 Y.3 CoIn 5 (Supplementry Fig. 5), we n estlish the dispersions of the resonne long these two diretions s shown in Fig. 5,d, respetively. Similrly, Fig. 5e,f ompres NATURE COMMUNICATIONS 7:277 DOI:.38/nomms

6 ARTICLE NATURE COMMUNICATIONS DOI:.38/nomms277 Intensity (ounts per min) Intensity (ounts per min) Intensity (ounts per min) Intensity (ounts per min) e g.35 mev.5 K.55 mev K.85 mev K [.5, K,.5] (r.l.u.) Q AF = (.5,.5,.5) K [.5, K,.5] (r.l.u.) dispersions of the resonne for CeCoIn 5 (Supplementry Fig. ) nd Ce.95 Y.5 CoIn 5 long the [H, H,.5] nd [.5,.5, L] diretions, respetively. From Fig. 5 f, we see tht the dispersions of the resonne re essentilly Y-doping independent. However, the ottom of the dispersive resonne t Q AF moves down in energy with inresing Y-doping nd E r is proportionl to k B T, similr to L-doped CeCoIn 5 (refs 3,32). d f h.5 mev.5 K.7 mev K. mev K Q = (.5,.35,.5) E =.85 mev K Temperture (K) Figure Neutron sttering results on Ce.95 Y.5 CoIn 5 in the [H, K, H] sttering plne. () Constnt-energy sn long [.5, K,.5] entred t Q AF t.5 K for E ¼.35 mev. The solid line is fit to single Gussin with liner kground. () Similr to (), ut for E ¼.5 mev. () Constnt-energy sn long [.5, K,.5] entred t Q AF, otined y sutrting dt t 2.3 K from dt t.5 K for E ¼.55 mev. The solid line is fit to Gussin funtion with zero kground. (d) Similr to (), ut for E ¼.7 mev, nd the solid line is fit to two Gussin funtions. (e) Similr to (d), ut for E ¼.85 mev. The rrow points to Q ¼ (.5,.35,.5), where mesurement of the temperture dependene ws rried out, shown in (h). (f) Similr to (d,e), ut for E ¼. mev. (g) Constnt-Q sn t Q AF otined y sutrting the 2.3 K dt from the.5 K dt. The solid line is Gussin funtion entred t E ¼.57() mev with zero kground. Arrows represent energies t whih onstnt-energy sns re shown in ( f). (h) Temperture dependene of sttering intensity t Q ¼ (.5,.35,.5) for E ¼.85 mev. The solid line is fit to d-wve superondutivity order prmeter with onstnt kground. The superonduting ritil temperture T otined from the fit is 2.() K. All vertil error rs in the figure represent sttistil errors of s.d. T Intensity (ounts per min) Intensity (ounts per min) Intensity (ounts per min) Intensity (ounts per min) Disussion From the dispersions of the resonne long [H, H,.5] (Fig. d), [.5, K,.5] (Fig. e) nd [.5,.5, L] (Fig. f) for Ce.95 Y.5 CoIn 5, we see tht the mode disperses isotropilly in reiprol spe wy from Q AF, whih is inonsistent with the resonne eing spin-exiton (see Fig. h,i), ut resemles mgnon-like exittion with dispersion similr to spin wves in CeRhIn 5 (Fig. j, Supplementry Note 3 nd Supplementry Fig. 2) tht eomes undmped in the superonduting stte 6,7. However, the ft tht CeCoIn 5 is multind system omplites the identifition of the resonne s origin. Athough we hve ssumed here tht the min ontriution to the resonne rises from the qusi-lolized f-levels identified vi qusi-prtile interferene (QPI) spetrosopy in STM experiment 25,28, it is of ourse possile tht there exist further eletroni nds tht eome superonduting nd ontriute to the resonne (either diretly or through renormliztion of the mgneti intertion) ut were not deteted vi QPI spetrosopy. Clerly, further studies re neessry to investigte this possiility. Moreover, in reent work on undoped CeCoIn 5, it ws suggested tht the resonne in the energy rnge of..7 mev is inommensurte long the [H, H,.5] diretion with wvevetor Q AF ±(d, d, ), where d ¼.2(2) r.l.u. (ref. 2). Sine the inommensurte wve vetors of the resonne pper to e lose to the in-plne mgneti field-indued inommensurte stti mgneti order t Q AF ±(d, d, ) with d ¼.5 (the so-lled Q phse) (see the vertil dshed lines in Fig. d) 3 5, nd sine it ws suggested tht the flututing moment of the resonne is entirely polrized long the -xis similr to the ordered moment of the Q phse 2,2, the resonne hs een desried s dynmil preursor of the Q phse 6. Experimentlly, we did not oserve inommensurte exittions t E ¼.5 mev; nevertheless, our dt suggest smller splitting thn in previous work if the exittions t E ¼.5 re inommensurte (Supplementry Note nd Supplementry Fig. 3). Furthermore, the Q phse preursor interprettion of the resonne is lso inonsistent with the oserved ring-like dispersion t E.7 mev. It is possile tht there re more thn one ontriution to the resonne in CeCoIn 5 given its eletroni omplexity. In the present work, we identify the upwrd-dispersing mgnon-like ontriution s eing dominnt, ut do not rule out finer fetures t lower energies with Eo.6 mev, whih n only e resolved with etter resolution. Our dt nd previous work on CeCoIn 5 (ref. 2) re onsistent with eh other, oth showing no signture of downwrd dispersion. Further insight into the nture of the resonne in CeCoIn 5 n e gined y onsidering its ehviour in n pplied mgneti field. Previous neutron sttering experiments y Stok et l. 7 oserved tht the resonne in the superonduting stte of CeCoIn 5 splits into two modes if mgneti field is pplied long the [,, ] diretion. This splitting into two modes y n in-plne field is rther puzzling, sine for system with Heisenerg spin symmetry splitting into three modes is expeted. Moreover, if the resonne in CeCoIn 5 ws entirely polrized long the -xis 2,2, pplition of n in-plne mgneti field should not split the resonne into the doulet oserved experimentlly 7,8. However, this oservtion n e explined if the system possesses mgneti nisotropy with mgneti esy plne (indited y the green ellipse in Fig. 6) tht is perpendiulr to the diretion of the pplied mgneti field (red rrow in Fig. 6). Sine the mgneti field pplied y Stok et l. 7 lies in the [,, ] diretion, this implies tht the esy plne is spnned y the unit vetors in the [,, ] nd [,, ] diretions. This leds us to suggest tht the resonne in CeCoIn 5 should lso hve omponent long the [,, ] diretion in ddition to the -xis omponent similr to 6 NATURE COMMUNICATIONS 7:277 DOI:.38/nomms277

7 NATURE COMMUNICATIONS DOI:.38/nomms277 ARTICLE Intensity (ounts) Temperture (K) Ce.7 Y.3 CoIn 5 Ce.7 Y.3 CoIn K T E =.5 mev E f = 2.5 mev E f = 3.7 mev Intensity (ounts). [H, H,.5] (r.l.u.) d [.5,.5, L] (r.l.u.) Ce.95 Y.5 CoIn 5 Ce.7 Y.3 CoIn q (Å ) Ce.95 Y.5 CoIn 5 Ce.7 Y.3 CoIn q (Å ).. e [H, H,.5] (r.l.u.) [.5,.5, L] (r.l.u.)..5. f..5.5 Ce.95 Y.5 CoIn 5 Ce.95 Y.5 CoIn 5. CeCoIn 5 CeCoIn q (Å ) q (Å ). Figure 5 Summry of neutron sttering results on Ce.7 Y.3 CoIn 5 nd CeCoIn 5. () Differene of onstnt-q sns t Q AF ¼ (.5,.5,.5) for.3 nd 2 K, displying resonne mode t E r E. mev for Ce.7 Y.3 CoIn 5. Filled symols re otined with fixed sttered neutron energy E f ¼ 3.7 mev nd open symols re for E f ¼ 2.5 mev sled up y times. All of the dt in the rest of figure re otined with E f ¼ 3.7 mev. The solid line is guide to the eye. () Temperture dependene of the resonne mode in Ce.7 Y.3 CoIn 5 for E ¼.5 mev nd Q AF ¼ (.5,.5,.5); the solid line is fit to d-wve superonduting gp, with T ¼.5() K. Dispersion of the resonne long () [H, H,.5] nd (d) [.5,.5,L] for Ce.7 Y.3 CoIn 5. Dispersions of the resonne for CeCoIn 5 long [H, H,.5] nd [.5,.5, L] re showin in (e,f), respetively. The solid yn lines in ( f) re dispersions of the resonne otined for Ce.95 Y.5 CoIn 5. The horizontl rs represent experimentlly oserved pek full-width-t-hlf-mximum. All vertil error rs in the figure represent sttistil errors of s.d. the resonne in eletron-doped iron pnitides 9,5.Suhin-plne spin exittion nisotropy n our due to the presene of spinorit oupling, nd does not rek the four-fold rottionl symmetry of the underlying lttie 5. The present experimentl results do not rule out the presene of suh mode, lthough it is lso hllenging to experimentlly onfirm its presene (Supplementry Note 5 nd Supplementry Figs nd 5). To quntittively understnd the effet of mgneti field on spin exittions, we onsider the Hmiltonin (see Supplementry Eq. in ref. 28) H ¼ X I r;r S r S r þ A X S z 2 r gmb H X S z r ðþ r;r r r with the three terms representing the mgneti intertions etween the f-eletron moments, the mgneti nisotropy of the system nd the intertion with the externl mgneti field, respetively. Here, we define the diretion of the mgneti field long the [,, ] diretion s the z-xis in spin spe. We ssume A, suh tht the system possesses hrd mgneti xis long [,, ] nd n esy plne (green ellipse in Fig. 6) perpendiulr to it. This Hmiltonin implies tht the effetive intertion for the longitudinl, non-spin-flip sttering mode (prllel to the pplied field) is given y I zz (q) ¼ I q þ A, while the intertion for the trnsverse mode is given y I ± (q) ¼ I q, with I q eing the Fourier trnsform of I r,r in Eqution (). In the viinity of the AF wve-vetor Q AF, where I QAF o, we thus otin I zz (Q AF ) o I ± (Q AF ) sine A for n esy plne perpendiulr to the [,, ] diretion. This implies tht the effetive intertion NATURE COMMUNICATIONS 7:277 DOI:.38/nomms

8 ARTICLE NATURE COMMUNICATIONS DOI:.38/nomms277 χ (.u.) gμ B SH = gμ B SH =.5 mev gμ B SH =. mev χ ± χ + H z [ ] Figure 6 Effet of pplied mgneti field on the resonne mode. () Orienttion of the mgneti field H nd tht of the mgneti esy plne in the rystl lttie. The mgneti field is perpendiulr to the mgneti esy plne. () Evolution of the resonne with inresing mgneti field. t Q AF for the longitudinl, non-spin-flip sttering mode (prllel to the pplied field) is smller thn for the two trnsverse, spin-flip sttering modes, whih lie in the esy plne. As result, the longitudinl mode will e loted t energies higher thn the trnsverse modes. In prtiulr, for suffiiently lrge A, the longitudinl mode n e loted ove the onset energy, o (Q AF ), for the prtile hole ontinuum in the superonduting stte, nd thus would not emerge s resonne pek. Hene, only the two trnsverse modes within the esy plne ontriute to the resonne pek. The pplition of mgneti field perpendiulr to the esy plne of the system then splits the two trnsverse modes of the resonne pek in energy (while not ffeting the longitudinl mode), with the energy splitting inresing linerly with the mgneti field, s shown in Fig. 6, thus explining the experimentl oservtion in ref. 7). If spin exittions in CeCoIn 5 re only polrized long the -xis with the existene of n esy xis rther thn n esy plne 2,2, with pplition of mgneti field long the diretion perpendiulr to the esy xis long the [,, ] diretion, the trnsverse mode long the esy xis shifts down with inresing field, ut does not split. Similrly, when field is pplied long the esy xis diretion (-xis field), the two trnsverse modes re loted t higher energies, while the longitudinl mode, whih is loted t lower energies, does not split in the mgneti field. The presene of longitudinl spin exittion long the [,, ] diretion is lso onsistent with the mgneti field effet work of ref. 8, where the resonne is elieved to e omposite exittion, whih ontins three exittion hnnels involving oth trnsverse nd longitudinl modes. While unonventionl superondutivity in opper oxide, iron pnitide nd hevy fermion superondutors ppers with the suppression of the stti AF order in their prent ompounds, dispersive mgnon-like exittions persist in the doped superondutors 8,,5. Our disovery tht the resonne itself in Ce x Y x CoIn 5 shows roust ring-like upwrds dispersion suggests tht, insted of eing spin-exiton in d- wve superondutor 2,7, the resonne my e mgnon-like exittion reveled in the superonduting stte 7. Sine the presene of propgting spin resonne is hrteristi of nery AF stte, we propose tht the mgnon-like resonne mode in Ce x Y x CoIn 5 is the strong-oupling nlogue of wek oupling spin-exiton. This would imply tht the nture of the mgneti resonne spin-exiton versus mgnon-like exittion represents new riterion to distinguish etween more wekly nd more strongly oupled unonventionl superondutors. Methods Smple preprtion. Single rystls of Ce x Y x CoIn 5 (x ¼,.5 nd.3) were prepred y the indium self-flux method. Detils of smple preprtion nd hrteriztions hve een previously reported; lttie prmeters for Ce x Y x CoIn 5 remin similr to pure CeCoIn 5 for ll reported doping levels 33. We use the nominl doping throughout the pper to e onsistent with erlier work 33, lthough the tul doping is B/3 of the nominl doping 52. Supplementry Fig. shows the out-of-phse AC mgneti suseptiility (5.9 Hz) mesured on Ce x Y x CoIn 5 smples with x ¼.5 nd.3 from the sme growth thes used for neutron sttering experiments. Bulk superondutivity ppers t T ¼ 2.25 K nd T ¼.5 K, respetively, wheres T ¼ 2.3 K in pure CeCoIn 5 (ref. 33). Hundreds of Ce x Y x CoIn 5 single rystls with totl msses of.8, 2.5 nd. g, respetively, for x ¼,.5 nd.3 were o-ligned on severl luminium pltes using CYTOP s hydrogen-free glue (Supplementry Fig. ). The pltes re then mounted in either the [H, H, ] [,, L]([H, H, L]) (Supplementry Fig. ) or the [H,,H] [, K, ]([H, K, H]) sttering plne (Supplementry Fig. d). The totl thikness of smples on o-ligned pltes is 2 mm, minimizing neutron sorption due to indium. Asorption eomes most signifint when the inident or the sttered neutron em eomes perpendiulr to [,, ], whih does not our for reiprol spe regions shown in this work. Experiment detils nd nlysis. Neutron sttering experiments were rried out on the PANDA old triple-xes spetrometer 53 t Heinz Mier-Leinitz Zentrum nd the MACS instrument t the NIST Center for Neutron Reserh. The experiments on PANDA used Be filter 8 mm in length fter the smple, whih is highly effetive in removing ontmintion from higher-order neutrons; oth the nlyser nd the monohromtor re douly foused to mximize neutron flux t the smple. Vertil fousing of the nlyser is fixed, wheres horizontl fousing is vrile. Both the horizontl nd vertil fousing of the monohromtor re vrile. The vrile fousings re djusted depending on the neutron wvelength, whih is sed on empirilly optimized vlues. The PANDA experiment in the [H, H, L] sttering plne used fixed k f of.3 Å (E f E3.5 mev) nd the experiment in the [H, K, H] sttering plne used fixed k f of.57 Å (E f E5. mev). The MACS experiments in the [H, H, L] sttering plne used Be filters oth efore nd fter the smple with fixed E f ¼ 3.7 mev. MACS onsists of 2 spetrosopi detetors, eh seprted y 8. By rotting the smple nd shifting ll of the detetors to ridge the 8 gps, mp in terms of smple rottion ngle nd sttering ngle t fixed energy trnsfer n e effiiently onstruted. A signifint portion of the reiprol spe in the sttering plne n e overed, whih further llows uts long the high-symmetry diretions. Ninety-degree ollimtors re used etween the smple nd eh individul nlysers. The nlysers re vertilly foused, while the monohromtor is douly foused. For the neutron sttering results on PANDA, liner kground is ssumed for ll mesured onstnt-energy sns, while no kground is used for sns otined y sutrting dt ove T from those otined elow T. The onstntenergy sns re then simply fit to either one or two Gussin peks. For the neutron sttering results otined on MACS, mps of lrge portions of the sttering plne for severl energy trnsfers were olleted oth elow nd ove T.A Q -dependent kground is otined y msking the signl ner (.5,.5,.5) nd is then fit to polynomil. The signl with Q o.5 Å is msked throughout the nlysis. The fit kground is then sutrted from the mp nd the dt re folded into the first qudrnt of the sttering plne to improve sttistis. The results for Ce.95 Y.5 CoIn 5 re shown in Fig. 3 nd Supplementry Fig. 3. Cuts long [H, H,.5] re otined y inning dt with.5rlr.55 nd fit with single or two Gussin peks. Cuts long [.5,.5, L] re otined y inning dt with.5rhr.55 nd fit y sum of 8 NATURE COMMUNICATIONS 7:277 DOI:.38/nomms277

9 NATURE COMMUNICATIONS DOI:.38/nomms277 ARTICLE Lorentzin peks, ounting for the Ce 3 þ mgneti form ftor f(q) nd the polriztion ftor ssuming exittions re dominntly polrized long the -xis similr to previous work 2. The possile presene of exittions polrized long the [,, ] diretion is disussed in Supplementry Note 5. The funtion used to fit sns long [.5,.5, L] n e written s IðQÞ / f ðqþ 2 2 X ^Q ^ n¼ Fnþ ð LÞ ð2þ where F(L) is either single Lorentizn pek entred t L ¼.5 or two Lorentzin peks eqully displed from L ¼.5. The peks long [.5,.5, L] re signifintly roder ompred to those long [H, H,.5], nd remin non-zero even for L ¼ (Supplementry Fig. 3). This ontrsts with similr sns long [H, H,.5] in Fig. 3, where the intensity drops to zero wy from Q AF. MACS dt of CeCoIn 5 nd Ce.7 Y.3 CoIn 5 with the orresponding mps nd uts re shown in Supplementry Figs nd 5. Similr to Ce.95 Y.5 CoIn 5, the resonne mode lerly disperses upwrd with inresing energy. Dt vilility. The dt tht support the findings of this study re ville from the orresponding uthor upon request. Referenes. Monthoux, P., Pines, D. & Lonzrih, G. G. Superondutivity without phonons. Nture 5, (27). 2. Slpino, D. J. A ommon thred: the piring intertion for unonventionl superondutors. Rev. Mod. Phys. 8, 383 (22). 3. Keimer, B., Kivelson, S. A., Normn, M. R., Uhid, S. & Znen, J. From quntum mtter to high-temperture superondutivity in opper oxides. Nture 58, (25).. Thompson, J. D. & Fisk, Z. Progress in hevy-fermion superondutivity: Ce5 nd relted mterils. J. Phys. So. Jpn 8, 2 (22). 5. White, B. D., Thompson, J. D. & Mple, M. B. Unonventionl superondutivity in hevy-fermion ompounds. Physi C 5, (25). 6. Rosst-Mignod, J. et l. Neutron sttering study of the YB 2 Cu 3 O 6 þ x system. Physi C 85, (99). 7. Eshrig, M. The effet of olletive spin- exittions on eletroni spetr in high-t superondutors. Adv. Phys. 55, 7 83 (26). 8. Trnqud, J. M., Xu, G. & Zliznyk, I. A. Superondutivity, ntiferromgnetism, nd neutron sttering. J. Mg. Mg. Mter 35, 8 6 (2). 9. Christinson, A. D. et l. Resonnt spin exittion in the high temperture superondutor B.6 K. Fe 2 As 2. Nture 56, (28).. Di, P. C. Antiferromgneti order nd spin dynmis in iron-sed superondutors. Rev. Mod. Phys. 87, 855 (25).. Sto, N. K. et l. Strong oupling etween lol moments nd superonduting hevy eletrons in UPd 2 Al 3. Nture, 3 33 (2). 2. Stok, C., Broholm, C., Hudis, J., Kng, H. J. & Petrovi, C. Spin resonne in the d-wve superondutor CeCoIn 5. Phys. Rev. Lett., 87 (28). 3. Inosov, D. S. et l. Crossover from wek to strong piring in unonventionl superondutors. Phys. Rev. B 83, 252 (2).. Yu, G., Li, Y., Motoym, E. M. & Greven, M. A universl reltionship etween mgneti resonne nd superonduting gp in unonventionl superondutors. Nt. Phys. 5, (29). 5. Hirshfeld, P. J., Korshunov, M. M. & Mzin, I. I. Gp symmetry nd struture of Fe-sed superondutors. Rep. Prog. Phys. 7, 258 (2). 6. Morr, D. K. & Pines, D. The resonne pek in uprte superondutors. Phys. Rev. Lett. 8, 86 (998). 7. Chuukov, A. V. & Gor kov, L. P. Spin resonne in three-dimensionl superondutors: the se of CeCoIn 5. Phys. Rev. Lett., 7 (28). 8. Bourges, P. et l. The spin exittion spetrum in superonduting YB 2 Cu 3 O Siene 288, (2). 9. Di, P. C., Mook, H. A., Hunt, R. D. & Doğn, F., Evolution of the resonne nd inommensurte spin flututions in superonduting YB 2 Cu 3 O 6 þ x. Phys. Rev. B 63, 5525 (2). 2. Reznik, D. et l. Dispersion of mgneti exittions in optimlly doped superondutor YB 2 Cu 3 O Phys. Rev. Lett. 93, 273 (2). 2. Stok, C. et l. From inommensurte to dispersive spin-flututions: the highenergy inelsti spetrum in superonduting YB 2 Cu 3 O 6.5. Phys. Rev. B 7, 2522 (25). 22. Lu, X. Y. et l. Avoided quntum ritility nd mgnetoelsti oupling in BFe 2 x Ni x As 2. Phys. Rev. Lett., 257 (23). 23. Kim, M. G. et l. Mgnonlike dispersion of spin resonne in Ni-doped BFe 2 As 2. Phys. Rev. Lett., 772 (23). 2. Eremin, I., Morr, D. K., Chuukov, A. V., Bennemnn, K. H. & Normn, M. R. Novel neutron resonne mode in d x 2 y2 -wve superondutors. Phys. Rev. Lett. 9, 7 (25). 25. Alln, M. P. et l. Imging Cooper piring of hevy fermions in CeCoIn 5. Nt. Phys. 9, (23). 26. Zhou, B. B. et l. Visulizing nodl hevy fermion superondutivity in CeCoIn 5. Nt. Phys. 9, 7 79 (23). 27. Eremin, I., Zwikngl, G., Thlmeier, P. & Fulde, P. Feedk spin resonne in superonduting CeCu 2 Si 2 nd CeCoIn 5. Phys. Rev. Lett., 87 (28). 28. Vn Dyke, J. et l. Diret evidene for mgneti f-eletronmedited piring mehnism of hevy-fermion superondutivity in CeCoIn 5. PNAS, (2). 29. Petrovi, C., Bud ko, S. L., Kogn, V. G. & Cnfield, P. C. Effets of L sustitution on the superonduting stte of CeCoIn 5. Phys. Rev. B 66, 553 (22). 3. Tntr, M. A. et l. Unpired eletrons in the hevy-fermion superondutor CeCoIn 5. Phys. Rev. Lett. 95, 672 (25). 3. Pnrin, J., Rymond, S., Lpertot, G., Flouquet, J. & Mignot, J.-M. Effets of nonmgneti L impurities on the spin resonne of Ce x L x CoIn 5 single rystls s seen vi inelsti neutron sttering. Phys. Rev. B 8, 5255 (2). 32. Rymond, S., Pnrin, S., Lpertot, G. & Flouquet, J. Evolution of the spin resonne of CeCoIn 5 s funtion of mgneti field nd L sustitution. J. Phys. So. Jpn 8, SB23 (2). 33. Shu, L. et l. Correlted eletron stte in Ce x Y x CoIn 5 stilized y oopertive vlene flututions. Phys. Rev. Lett. 6, 563 (2). 3. Polykov, A. et l. Fermi-surfe evolution in Y-sustituted CeCoIn 5. Phys. Rev. B 85, 259 (22). 35. Dudy, L. et l. Y vlene hnge in Ce x Y x CoIn 5 from spetrosopy nd ulk properties. Phys. Rev. B 88, 658 (23). 36. Kim, H. et l. Nodl to nodeless superonduting energy-gp struture hnge onomitnt with Fermi-surfe reonstrution in the hevy-fermion ompound CeCoIn 5. Phys. Rev. Lett., 273 (25). 37. Erten, O., Flint, R. & Colemn, P. Moleulr piring nd fully gpped superondutivity in Y-doped CeCoIn 5. Phys. Rev. Lett., 272 (25). 38. Ds, P. et l. Mgnitude of the mgneti exhnge intertion in the hevy-fermion ntiferromgnet CeRhIn 5. Phys. Rev. Lett. 3, 26 (2). 39. Stok, C. et l. Single to multiqusiprtile exittions in the itinernt helil mgnet CeRhIn 5. Phys. Rev. Lett., 275 (25).. Hyden, S. M., Mook, H. A., Di, P. C., Perring, T. G. & Doğn, F. The struture of the high-energy spin exittions in high-trnsition temperture superondutor. Nture 29, (2).. Trnqud, J. M. et l. Quntum mgneti exittions from stripes in opper oxide superondutors. Nture 29, (2). 2. Rymond, S. & Lpertot, G. Ising inommensurte spin resonne of CeCoIn 5 : dynmil preursor of the Q phse. Phys. Rev. Lett. 5, 37 (25). 3. Kenzelmnn, M. et l. Coupled superonduting nd mgneti order in CeCoIn 5. Siene 32, (28).. Kenzelmnn, M. et l. Evidene for mgnetilly driven superonduting Q phse of CeCoIn 5. Phys. Rev. Lett., 27 (2). 5. Gerer, S. et l. Swithing of mgneti domins revels sptilly inhomogeneous superondutivity. Nt. Phys., (2). 6. Mihl, V. P. & Mineev, V. P. Field-indued spin-exiton ondenstion in the d x2 y 2 -wve superondutor CeCoIn 5. Phys. Rev. B 8, 5258 (2). 7. Stok, C. et l. Mgneti field splitting of the spin resonne in CeCoIn 5. Phys. Rev. Lett. 9, 6727 (22). 8. Rymond, S., Kneko, K., Hiess, A., Steffens, P. & Lpertot, G. Evidene for three flutution hnnels in the spin resonne of the unonventionl superondutor CeCoIn 5. Phys. Rev. Lett. 9, 2372 (22). 9. Steffens, P. et l. Splitting of resonne exittions in nerly optimlly doped B(Fe.9 Co.6 ) 2 As 2 : n inelsti neutron sttering study with polriztion nlysis. Phys. Rev. Lett., 37 (23). 5. Luo, H. Q. et l. Spin exittion nisotropy s proe of oritl ordering in the prmgneti tetrgonl phse of superonduting BFe.9 Ni.96 As 2. Phys. Rev. Lett., 76 (23). 5. Stokert, O. et l. Mgnetilly driven superondutivity in CeCu 2 Si 2. Nt. Phys. 7, 9 2 (2). 52. Jng, S. et l. Resolution of the disrepny etween the vrition of the physil properties of Ce x Y x CoIn 5 single rystls nd thin films with Y omposition. Philos. Mg. 9, (2). 53. Heinz, Mier-Leinitz Zentrum et l. PANDA: Cold three xes spetrometer. J. Lrge-Sle Reserh Filities, A2 (25). Aknowledgements We thnk Qimio Si, S. Rymond nd C. Stok for helpful disussions. We lso thnk S. Rymond for shring with us his unpulished dt on CeCoIn 5. We knowledge help from Mengshu Liu, Xingye Lu nd Wenling Zhng for ssistne with smple olignment, nd Sott Crr, Weiyi Wng nd Jose Rodriguez for preliminry mesurements on Ce.7 Y.3 CoIn 5. The neutron sttering work t Rie is supported y the U.S. DOE, BES, under Grnt No. DE-SC23 (P.D.). Prt of the mteril hrteriztion efforts t Rie is supported y the Roert A. Welh Foundtion Grnt No. C-839 (P.D.). The reserh t UCSD ws supported y the U.S. DOE, BES, under Grnt No. DE-FG2- ER65 (smple synthesis), nd the U.S. NSF, under Grnt No. DMR (smple hrteriztion). The work y JVD nd DKM ws supported y the U.S. DOE, BES, under Grnt No. DE-FG2-5ER6225. The reserh t Ntionl Institute of NATURE COMMUNICATIONS 7:277 DOI:.38/nomms

10 ARTICLE NATURE COMMUNICATIONS DOI:.38/nomms277 Stndrds nd Tehnology is in prt supported y U.S. NSF, under Agreement No. DMR The reserh t Fudn University is in prt supported y the NSFC, under Grnt No. 76. Author ontriutions The smples were prepred y I.K.L., B.D.W., S.J., D.Y., L.S. nd M.B.M. Neutron sttering experiments were rried out y Y.S., A.S., P.C., Y.Q., nd P.D. Dt nlysis ws done y Y.S. Theoretil lultions were done y J.V. nd D.K.M. The pper ws written y P.D., D.K.M., nd Y.S. with input from ll o-uthors. Additionl informtion Supplementry Informtion ompnies this pper t ntureommunitions Competing finnil interests: The uthors delre no ompeting finnil interests. Reprints nd permission informtion is ville online t reprintsndpermissions/ How to ite this rtile: Song, Y. et l. Roust upwrd dispersion of the neutron spin resonne in the hevy fermion superondutor Ce x Y x CoIn 5. Nt. Commun. 7:277 doi:.38/nomms277 (26). This work is liensed under Cretive Commons Attriution. Interntionl Liense. The imges or other third prty mteril in this rtile re inluded in the rtile s Cretive Commons liense, unless indited otherwise in the redit line; if the mteril is not inluded under the Cretive Commons liense, users will need to otin permission from the liense holder to reprodue the mteril. To view opy of this liense, visit r The Author(s) 26 NATURE COMMUNICATIONS 7:277 DOI:.38/nomms277

11 Supplementry Informtion: [,,] [,,] χ'' (Ar. Units) T ~.5K x =.3 T ~ 2.25K x =.5 [,,] Temperture (K) [,-,] d [,,] [,,] [,,] [,,] 3 [,,] [,,] [H,H,L] sttering plne [H,K,H] sttering plne Supplementry Figure : Mesurement of T nd o-lignment of Ce xy xcoin 5 single rystls. () AC mgneti suseptiility mesured on Ce xy xcoin 5 (x =.5 nd.3), with T =2.25 K nd.5 K. () Severl luminum pltes with hundreds of o-ligned Ce xy xcoin 5 (x =.5) single rystls. The rystllogrphi xes re mrked y red rrows. () Co-ligned pltes in the [H,H,L] sttering plne. (d) Co-ligned pltes in the [H,K,H] sttering plne. The ngle etween [,,] nd [,,] is 3. 3 E r /k B T 2 Ce -x Y x CoIn Y onentrtion (nominl) Supplementry Figure 2: E r/k BT in Ce xy xcoin 5. The result for CeCoIn 5 is otined from previous work [] nd the results for x =.5 nd x =.3 re from this work. The vertil error rs re estimtes of the unertinty of E r y rrying out onstnt-q sns t Q AF = (.5,.5,.5).

12 2 K-2.K.7meV.55meV.meV e i K-2.K K d 2.K f g h j k l K-2.K meV m 2 n o p 2.2meV q r s t HH (r.l.u.) [H,H,.5] (r.l.u.) [.5,.5,L] (r.l.u.) [.5,.5,L] (r.l.u.) Supplementry Figure 3: Additionl neutron sttering dt for Ce.95Y.5CoIn 5. () Constnt-energy mp for Ce.95Y.5CoIn 5 t E =. mev nd K fter sutrting dt from 2. K. () Cut long [H,H,.5] for the mp in () t E =. mev, the solid line is fit ssuming zero kground. () Cuts long [.5,.5,L] t oth K nd 2. K otined from mps in Figure 3() nd () in the min text. (d) Cut long [.5,.5,L] for the mp in () t K fter sutrting dt from 2. K. The solid lines in () nd (d) re sums of Lorentzin peks polrized long ĉ. Similrly (e), (f), (g) nd (h) re for E =.55 mev, (i), (j), (k) nd (l) re for E =.7 mev, (m), (n), (o) nd (p) re for E =. mev nd (q), (r), (s) nd (t) re for E =.2 mev. For uts long [.5,.5,L] t 2.3 K nd E =. nd.55 mev, F(L) is single Lorentzin pek entered t L =.5. For K nd K-2. K uts with E =.7,. nd.2 mev, F(L) is two Lorentzin peks eqully displed from L =.5. All vertil error rs in the Figure represent sttistil errors of stndrd devition.

13 3 CeCoIn 5. K K.5 mev mev d 3 2 e f mev g h i 5 5. mev j HH (r.l.u.) 6 2 k [H,H,.5] (r.l.u.) l [.5,.5,L] (r.l.u.) Supplementry Figure : Neutron sttering dt for CeCoIn 5. () Constnt-energy mp for CeCoIn 5 t E =.5 mev nd. K fter sutrting dt from 2.5 K. () Cut long [H,H,.5] for the mp in (), the solid line is fit ssuming zero kground. () Cut long [.5,.5,L] for the mp in (), the solid line is sum of Lorentzin peks polrized long ĉ. Similrly (d), (e) nd (f)re for E =.6 mev, (g), (h) nd (i) re for E =.8 mev nd (j), (k) nd (l) re for E =. mev. For uts long [.5,.5,L] for E =.5 nd.6 mev, F(L) is single Lorentzin pek entered t L =.5. For E =.8 nd. mev, F(L) is two Lorentzin peks eqully displed from L =.5. All vertil error rs in the Figure represent sttistil errors of stndrd devition.

14 Ce.7 Y.3 CoIn 5.3 K - 2. K.3 mev. mev d 2 2 e f mev g h i 2.7 mev j 8 k l.85 mev m 6 2 n o. mev p 3 2 q h HH (r.l.u.) [H,H,.5] (r.l.u.) [.5,.5,L] (r.l.u.) Supplementry Figure 5: Neutron sttering dt for Ce.7Y.3CoIn 5. () Constnt-energy mp for Ce.7Y.3CoIn 5 t E =.3 mev nd.3 K fter sutrting dt from 2. K. () Cut long [H,H,.5] for the mp in (), the solid line is fit ssuming zero kground. () Cut long [.5,.5,L] for the mp in (), the solid line is sum of Lorentzin peks polrized long ĉ. Similrly (d), (e) nd (f)re for E =. mev, (g), (h) nd (i) re for E =.55 mev, (j), (k) nd (l) re for E =.7 mev, (m), (n) nd (o) re for E =.85 mev nd (p), (q) nd (r) re for E =. mev. For uts long [.5,.5,L] for E =.3,. nd.55 mev, F(L) is single Lorentzin pek entered t L =.5. For E =.7,.85 nd. mev, F(L) is two Lorentzin peks eqully displed from L =.5. All vertil error rs in the Figure represent sttistil errors of stndrd devition.

15 5 χ [/mev] Re χ SC Im χ SC - -/ I (Q) Re χ norm. Im χ norm. ω () Im χ [/mev] π ky π π () Q=(π,π) π kx norml SC stte Frequeny [mev] Frequeny [mev] Supplementry Figure 6: χ in the spin-exiton senrio t Q AF. () Rel nd imginry prts of χ t Q AF in the norml (dshed lines) nd superonduting (solid lines) stte of CeCoIn 5. The onset energy of the prtile-hole ontinuum in the superonduting stte is shown y green rrow. The lue dotted line indites the vlue of /Ī(Q), suh tht its intersetion with Re χ in the superonduting stte for ω < yields the position of the spin exiton. () Full χ in the norml nd superonduting stte t Q AF. Inset: Fermi surfe nd sttering vetor Q AF etween momentum sttes on the Fermi surfe. 2π () (3) () () Im χ [/mev] () (2) (3) π α β α2 () Energy [mev] (3) (2) () Frequeny [mev] () (2) π π π 2π qx [π] long (H,H) Supplementry Figure 7: χ in the spin-exiton senrio t.88q AF. () Imginry prts of χ t q =.88Q AF in the superonduting stte of CeCoIn 5. The onset energies (i) of the prtile-hole ontinuum in the superonduting stte re shown y green rrows. () Fermi surfes in the extended Brillouin zone with sttering vetors orresponding to (i) in (). () Momentum dependene of the onset energies (i) long the [,,] diretion. The dshed line orresponds to the momentum q =.88Q AF for whih Im χ is shown in (), with the indited (i) eing the sme s in ().

16 6 3 (3) (2) () (2) (H,H) (r.l.u.) Supplementry Figure 8: Momentum dependene of the resonne s spin-exiton with some of the onset energies of Fig. 7() overlin s solid lines. Im Π [/mev] norml stte SC stte ω Im χ [/mev] π ky π π QAF π kx norm stte SC stte ω Frequeny [mev] Frequeny [mev] Supplementry Figure 9: The resonne s mgnon-like exittion t Q AF. () Imginry prts of Π t Q AF in the norml (lk line) nd superonduting (red line) stte of CeCoIn 5. The onset energy of the prtile-hole ontinuum in the superonduting stte is shown y green rrow. () Full χ in the norml (lk line) nd superonduting (red line) stte Q AF. The resonne ours t ω = sw elow (see green rrow). Inset: Sttering proess ontriuting to Im Π.

17 7 Im Π [/mev] () (2) (3) () 2π π β (3) () () α (2) α2 Energy [mev] () (3) (2) () Frequeny [mev] π π π 2π qx [π] long (H,H) Supplementry Figure : The resonne s mgnon-like exittion t.95q AF. () Imginry prt of Π in the superonduting stte of CeCoIn 5 t q =.95Q AF. The onset energies (i) for prtile-hole sttering in the superonduting stte re shown y green rrows. () Fermi surfes in the extended Brillouin zone with sttering vetors orresponding to (i) in (). () Momentum dependene of (i) long q x = q y. The dshed line orresponds to the momentum q =.95Q AF for whih Im Π is shown in (), with the indited (i) eing the sme s in (). 8 (3) (2) (H,H) (r.l.u.) Supplementry Figure : Momentum dependene of the resonne s mgnon-like exittion with some the onset energies of SFig. () overlin s solid lines.

Two energy scales in the spin excitations of the high-temperature superconductor La 2 x Sr x CuO 4

Two energy scales in the spin excitations of the high-temperature superconductor La 2 x Sr x CuO 4 Two energy sles in the spin exittions of the high-temperture superondutor L x Sr x CuO 4 B. VIGNOLLE,S.M.HAYDEN *,D.F.MMORROW,, H. M. RØNNOW 4,B.LAKE 5,C.D.FROST AND T. G. PERRING H. H. Wills Physis Lortory,

More information

SECOND HARMONIC GENERATION OF Bi 4 Ti 3 O 12 FILMS

SECOND HARMONIC GENERATION OF Bi 4 Ti 3 O 12 FILMS SECOND HARMONIC GENERATION OF Bi 4 Ti 3 O 12 FILMS IN-SITU PROBING OF DOMAIN POLING IN Bi 4 Ti 3 O 12 THIN FILMS BY OPTICAL SECOND HARMONIC GENERATION YANIV BARAD, VENKATRAMAN GOPALAN Mterils Reserh Lortory

More information

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

A Mott insulator continuously connected to iron pnictide superconductors

A Mott insulator continuously connected to iron pnictide superconductors Reeived 1 Jul 216 Aepted 8 Nov 216 Pulished 19 De 216 DOI: 1.138/nomms13879 OPEN A Mott insultor ontinuously onneted to iron pnitide superondutors Yu Song 1, Zhr Ymni 2, Chongde Co 1,3,YuLi 1, Chenglin

More information

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 CH 3. CH 3 C a. NMR spectroscopy. Different types of NMR

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 CH 3. CH 3 C a. NMR spectroscopy. Different types of NMR 6.. Spetrosopy NMR spetrosopy Different types of NMR NMR spetrosopy involves intertion of mterils with the lowenergy rdiowve region of the eletromgneti spetrum NMR spetrosopy is the sme tehnology s tht

More information

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 H 3 CH3 C. NMR spectroscopy. Different types of NMR

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 H 3 CH3 C. NMR spectroscopy. Different types of NMR 6.. Spetrosopy NMR spetrosopy Different types of NMR NMR spetrosopy involves intertion of mterils with the lowenergy rdiowve region of the eletromgneti spetrum NMR spetrosopy is the sme tehnology s tht

More information

Review Topic 14: Relationships between two numerical variables

Review Topic 14: Relationships between two numerical variables Review Topi 14: Reltionships etween two numeril vriles Multiple hoie 1. Whih of the following stterplots est demonstrtes line of est fit? A B C D E 2. The regression line eqution for the following grph

More information

ANALYSIS AND MODELLING OF RAINFALL EVENTS

ANALYSIS AND MODELLING OF RAINFALL EVENTS Proeedings of the 14 th Interntionl Conferene on Environmentl Siene nd Tehnology Athens, Greee, 3-5 Septemer 215 ANALYSIS AND MODELLING OF RAINFALL EVENTS IOANNIDIS K., KARAGRIGORIOU A. nd LEKKAS D.F.

More information

THE INFLUENCE OF MODEL RESOLUTION ON AN EXPRESSION OF THE ATMOSPHERIC BOUNDARY LAYER IN A SINGLE-COLUMN MODEL

THE INFLUENCE OF MODEL RESOLUTION ON AN EXPRESSION OF THE ATMOSPHERIC BOUNDARY LAYER IN A SINGLE-COLUMN MODEL THE INFLUENCE OF MODEL RESOLUTION ON AN EXPRESSION OF THE ATMOSPHERIC BOUNDARY LAYER IN A SINGLE-COLUMN MODEL P3.1 Kot Iwmur*, Hiroto Kitgw Jpn Meteorologil Ageny 1. INTRODUCTION Jpn Meteorologil Ageny

More information

Evidence for a spinon Fermi surface in a triangularlattice quantum-spin-liquid candidate

Evidence for a spinon Fermi surface in a triangularlattice quantum-spin-liquid candidate doi:.8/nture264 Evidene for spinon Fermi surfe in tringulrlttie quntum-spin-liquid ndidte Yo Shen, Yo-Dong Li2, Hongling Wo, Yuesheng Li, Shoudong Shen, Bingying Pn, Qisi Wng, H. C. Wlker4, P. Steffens5,

More information

Chem Homework 11 due Monday, Apr. 28, 2014, 2 PM

Chem Homework 11 due Monday, Apr. 28, 2014, 2 PM Chem 44 - Homework due ondy, pr. 8, 4, P.. . Put this in eq 8.4 terms: E m = m h /m e L for L=d The degenery in the ring system nd the inresed sping per level (4x bigger) mkes the sping between the HOO

More information

(h+ ) = 0, (3.1) s = s 0, (3.2)

(h+ ) = 0, (3.1) s = s 0, (3.2) Chpter 3 Nozzle Flow Qusistedy idel gs flow in pipes For the lrge vlues of the Reynolds number typilly found in nozzles, the flow is idel. For stedy opertion with negligible body fores the energy nd momentum

More information

8 THREE PHASE A.C. CIRCUITS

8 THREE PHASE A.C. CIRCUITS 8 THREE PHSE.. IRUITS The signls in hpter 7 were sinusoidl lternting voltges nd urrents of the so-lled single se type. n emf of suh type n e esily generted y rotting single loop of ondutor (or single winding),

More information

Comparing the Pre-image and Image of a Dilation

Comparing the Pre-image and Image of a Dilation hpter Summry Key Terms Postultes nd Theorems similr tringles (.1) inluded ngle (.2) inluded side (.2) geometri men (.) indiret mesurement (.6) ngle-ngle Similrity Theorem (.2) Side-Side-Side Similrity

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap Prtile Physis Mihelms Term 2011 Prof Mrk Thomson g X g X g g Hnout 3 : Intertion y Prtile Exhnge n QED Prof. M.A. Thomson Mihelms 2011 101 Rep Working towrs proper lultion of ey n sttering proesses lnitilly

More information

First compression (0-6.3 GPa) First decompression ( GPa) Second compression ( GPa) Second decompression (35.

First compression (0-6.3 GPa) First decompression ( GPa) Second compression ( GPa) Second decompression (35. 0.9 First ompression (0-6.3 GP) First deompression (6.3-2.7 GP) Seond ompression (2.7-35.5 GP) Seond deompression (35.5-0 GP) V/V 0 0.7 0.5 0 5 10 15 20 25 30 35 P (GP) Supplementry Figure 1 Compression

More information

GM1 Consolidation Worksheet

GM1 Consolidation Worksheet Cmridge Essentils Mthemtis Core 8 GM1 Consolidtion Worksheet GM1 Consolidtion Worksheet 1 Clulte the size of eh ngle mrked y letter. Give resons for your nswers. or exmple, ngles on stright line dd up

More information

THE PYTHAGOREAN THEOREM

THE PYTHAGOREAN THEOREM THE PYTHAGOREAN THEOREM The Pythgoren Theorem is one of the most well-known nd widely used theorems in mthemtis. We will first look t n informl investigtion of the Pythgoren Theorem, nd then pply this

More information

Field Dependence of Magnetic Ordering in Kagomé-Staircase Compound Ni 3 V 2 O 8

Field Dependence of Magnetic Ordering in Kagomé-Staircase Compound Ni 3 V 2 O 8 University of Pennsylvni SholrlyCommons Deprtment of Physis Ppers Deprtment of Physis 7-25-2006 Field Dependene of Mgneti Ordering in Kgomé-Stirse Compound Ni 3 V 2 O 8 Mihel Kenzelmnn A. Brooks Hrris

More information

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions MEP: Demonstrtion Projet UNIT 4: Trigonometry UNIT 4 Trigonometry tivities tivities 4. Pythgors' Theorem 4.2 Spirls 4.3 linometers 4.4 Rdr 4.5 Posting Prels 4.6 Interloking Pipes 4.7 Sine Rule Notes nd

More information

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL. Part 1. What and Why.? SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

More information

Physics 505 Homework No. 11 Solutions S11-1

Physics 505 Homework No. 11 Solutions S11-1 Physis 55 Homework No 11 s S11-1 1 This problem is from the My, 24 Prelims Hydrogen moleule Consider the neutrl hydrogen moleule, H 2 Write down the Hmiltonin keeping only the kineti energy terms nd the

More information

1 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light.

1 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light. 1 This igrm represents the energy hnge tht ours when eletron in trnsition metl ion is exite y visile light. Give the eqution tht reltes the energy hnge ΔE to the Plnk onstnt, h, n the frequeny, v, of the

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

NEW CIRCUITS OF HIGH-VOLTAGE PULSE GENERATORS WITH INDUCTIVE-CAPACITIVE ENERGY STORAGE

NEW CIRCUITS OF HIGH-VOLTAGE PULSE GENERATORS WITH INDUCTIVE-CAPACITIVE ENERGY STORAGE NEW CIRCUITS OF HIGH-VOLTAGE PULSE GENERATORS WITH INDUCTIVE-CAPACITIVE ENERGY STORAGE V.S. Gordeev, G.A. Myskov Russin Federl Nuler Center All-Russi Sientifi Reserh Institute of Experimentl Physis (RFNC-VNIIEF)

More information

Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem.

Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem. 27 Lesson 2: The Pythgoren Theorem nd Similr Tringles A Brief Review of the Pythgoren Theorem. Rell tht n ngle whih mesures 90º is lled right ngle. If one of the ngles of tringle is right ngle, then we

More information

Generalization of 2-Corner Frequency Source Models Used in SMSIM

Generalization of 2-Corner Frequency Source Models Used in SMSIM Generliztion o 2-Corner Frequeny Soure Models Used in SMSIM Dvid M. Boore 26 Mrh 213, orreted Figure 1 nd 2 legends on 5 April 213, dditionl smll orretions on 29 My 213 Mny o the soure spetr models ville

More information

Spacetime and the Quantum World Questions Fall 2010

Spacetime and the Quantum World Questions Fall 2010 Spetime nd the Quntum World Questions Fll 2010 1. Cliker Questions from Clss: (1) In toss of two die, wht is the proility tht the sum of the outomes is 6? () P (x 1 + x 2 = 6) = 1 36 - out 3% () P (x 1

More information

1.3 SCALARS AND VECTORS

1.3 SCALARS AND VECTORS Bridge Course Phy I PUC 24 1.3 SCLRS ND VECTORS Introdution: Physis is the study of nturl phenomen. The study of ny nturl phenomenon involves mesurements. For exmple, the distne etween the plnet erth nd

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

More information

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion

More information

H 4 H 8 N 2. Example 1 A compound is found to have an accurate relative formula mass of It is thought to be either CH 3.

H 4 H 8 N 2. Example 1 A compound is found to have an accurate relative formula mass of It is thought to be either CH 3. . Spetrosopy Mss spetrosopy igh resolution mss spetrometry n e used to determine the moleulr formul of ompound from the urte mss of the moleulr ion For exmple, the following moleulr formuls ll hve rough

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

Linear magnetoresistance due to multipleelectron scattering by low-mobility islands in an inhomogeneous conductor

Linear magnetoresistance due to multipleelectron scattering by low-mobility islands in an inhomogeneous conductor Reeived 2 Jun 212 Aepted 31 Aug 212 Pulished 2 Ot 212 DOI: 1.138/nomms216 Liner mgnetoresistne due to multipleeletron sttering y low-moility islnds in n inhomogeneous ondutor N.V. Kolov 1,2, N. Mori 3,

More information

THE ANALYSIS AND CALCULATION OF ELECTROMAGNETIC FIELD AROUND OVERHEAD POWER LINE HongWang Yang

THE ANALYSIS AND CALCULATION OF ELECTROMAGNETIC FIELD AROUND OVERHEAD POWER LINE HongWang Yang 5th Interntionl Conferene on Advned Mterils nd Computer Siene (ICAMCS 6) THE ANALYSIS AN CALCULATION OF ELECTROMAGNETIC FIEL AROUN OVERHEA POWER LINE HongWng Yng eprtment of eletril engineering, North

More information

3 Angle Geometry. 3.1 Measuring Angles. 1. Using a protractor, measure the marked angles.

3 Angle Geometry. 3.1 Measuring Angles. 1. Using a protractor, measure the marked angles. 3 ngle Geometry MEP Prtie ook S3 3.1 Mesuring ngles 1. Using protrtor, mesure the mrked ngles. () () (d) (e) (f) 2. Drw ngles with the following sizes. () 22 () 75 120 (d) 90 (e) 153 (f) 45 (g) 180 (h)

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Experiments on single nitrogen vacancy (N V) centres in

Experiments on single nitrogen vacancy (N V) centres in Anisotropi intertions of single spin nd drk-spin spetrosopy in dimond R. J. EPSTEIN, F. M. MENDOZA, Y. K. KATO AND D. D. AWSCHALOM* Center for Spintronis nd Quntum Computtion, University of Cliforni, Snt

More information

2. There are an infinite number of possible triangles, all similar, with three given angles whose sum is 180.

2. There are an infinite number of possible triangles, all similar, with three given angles whose sum is 180. SECTION 8-1 11 CHAPTER 8 Setion 8 1. There re n infinite numer of possile tringles, ll similr, with three given ngles whose sum is 180. 4. If two ngles α nd β of tringle re known, the third ngle n e found

More information

VISIBLE AND INFRARED ABSORPTION SPECTRA OF COVERING MATERIALS FOR SOLAR COLLECTORS

VISIBLE AND INFRARED ABSORPTION SPECTRA OF COVERING MATERIALS FOR SOLAR COLLECTORS AGRICULTURAL ENGINEERING VISIBLE AND INFRARED ABSORPTION SPECTRA OF COVERING MATERIALS FOR SOLAR COLLECTORS Ltvi University of Agriulture E-mil: ilze.pelee@llu.lv Astrt Use of solr energy inreses every

More information

Section 4.4. Green s Theorem

Section 4.4. Green s Theorem The Clulus of Funtions of Severl Vriles Setion 4.4 Green s Theorem Green s theorem is n exmple from fmily of theorems whih onnet line integrls (nd their higher-dimensionl nlogues) with the definite integrls

More information

Appendix C Partial discharges. 1. Relationship Between Measured and Actual Discharge Quantities

Appendix C Partial discharges. 1. Relationship Between Measured and Actual Discharge Quantities Appendi Prtil dishrges. Reltionship Between Mesured nd Atul Dishrge Quntities A dishrging smple my e simply represented y the euilent iruit in Figure. The pplied lternting oltge V is inresed until the

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

Translation symmetry, Space groups, Bloch functions, Fermi energy

Translation symmetry, Space groups, Bloch functions, Fermi energy 9/7/4 Trnsltion symmetry, Spe groups, Bloh funtions, Fermi energy Roerto Orlndo Diprtimento di Chimi Università di Torino Vi ietro Giuri 5, 6 Torino, Itly roerto.orlndo@unito.it Outline The rystllogrphi

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Nme Dte hpter 9 Mintining Mthemtil Profiieny Simplify the epression. 1. 500. 189 3. 5 4. 4 3 5. 11 5 6. 8 Solve the proportion. 9 3 14 7. = 8. = 9. 1 7 5 4 = 4 10. 0 6 = 11. 7 4 10 = 1. 5 9 15 3 = 5 +

More information

On the Scale factor of the Universe and Redshift.

On the Scale factor of the Universe and Redshift. On the Sle ftor of the Universe nd Redshift. J. M. unter. john@grvity.uk.om ABSTRACT It is proposed tht there hs been longstnding misunderstnding of the reltionship between sle ftor of the universe nd

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

PoS(LL2016)035. Cutkosky Rules from Outer Space. Dirk Kreimer Humboldt Univ.

PoS(LL2016)035. Cutkosky Rules from Outer Space. Dirk Kreimer Humboldt Univ. Cutkosky Rules from Outer Spe Humoldt Univ. E-mil: kreimer@physik.hu-erlin.de We overview reent results on the mthemtil foundtions of Cutkosky rules. We emphsize tht the two opertions of shrinking n internl

More information

Learning Objectives of Module 2 (Algebra and Calculus) Notes:

Learning Objectives of Module 2 (Algebra and Calculus) Notes: 67 Lerning Ojetives of Module (Alger nd Clulus) Notes:. Lerning units re grouped under three res ( Foundtion Knowledge, Alger nd Clulus ) nd Further Lerning Unit.. Relted lerning ojetives re grouped under

More information

Table of Content. c 1 / 5

Table of Content. c 1 / 5 Tehnil Informtion - t nd t Temperture for Controlger 03-2018 en Tble of Content Introdution....................................................................... 2 Definitions for t nd t..............................................................

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

arxiv: v1 [hep-ph] 11 Sep 2018

arxiv: v1 [hep-ph] 11 Sep 2018 Neutrino spetrum in SU3 l SU3 E guged lepton flvor model rxiv:1809.03677v1 [hep-ph] 11 Sep 018 W Sreethwong 1, W Treesukrt 1 nd P Uttyrt 1 Shool of Physis, Surnree University of Tehnology, Nkhon Rthsim

More information

3.15 NMR spectroscopy Different types of NMR There are two main types of NMR 1. C 13 NMR 2. H (proton) NMR

3.15 NMR spectroscopy Different types of NMR There are two main types of NMR 1. C 13 NMR 2. H (proton) NMR .5 NMR spetrosopy Different types of NMR There re two min types of NMR. NMR. (proton) NMR There is only round % in orgni moleules ut modern NMR mhines re sensitive enough to give full spetr for The spetr

More information

Section 3.6. Definite Integrals

Section 3.6. Definite Integrals The Clulus of Funtions of Severl Vribles Setion.6 efinite Integrls We will first define the definite integrl for funtion f : R R nd lter indite how the definition my be extended to funtions of three or

More information

Lecture 5: Crystal planes and Miller Indices

Lecture 5: Crystal planes and Miller Indices Leture Notes on Struture of Mtter y Mohmmd Jellur Rhmn, Deprtment of Physis, BUET, Dhk-000 Leture 5: Crystl plnes nd Miller Indies Index system for rystl diretions nd plnes Crystl diretions: Any lttie

More information

Observation of topologically protected bound states in photonic quantum walks

Observation of topologically protected bound states in photonic quantum walks Reeived Jn Aepted Apr Pulished 6 Jun DOI:.8/nomms8 Oservtion of topologilly proteted ound sttes in photoni quntum wlks Tkuy Kitgw, *, Mtthew A. Broome, *, Alessndro Fedrizzi, Mrk S. Rudner, Erez Berg,

More information

Unconventional electronic reconstruction in undoped (Ba,Sr)Fe 2 As 2 across the spin density wave transition

Unconventional electronic reconstruction in undoped (Ba,Sr)Fe 2 As 2 across the spin density wave transition PHYSICAL REVIEW B 80, 174510 2009 Unonventionl eletroni reonstrution in undoped (B,Sr)Fe 2 As 2 ross the spin density wve trnsition M. Yi, 1,2 D. H. Lu, 3 J. G. Anlytis, 1,2 J.-H. Chu, 1,2 S.-K. Mo, 4

More information

Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues MTB 050 1 ORIGIN 1 Eigenvets n Eigenvlues This wksheet esries the lger use to lulte "prinipl" "hrteristi" iretions lle Eigenvets n the "prinipl" "hrteristi" vlues lle Eigenvlues ssoite with these iretions.

More information

Proving the Pythagorean Theorem

Proving the Pythagorean Theorem Proving the Pythgoren Theorem W. Bline Dowler June 30, 2010 Astrt Most people re fmilir with the formul 2 + 2 = 2. However, in most ses, this ws presented in lssroom s n solute with no ttempt t proof or

More information

A Study on the Properties of Rational Triangles

A Study on the Properties of Rational Triangles Interntionl Journl of Mthemtis Reserh. ISSN 0976-5840 Volume 6, Numer (04), pp. 8-9 Interntionl Reserh Pulition House http://www.irphouse.om Study on the Properties of Rtionl Tringles M. Q. lm, M.R. Hssn

More information

Supporting Information. Observation of Excitonic Fine Structure in a 2D Transition Metal. Dichalcogenide Semiconductor

Supporting Information. Observation of Excitonic Fine Structure in a 2D Transition Metal. Dichalcogenide Semiconductor FWHM (ev) Normlized Intensity (. u.) Supporting Informtion Oservtion of Exitoni Fine Struture in 2D Trnsition Metl Dihlogenide Semiondutor Jingzhi Shng 1, Xionn Shen 1, Chunxio Cong 1, Nmphung Peimyoo

More information

Some Aspects of Non-Orthogonal Stagnation-Point Flow towards a Stretching Surface

Some Aspects of Non-Orthogonal Stagnation-Point Flow towards a Stretching Surface Engineering, 00,, 705-709 doi:0.436/eng.00.909 Published Online September 00 (http://www.sirp.org/journl/eng) Some Aspets of Non-Orthogonl Stgntion-Point Flow towrds Strething Surfe Abstrt Mothr Rez, Andi

More information

UV-Induced Self-Repairing Polydimethylsiloxane-Polyurethane (PDMS-PUR) Cu- Catalyzed Networks

UV-Induced Self-Repairing Polydimethylsiloxane-Polyurethane (PDMS-PUR) Cu- Catalyzed Networks Eletroni Supplementry Mteril (ESI) for Journl of Mterils Chemistry A. This journl is The Royl Soiety of Chemistry 2014 Supporting Online Mterils UV-Indued Self-Repiring Polydimethylsiloxne-Polyurethne

More information

Polarimetric Target Detector by the use of the Polarisation Fork

Polarimetric Target Detector by the use of the Polarisation Fork Polrimetri rget Detetor y the use of the Polristion For Armndo Mrino¹ hne R Cloude² Iin H Woodhouse¹ ¹he University of Edinurgh, Edinurgh Erth Oservtory (EEO), UK ²AEL Consultnts, Edinurgh, UK POLinAR009

More information

Topological crystalline insulator states in the Ca 2 As family

Topological crystalline insulator states in the Ca 2 As family Topologil rystlline insultor sttes in the C As fmily Ting dvntge of these ltest theoretil dvnes [9,, 4 7], we propose new type of TCI in the C As fmily mterils, in whih we identify topologil surfe sttes

More information

Supplementary Figure 1 Supplementary Figure 2

Supplementary Figure 1 Supplementary Figure 2 Supplementry Figure 1 Comprtive illustrtion of the steps required to decorte n oxide support AO with ctlyst prticles M through chemicl infiltrtion or in situ redox exsolution. () chemicl infiltrtion usully

More information

Bravais lattices and crystal systems

Bravais lattices and crystal systems 3 Brvis ltties nd rystl systems 3. Introdution The definitions of the motif, the repeting unit of pttern, nd the lttie, n rry of points in spe in whih eh point hs n identil environment, hold in three dimensions

More information

Optical rectification and shift currents in GaAs and GaP response: Below and above the band gap

Optical rectification and shift currents in GaAs and GaP response: Below and above the band gap Optil retifition shift urrents in GAs GP response: Below ove the gp F. Nstos J. E. Sipe Deprtment of Physis Institute for Optil Sienes, University of Toronto, 60 St. George Street, Toronto, Ontrio, Cnd

More information

Asemiconductor qubit offers powerful advantages for

Asemiconductor qubit offers powerful advantages for PUBLISHED ONLINE: 25 SEPTEMBER 211 DOI: 1.138/NPHOTON.211.237 Optil ontrol of one nd two hole spins in interting quntum dots Alex Greilih 1,2, Smuel G. Crter 1, Dnny Kim 1,3, Alln S. Brker 1 nd Dniel Gmmon

More information

The Emission-Absorption of Energy analyzed by Quantum-Relativity. Abstract

The Emission-Absorption of Energy analyzed by Quantum-Relativity. Abstract The mission-absorption of nergy nlyzed by Quntum-Reltivity Alfred Bennun* & Néstor Ledesm** Abstrt The uslity horizon llows progressive quntifition, from n initil nk prtile, whih yields its energy s blk

More information

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1) Green s Theorem Mth 3B isussion Session Week 8 Notes Februry 8 nd Mrh, 7 Very shortly fter you lerned how to integrte single-vrible funtions, you lerned the Fundmentl Theorem of lulus the wy most integrtion

More information

Iowa Training Systems Trial Snus Hill Winery Madrid, IA

Iowa Training Systems Trial Snus Hill Winery Madrid, IA Iow Trining Systems Tril Snus Hill Winery Mdrid, IA Din R. Cohrn nd Gil R. Nonneke Deprtment of Hortiulture, Iow Stte University Bkground nd Rtionle: Over the lst severl yers, five sttes hve een evluting

More information

EE 330/330L Energy Systems (Spring 2012) Laboratory 1 Three-Phase Loads

EE 330/330L Energy Systems (Spring 2012) Laboratory 1 Three-Phase Loads ee330_spring2012_l_01_3phse_lods.do 1/5 EE 330/330L Energy Systems (Spring 2012) Lortory 1 ThreePhse Lods Introdution/Bkground In this lortory, you will mesure nd study the voltges, urrents, impednes,

More information

Direct indirect character of the band gap in methylammonium lead iodide perovskite

Direct indirect character of the band gap in methylammonium lead iodide perovskite Direct indirect chrcter of the nd gp in methylmmonium led iodide perovskite Eline M. Hutter 1, Mrí C. Gélvez-Rued 1, Ann Osherov 2, Vldimir Bulović 2, Ferdinnd C. Grozem 1, Smuel D. Strnks 2,3*, nd Tom

More information

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS Dvid Miller West Virgini University P.O. BOX 6310 30 Armstrong Hll Morgntown, WV 6506 millerd@mth.wvu.edu

More information

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths Intermedite Mth Cirles Wednesdy 17 Otoer 01 Geometry II: Side Lengths Lst week we disussed vrious ngle properties. As we progressed through the evening, we proved mny results. This week, we will look t

More information

( ) { } [ ] { } [ ) { } ( ] { }

( ) { } [ ] { } [ ) { } ( ] { } Mth 65 Prelulus Review Properties of Inequlities 1. > nd > >. > + > +. > nd > 0 > 4. > nd < 0 < Asolute Vlue, if 0, if < 0 Properties of Asolute Vlue > 0 1. < < > or

More information

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points:

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points: Eidgenössishe Tehnishe Hohshule Zürih Eole polytehnique fédérle de Zurih Politenio federle di Zurigo Federl Institute of Tehnology t Zurih Deprtement of Computer Siene. Novemer 0 Mrkus Püshel, Dvid Steurer

More information

SIDESWAY MAGNIFICATION FACTORS FOR STEEL MOMENT FRAMES WITH VARIOUS TYPES OF COLUMN BASES

SIDESWAY MAGNIFICATION FACTORS FOR STEEL MOMENT FRAMES WITH VARIOUS TYPES OF COLUMN BASES Advned Steel Constrution Vol., No., pp. 7-88 () 7 SIDESWAY MAGNIFICATION FACTORS FOR STEEL MOMENT FRAMES WIT VARIOUS TYPES OF COLUMN BASES J. ent sio Assoite Professor, Deprtment of Civil nd Environmentl

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

Supplementary Information. High-Performance Mixed-Dimensional Perovskite Solar Cells with Enhanced

Supplementary Information. High-Performance Mixed-Dimensional Perovskite Solar Cells with Enhanced Eletroni Supplementry Mteril (ESI) for Journl of Mterils Chemistry A. This journl is The Royl Soiety of Chemistry 201 Supplementry Informtion High-Performne Mixed-Dimensionl Perovskite Solr Cells with

More information

Problems set # 3 Physics 169 February 24, 2015

Problems set # 3 Physics 169 February 24, 2015 Prof. Anhordoqui Problems set # 3 Physis 169 Februry 4, 015 1. A point hrge q is loted t the enter of uniform ring hving liner hrge density λ nd rdius, s shown in Fig. 1. Determine the totl eletri flux

More information

Nondeterministic Automata vs Deterministic Automata

Nondeterministic Automata vs Deterministic Automata Nondeterministi Automt vs Deterministi Automt We lerned tht NFA is onvenient model for showing the reltionships mong regulr grmmrs, FA, nd regulr expressions, nd designing them. However, we know tht n

More information

Observation of an anomalous decoherence effect in a quantum bath at room temperature

Observation of an anomalous decoherence effect in a quantum bath at room temperature Reeived 5 My 11 Aepted Nov 11 Pulished 6 De 11DOI: 1.138/nomms1579 Oservtion of n nomlous deoherene effet in quntum th t room temperture Pu Hung1, *, X i Ko n g 1, *, N n Zh o, *, Fzhn Shi 1, Pengfei Wng1,

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications AP CALCULUS Test #6: Unit #6 Bsi Integrtion nd Applitions A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS IN THIS PART OF THE EXAMINATION. () The ext numeril vlue of the orret

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

Reflection Property of a Hyperbola

Reflection Property of a Hyperbola Refletion Propert of Hperol Prefe The purpose of this pper is to prove nltill nd to illustrte geometrill the propert of hperol wherein r whih emntes outside the onvit of the hperol, tht is, etween the

More information

TOPIC: LINEAR ALGEBRA MATRICES

TOPIC: LINEAR ALGEBRA MATRICES Interntionl Blurete LECTUE NOTES for FUTHE MATHEMATICS Dr TOPIC: LINEA ALGEBA MATICES. DEFINITION OF A MATIX MATIX OPEATIONS.. THE DETEMINANT deta THE INVESE A -... SYSTEMS OF LINEA EQUATIONS. 8. THE AUGMENTED

More information

Standard Trigonometric Functions

Standard Trigonometric Functions CRASH KINEMATICS For ngle A: opposite sine A = = hypotenuse djent osine A = = hypotenuse opposite tngent A = = djent For ngle B: opposite sine B = = hypotenuse djent osine B = = hypotenuse opposite tngent

More information

1 This question is about mean bond enthalpies and their use in the calculation of enthalpy changes.

1 This question is about mean bond enthalpies and their use in the calculation of enthalpy changes. 1 This question is out men ond enthlpies nd their use in the lultion of enthlpy hnges. Define men ond enthlpy s pplied to hlorine. Explin why the enthlpy of tomistion of hlorine is extly hlf the men ond

More information

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e Green s Theorem. Let be the boundry of the unit squre, y, oriented ounterlokwise, nd let F be the vetor field F, y e y +, 2 y. Find F d r. Solution. Let s write P, y e y + nd Q, y 2 y, so tht F P, Q. Let

More information

m A 1 1 A ! and AC 6

m A 1 1 A ! and AC 6 REVIEW SET A Using sle of m represents units, sketh vetor to represent: NON-CALCULATOR n eroplne tking off t n ngle of 8 ± to runw with speed of 6 ms displement of m in north-esterl diretion. Simplif:

More information

arxiv: v1 [physics.atom-ph] 16 Aug 2013

arxiv: v1 [physics.atom-ph] 16 Aug 2013 Multipleoritlontriutionstomoleulrhigh hrmonigenertionin nsymmetritop Limor S. Spetor 1,2*, Shungo Miye 2,3, Alvro Mgn 4, Simon Petretti 4, Piero Delev 5, Todd Mrtinez 2,3, Alejndro Senz 4, Mrkus Guehr

More information

Estimation of Global Solar Radiation in Onitsha and Calabar Using Empirical Models

Estimation of Global Solar Radiation in Onitsha and Calabar Using Empirical Models Communitions in Applied Sienes ISS 0-77 Volume, umer, 0, 5-7 Estimtion of Glol Solr dition in Onitsh nd Clr Using Empiril Models M.. nuhi, J. E. Ekpe nd G. F Ieh Deprtment of Industril Physis, Eonyi Stte

More information

Electronic Supplementary Information (ESI) for:

Electronic Supplementary Information (ESI) for: Eletroni Supplementry Mteril (ESI) for RSC Advnes. This journl is The Royl Soiety of Chemistry 2015 Eletroni Supplementry Informtion (ESI) for: Novel physio-hemil mehnism of the mutgeni tutomeristion of

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information